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ANABOLISM I: Carbohydrates
PHOTOSYNTHESIS: Exam-4 material

Overview;; Key experiments:
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ANABOLISM III: Nifrogen (Amino Acids & Nucleotides)

Amino-acid Biosynthesis

essential
Nucleotide Biosynthesis

Secondary products of amino acids Exam-5 material

Biosynthesis Amino Acids &
Nucleotides
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Biosynthesis Amino Acids &
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+ Very complicated and amazing
chemistry!

* Rings must be synthesized and
closed and then oxidized to create]
double bonds.

* Chorismate is a common
intermediate.
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Biosynthesis Amino Acids &
Aromatic Family: Phe, Trp N UCIeotides
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illness.

+ Consumption of a
variety of foods
supplies all the
essential amino acids.

+ Conditionally Essential amino acids
are made from essential, or become
essential in certain physiological
conditions.




Biosynthesis Amino Acids &
Nucleotides

Non-essential Amino acids:
These are very few steps and often the same

Arg-Val-His-lle-Leu-Lys-Met-Phe Thr-Trp
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Red=biosynthesis specific _Green=essential

ANABOLISM lll: Biosynthesis
Amino Acids & Nucleotides

1) Nitrogen fixation: N, > NH,4
2) Nitrogen assimilation: incorporation of ammonia into biomolecules
3) Biosynthesis of amino acids
a) non-essential
b) essential
Biosynthesis of nucleotides
a) sources
b) de novo purines (R)(as nucleotides*); salvage; regulation
¢) de novo pyrimidines (Y)(as bases); making nucleotide; regulation
d) deoxy-ribonucleotides, dTMP, and phosphorylation to NTP & dNT
e) regulating tevefs for DNA synthesis

5) Control of nitrogen metabolism
6) Biosynthesis and degradation of heme; other 2° products of amino acids

*Bases synthesized while attached to ribose-5-P; products are RMP (& is one-istter code for purine,

Y is one letter code for pyrimidine)




Biosynthesis Amino Acids & Nucleotides

Intracellular protein Catabolism
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Biosynthesis Amino Acids &
Nucleotides
Two major sources of Nucleotides:
1. They can be synthesized de novo (“from the beginning”)
* Purine nucleotides: from ', GIn(NHs), Asp( ), , and CO,, and
ribose-5-phosphate (PRPP)
* Pyrimidine nucleotides: from , carbamoyl-phosphate, and ribose-5-

phosphate (PRPP)

2. Nucleotides can be salvaged from RNA, DNA, and cofactor degradation
and diet.

*Recall purines are degraded to uric acid (no energy) but pyrimidines can
be oxidized to acetyl-CoA and Succinyl-CoA

*Purine salvage is a significant contribution (80-90%)

*Interesting: Many parasites (e.g., malaria) lack de novo biosynthesis and
rely exclusively on salvage. Therefore, compounds that inhibit salvage
pathways are promising antiparasite drugs.

3. Because ATP/ADP are involved in so many reactions and regulation
mechanisms, the [nucleotide] are kept low; so cells must continually
synthesize them.

* This synthesis may actually limit rates of transcription and replication.

4. Unlike amino-acid biosynthesis, conserved in all organisms studied.




Biosynthesis Amino Acids &
Nucleotides

€0 Purines
Aspartate l Glycine
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Overview:
Formate [ 1. Build on ribose (PRPP)
2. Branch to AMP & GMP
Amide N at IMP . _
of glutamine 3. Many reactions like

those seen before
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De Novo Biosynthesis of Purines " i
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. ~ a highly regulated
allosteric enzyme
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4. FGAR reacts with GIn (like Glu synthase; ammonia
channel).

5. Looks like Schiff base, but its an elimination
after phosphorylation.
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Biosynthesis Amino
Acids & Nucleotides °

De Novo Biosynthesis of Purines
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Biosynthesis Amino
Acids & Nucleotides

6. Typical carboxylase (6a/b in 0
microorganisms)
7. Add Nitrogen of Asp (recall Urea Cycle).
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De Novo Biosynthesis of Purines o His biosynthesis
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Biosynthesis Amino Acids &
Nucleotides

SyntheS|s of AMP and GMP from IMP 11. Add Nitrogen of Asp (recall Urea Cycle)

GTP |\
Aspartate lyase
adenylosuccinate Rib-® @ RibH-®
synthetase @ Adenylosuccinate Adenylate (AMP)
> H,0
NAD*
m ® NADH + H*
IMp o] Gin Glu AMP + PP, o
Inosinate dehydrogenase N \ / ATP / N
(IMP) HN | > HN | >
o)\ N H,0 XMP-glutamine )\ N
u 2 amidotransferase HoN N
Rib-® @
Xanthylate (XMP) Guanylate (GMP)

"00C—Glty—gH-—C00"
NH
N Z

GDP + P;

f NZ N
> adenylosuccinate l\NI N>

12. Removal of formate (can act as anaplerotic
reaction to keep ATP synthesis)

NH,

‘Fumarate

18. Add water cross imine and oxidize to keto (recall fatty acid oxidation, except at imine not alkene)
14. Add nitrogen from Gin (recall Glu synthase (ammonia channel), and 3™ time we saw use of Gin for this)
Note that ATP is used to synthesize GMP precursor, while GTP is used to

synthesize AMP precursor.




Recall: Nucleotide Degradation

AMP deaminase

Nucleotides: AMP —MP XMP GMP
| 5'-Nucleotidase I I 5'-Nucleotidase I | 5'-Nucleotidase | I 5'-Nucleotidase
Adenosine
deaminase | @ L -
Nucleosides: ~ Adenosine ——> Inosine Xanthosine Guanosine
Purine nucleoside Purine nucleoside Purine nucleoside
phosphorylase phosphorylase phosphorylase
Bases: v . v V.
: Adenine Hypoxanthing s Xanthine <= Guanine
NIty ° R . . : o
1 Xanthine oxidase I Guanine deaminase | i
My N SN I 0 | un/K G
i | R J\ /7 HN RS, % A E, \>
" 1 LD N7 N7 N
o Xanthine oxidase
Q
5 : NN".\("‘
Uricacid | [ o
HO N H

Biosynthesis Amino Acids & Nucleotides

Salvage Pathway of Purines

Nucleotides:
adenine
phosphoribosy|
transferase

(ARPT)

Nucleosidgs:

AMP—IMP GMP
hypoxanthine-guanine-
phosphoribosyl 5-Nucleotidase
transferase
(HGRPT)
Adenosine
deaminase | W
Adenosine ——> Tnosine * Guanosine
& PRPP Purine nucleoside
| a2 | phosphorylase
v

. ¥
Bases: Adenine Hypoxanthine Guanine
NH, o o
AN L A
L T LD

* Over 90% of purine bases are from salvage pathway.

» The brain is especially dependent on salvage pathways.

+ The lack of HGPRT leads to Lesch-Nyhan syndrome with neurological impairment
and finger-and-toe-biting behavior.
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Salvage Pathway

AMP =——> IMP.

adenine

phosphoribosyl

transferase
(ARPT)

Adenosine
deaminase | &
Adenosine =——> Tnosine

* The lack of HGPRT leads to

Lesch-Nyhan syndrome with
neurological impairment and
finger-and-toe-biting behavior.

hypoxanthine-guanine-
phosphoribosyl
transferase

(HGRPT)

v
Guanosine

5'-Nucleotidase

Biosynthesis Amino Acids & Nucleotides

PRPP

Purine nucleoside
phosphorylase

A 4

A
Hypoxanthing s Xanthine e Guanine

Xanthine oxidase [ I Guanine deaminase |

Xanthine oxidase

Uric acid

hups/mymediabuedu/channel/BI422/8122485

Biosynthesis Amino
Acids & Nucleotides
Regulation of Purine
Biosynthesis

Four Major Sites of
Allosteric Regulation

1. PRPP synthetase is inhibited by
ADP and GDP.

2. Glutamine-PRPP
amidotransferase is inhibited by
end-products IMP, AMP, and
GMP.

3. Excess GMP inhibits formation
of xanthylate from inosinate by
IMP dehydrogenase.

4. Excess AMP inhibits formation
of adenysuccinate from inosinate
by adenylsuccinate synthetase.

e i S e g
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Ribose 5-phosphate

ribose phosphate
pyrophosphokinase X=gs ADP ==
(PRPP synthetase) v éGDP- —

— | PRPP
<- AMP ——————-
glutamine-PRP!
amidotransferase ® €= GMPi— s
&® <~ mp ----- %
[5-Phosphoribosylamine | !
I
I
I
9 steps |
I
I
y
IMP —~=——ememo—n——-
adenylosuccinate IMP
synthetase dehydrogenase
- AMP-> @ @ « emp-—~

\
I
XMP |
l XMP-glutamine :

I

- amidotransferase
Adenylosuccinate ,I
adenylosuccinate GMP: =memmemeSas
lyase

———————— AMP === m e

_|_
[

ADP ATP
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Biosynthesis Amino Acids &
Nucleotides

Amide N of
glutamine

Pyrimidines

NH-
As,partat§A Carbamoyl

N N phosphate
| /g (CO, & *NH,)
H O Overview:
1. Orotic acid
2. Add ribose (PRPP),

make UMP
3. CTP made from UTP

H H - vbmidines Amide N of Aspartate
Biosynthesis Amino o S loem. "™
Aspartate ! ~ phosphate
. " K e - r
Acids & Nucleotides e e
i | N-Carbamoylaspartate ’L’j\ /j:"m
De Novo Biosynthesis of Pyrimidines | we————kl 3
i w-Dihydroorotate "'I/‘ \<: .
« Unlike purine synthesis, pyrimidine synthesis proceeds ! o YR
by first making the pyrimidine ring (in the form of orotic . ("
acid) and then attaching it to ribose 5-phosphate using RIS .«j\ "
PRPP i Orotate 0’2\"13‘(00
\spariate and carbamoyl phosphate provide all the " - 1
atoms for the heterocycle or pyrimidine. The first [ -7, o j\
pyrimidine is Orotate. i Orotidylate ®-oem , T ¥
i (OmMP) k7
« This is converted to a nucleotide using PRPP, resulting - @ 9
nucleotide (orotidylate; OMP). [ o deamerine N co, e
* OMP is decarboxylated to form uridylate (UMP). u.u,-..".rum @ 5 1
« The other pyrimidine nucleotide used in RNA is made at — (" N
the triphosphate level; UMP is phosphorylated twice to : g
make UTP. ] Uridine 5 trphnphnte(UYP)
* UTP is converted to CTP by amination using Gin S|m|u - '— ) 1<i
to making AMP from XMP. - 3 mthaa “ | - p
« The biosynthesis of CTP is the CLASSIC feedback ! }\- AoP 4B, v
inhibition by the allosteric negative éftector (CTP) on ' oe@moon S
ATCase. Also, activation by GTP M-~ Cytidine 5'-triphosphate (CTP) “ku u?l_
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Biosynthesis Amino Acids &
Nucleotides

Regulation of Pyrimidine Biosynthesis via Feedback
Inhibition Aspartate Transcarbamoylase
(ATCase)

Vmax
Normal
activity
(no CTP)

CTP + ATP

v

2 A T A T S i

Vo (um/min)

(03)2(B2)3

1
I
I
]
I
]

1 1

1 1 1

10 | 20 | 30

Kos=12mm Kos =23 mm

[Aspartate] (mm)

Recall from 421: ATCase is inhibited by end-product CTP and is

accelerated by ATP.

ANABOLISM lll: Biosynthesis Amino
Acids & Nucleotides

Involvement of ribonucleotide-derivatives in all of biology

Dr. Ko
Lecture 04.26.17 (0:00-5:06) 5 min

httpse/mvmediabucdu/channcl/BI422/8122485]
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Biosynthesis Amino Acids &
Nucleotides

How are Ribonucleic Acid Precursors
So far: converted to Deoxyribonucleic Acid
GDPbGTP Precursors? _
........ and how is dTTP made?

2'C-OH bond is directly reduced to 2’-H
bond ...without activating the carbon for

C\lf'p dehydration, etc.!
catalyzed by ribonucleotide reductase

Specific kinases, Non-specific kinase,

e.g., UMP kinase, nucleoside
GMP kinase, diphosphate kinase Very unique engyme in all of biochemistry - use of free
Adenylate kinase (works on both oxy- and radicals (without cofactors)
d -rib
¢ GDP->dGDP  nudsosides) Mechanism: Two H atoms are donated
ADP->dADP by NADPH and carried by thioredoxin or
glutaredoxin to the active site.
UDP->dUDP —Substrates are the NDPs and the products

CDP->dCDP are dNDP.




