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ABSTRACT 
Given that sign language is used as a primary means of com­
munication by as many as two million deaf individuals in the 
U.S. and as augmentative communication by hearing indi­
viduals with a variety of disabilities, the development of ro­
bust, real-time sign language recognition technologies would 
be a major step forward in making computers equally acces­
sible to everyone. However, most research in the field of sign 
language recognition has focused on the manual component 
of signs, despite the fact that there is critical grammatical 
information expressed through facial expressions and head 
gestures. 

We propose a novel framework for robust tracking and 
analysis of facial expression and head gestures, with an ap­
plication to sign language recognition. We then apply it to 
recognition with excellent accuracy (≥ 95%) of two classes of 
grammatical expressions, namely wh-questions and negative 
expressions. Our method is signer-independent and builds 
on the popular “bag-of-words” model, utilizing spatial pyra­
mids to model facial appearance and temporal pyramids to 
represent patterns of head pose changes. 

Categories and Subject Descriptors 
I.4.8 [Image Processing and Computer Vision]: Scene 
Analysis—tracking ; I.5.1 [Pattern Recognition]: Models; 
I.5.2 [Pattern Recognition]: Design Methodology—clas­
sifier design and evaluation, pattern analysis 

General Terms 
Design, Experimentation, Performance 

Keywords 
Sign language recognition, face tracking, spatio-temporal 
pyramids, head pose estimation, expression recognition, ker­
nel codebooks, soft quantization, pyramid match kernel 
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1. INTRODUCTION 
Since the seminal work of Rabiner on Hidden Markov 

Models (HMM) [17], their popularity has grown and many 
advances have been made in speech recognition technolo­
gies. For example, modern computers can now interpret 
voice commands in real time and they can also translate 
speech to text and vice versa. Through such technologies, 
users can accomplish many computer tasks with minimal 
typing, making Human Computer Interaction (HCI) an eas­
ier and more efficient experience. 

On the other hand, technology for the recognition of sign 
language, which is widely used by the Deaf, is not nearly as 
well-developed, despite its many potential benefits. First of 
all, technology that automatically translates between signed 
and written or spoken language would facilitate commu­
nication between signers and non-signers by bridging the 
language gap. For example, users of sign language could 
produce signs into a camera connected to (or built into) a 
computer. The computer could then recognize and translate 
these signs to text or speech, thereby allowing a non-signer 
to understand the signed utterance. In a similar fashion, 
a non-signer could speak into a microphone connected to a 
computer. In real time, the computer could then perform 
speech recognition and translation into sign language, by 
synthesizing signs using realistic avatars1 . Secondly, such 
technology could be used to translate sign language into 
computer commands, hence opening the road for the de­
velopment of additional assistive technologies (in a man­
ner analogous to existing speech recognition technologies de­
scribed above) [22]. 

Moreover, computerized sign language recognition could 
facilitate the efficient archiving and retrieval of video-based 
sign language communication [22]. It could assist with the 
tedious and time-consuming task of annotating sign lan­
guage video data for purposes of linguistic and computer 
science research. Ultimately, such research – and resulting 
advances in sign language recognition and generation – will 
have applications that could profoundly change the lives of 
deaf people and improve communication between deaf and 
hearing individuals. Non-speaking, non-deaf users of sign 
language, including some people with autism, aphasia, cere­
bral palsy, Down Syndrome, and tracheotomies, will benefit 
from these technologies in the same ways. 

However, the task of sign language recognition is not easy. 
While in speech recognition systems we can model spoken 

1Avatars are three-dimensional computer animated charac­
ters. 
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Figure 1: Several sample ASL sentences for negative 
and wh-question constructions, with English glosses 
representing the ASL signs 

words as a sequence of sounds (phonemes), with sign lan­
guage things get more complex. First of all, the linguistic 
components of a sign that must be recognized occur simulta­
neously rather than sequentially. For example, one or both 
hands may be involved in the signing and these may assume 
various hand shapes, orientations and types of movement in 
differing locations. At the same time, facial expression may 
also be involved in distinguishing signs, further complicating 
the recognition task. 

In addition to the many possible combinations of facial 
expressions, hand shapes and hand movements, a recogni­
tion model should also account for variations in sign pro­
duction. As with words in spoken language, a given sign is 
not articulated identically every time it is produced, even 
by the same signer. Despite the combinatorial complexity 
of the problem, a number of methods have shown promis­
ing results in recognizing the manual components of signs 
produced through movements of the hands and arms [2, 23]. 

Furthermore, in sign language, critical grammatical infor­
mation is expressed through head gestures, such as periodic 
nods and shakes, and facial expressions such as raised or 
lowered eyebrows, eye aperture, nose wrinkles, tensing of 
the cheeks, and mouth expressions [1, 6, 12, 15]. These lin­
guistically significant non-manual expressions include gram­
matical markings that extend over phrases to mark syntactic 
scope (e.g., of negation and questions). Sign language recog­
nition cannot be successful unless these signals are also cor­
rectly detected and identified. For example, the sequence 
of signs JOHN BUY HOUSE could be interpreted, depend­
ing on the non-manual markings that accompany the signs, 
to mean any of the following: (i) “John bought the house.” 
(ii) “John did not buy the house.” (iii) “Did John buy the 
house?”(iv)“Did John not buy the house?”(v) “If John buys 
the house...”. In addition, recognition of such grammatical 
signals can assist with the task of recognizing the manual 
components of signs. This is because there may be some 
correlations between information that is expressed manually 
and non-manually. 

Motivated by the important role of facial expressions in 
sign language recognition, we present in this paper a novel 
framework for robust tracking and recognition of such ex­
pressions in monocular video sequences. In particular, we 
apply our framework to the recognition of facial expressions 
found in wh-questions, which involve phrases such as who, 
what, when, where, why and how, and head gestures of nega­
tion. Using an implementation of the robust face tracker of 
Kanaujia et al. [9], we accurately track the faces of American 
Sign Language (ASL) signers, localizing their facial compo­
nents (e.g., eyes, eyebrows) and predicting their 3D head 
pose. Inspired by the work of Lazebnik on scene catego­
rization [10], together with the popularity of “bag-of-words” 
models [11], we use spatial pyramids of features to detect 
lowered eyebrows and squinted eyes. We augment this infor­
mation with the 3D head pose using Stacked Generalization 
and Majority Voting [26, 20], to recognize the presence of 
wh-question facial expressions in a video sequence. Addi­
tionally, we extend the idea of spatial pyramids to the tem­
poral dimension, constructing pyramids of head pose deriva­
tives (i.e., the change of head pose), for the recognition of 
head shakes that are characteristic of negative expressions. 
We demonstrate the effectiveness of our approach by test­
ing on 42 videos from the Boston University American Sign 
Language Linguistic Research Project (ASLLRP) dataset 
[16] and achieving over 95% correct recognition results. 

2. LINGUISTIC BACKGROUND 
In ASL, there are typical facial expressions that are found 

with questions of different types. For wh-questions (which 
involve phrases such as who, what, when, where, why and 
how), the grammatical marking consists of lowered eyebrows 
and squinted eyes that occur either over either the entire 
wh-question or solely over a wh-phrase that has moved to 
a sentence-final position. The possibilities are illustrated 
in the example ASL sentences of Figure 1. In this figure, 
labeled lines indicate the signs with which the non-manual 
marking co-occurs. The first three examples would be trans­
lated in English as “Who loves John?”. The intensity of this 
wh-question marking is greatest at the end of the sentence 
when it spreads over the entire question, as in Figure 1(3). 
In addition, there may be a slight, rapid side-to-side head 
shake over at least part of the domain of the wh-question 
marking. 

With negation, there is a relatively slow side-to-side head 
shake that co-occurs with a manual sign of negation (such 
as NOT, NEVER), if there is one, and may extend over the 
scope of the negation, e.g., over the following verb phrase 
that is negated. These possibilities for translating an English 
sentence meaning “John did not buy a house” are illustrated 
in the bottom three examples of Figure 1(4-6). The inten­
sity of this marking is greatest at the source of the syntactic 
feature being marked, as in wh-questions, but in a sentence 
like (5) or (6) of the same figure, this means that the in­
tensity of the negative marking (including the amplitude of 
the head turns) is greatest at the left edge and diminishes as 
the marking continues. For further detail about distribution 
and intensity of non-manual grammatical markings, see [15]. 

3. PREVIOUS WORK 
As already mentioned in the previous section, most re­

search on computer-based sign language recognition has fo­
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cused on the manual components of signs. In the work of 
Vogler and Metaxas [23], the manual signs are split into inde­
pendent movement and hand shape channels, and an HMM 
framework is used to model signs as a sequence of phonemes. 
These independent channels allow them to handle simulta­
neous manual events. Bauer and Kraiss break down signs 
into smaller units using unsupervised clustering, achieving 
high recognition accuracy in isolated sign recognition ex­
periments [2]. In [24], the authors apply techniques from 
speech recognition to develop a method that quickly adapts 
to unknown signers, in an attempt to handle interpersonal 
variance. Similarly, the authors of [27] present a method for 
sign recognition, which uses a background model to achieve 
accurate feature extraction and then performs feature nor­
malization to achieve person independence. To tackle the 
problem of self occlusions of the hands, Martinez and Ding 
[7] first perform 3D hand reconstruction and then represent 
hand motions as 3D trajectories. 

Only recently have researchers begun to address the im­
portance of facial expressions for sign recognition systems. 
Von Agris et. al. [25] provide an extensive review of re­
cent developments in visual sign recognition, together with 
a system that uses both the manual and the non-manual 
components of signs. However, their system poses the re­
striction that the signer must be wearing a glove with col­
ored markers, in order to enable robust hand tracking and 
hand posture reconstruction. Additionally, in their system, 
the tracked facial features are not used to recognize facial 
expressions which have grammatical meaning. Vogler and 
Goldenstein present a 3D deformable model for face track­
ing, which emphasizes outlier rejection and occlusion han­
dling [21, 22] at the expense of slower run time. They use 
their system to demonstrate the potential of face tracking 
for the analysis of facial expressions encountered in sign lan­
guage, but they do not use it for any actual recognition of 
facial expressions. In our work, we use the more robust Ac-
tive Shape Model (ASM) face tracker [5, 9] to do real time 
tracking with better handling of partial occlusions and head 
rotations. Additionally, we demonstrate the effectiveness of 
our method in recognizing facial expressions by extending 
ideas originally proposed for scene categorization [10]. This 
allows us to move away from the complexity of training Hid­
den Markov Models, which have been the dominant tools in 
this domain. 

4. METHOD 
Our framework for facial tracking and facial expression 

recognition consists of the following steps for each video se­
quence that is processed: 

1. Face tracking and pose estimation 

(a) Feed video sequence into ASM tracker to localize 
and track signer’s face 

(b) ASM tracker outputs (x,y) positions of 79 facial 
landmarks and the 3D head pose for each frame 

2. Feature Extraction for each tracked frame utilizing 
ASM tracker’s output 

(a) Compute bounding box of eyes and eyebrows and 
extract dense SIFT feature descriptors from it [13] 

(b) Soft quantize the SIFT descriptors and the head 
pose using separate feature codebooks [8] 

(c) Build pyramid representation of frames and video 
sequences 

i. Build spatial pyramids of computed SIFT de­
scriptors for each frame 

ii. Build temporal pyramid of head pose deriva­
tives (change in pose) for the entire sequence 

3. Recognize video sequences containing Negative expres­
sions using the temporal pyramid representation of 
pose derivatives and a Support Vector Machine (SVM) 
[3] with pyramid matching kernel [10] 

4. Recognize video sequences containing Wh-Question ex­
pressions 

(a) Use a Stacked Support Vector Machine [20, 26], 
which combines the score obtained from classify­
ing the spatial pyramid representation of SIFT 
descriptors and the score obtained from classify­
ing the pose angle, to classify each frame in the 
video sequence 

(b) Apply majority voting [20] on the results of the 
previous step, to classify the entire sequence based 
on the classification of each frame within the se­
quence (if the majority of the frames are classified 
as depicting a Wh-Question expression, the entire 
sequence is also classified as such) 

The following subsections explain the components of our sys­
tem in more detail. 

4.1 Face Tracking 
Face tracking is a challenging problem because the tracker 

needs to generalize well to unseen faces and must handle il­
lumination changes. It should also cope with partial occlu­
sions and pose changes, such as head rotations, which cause 
drastic changes in the shape of the face, causing it to lie 
on a non-linear manifold. This basically means that as the 
head rotates by a certain amount, the shape of the different 
parts of the face, as viewed from a two dimensional perspec­
tive, does not change uniformly and by an equal amount in 
all places. This effect is more severe during head rotations 
which approach profile poses. 

Kanaujia et al. [9] tackle the problem with an Active 
Shape Model (ASM) [5], which is a statistical model of 
facial shape variation. In the ASM framework, a facial 
shape SX is represented by N landmarks, each of which is 
characterized by its (x, y) image coordinates, so that SX = 
{x1, y1, . . . , xN , yN}. Through the application of Principal 
Component Analysis (PCA) on an aligned training set of 
facial shapes, a subspace is learned which captures the ma­
jor modes of shape variation, by projecting shapes along the 
eigenvectors of the shape covariance matrix with the high­
est eigenvalues. Essentially, this allows us to learn a model 
of the permissible ways in which faces of different people 
differ, so that we can then apply this model to images of 
unseen faces and still be able to localize and track them. In 
this way, an aligned shape XX = Φ(SX), where Φ is the linear 

¯transformation that aligns a shape SX to the mean shape XX 

of the subspace, can be approximated as: 

XX ≈ XX̄ + X (1)Pb , 

where PX is the eigenvector matrix and Xb is a column vector 
of shape parameters (encoding). 
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Figure 2: Sample frames (best viewed in color) showing accurate tracking under challenging scenarios (partial 
occlusions, fast movements and glasses). Here, red dots represent tracked landmarks. The predicted head 
pose is shown in the top left corner of each frame as a 3D vector 

The authors of [9] additionally propose a piecewise ap­
proximation to the non-linear shape manifold using overlap­
ping linear subspaces, where each subspace corresponds to a 
different group of poses. Basically this means learning sepa­
rate ASM models for each major pose (e.g., looking frontally, 
left, right, up, down, etc.) and dynamically switching sub-
spaces as the pose of the tracked face changes through a 
head rotation. Their system is made to run in real time by 
incorporating a Sum of Squared Intensity Differences (SSID) 
point tracker [18], which tracks image patches across succes­
sive frames assuming small displacements, and only fitting 
the ASM model periodically to correct any tracking error. 
Moreover, using a Bayesian Mixture of Experts they are able 
to estimate the 3D pose of the head from the tracked land-
marks (refer to [9] for a more thorough treatment). Figure 
2 illustrates the abilities of the ASM tracker on a few chal­
lenging input frames exhibiting partial occlusions, as well as 
rapid head movements and rotations. 

The middle columns of Figure 3 show sample frames with 
the 79 tracked landmarks, along with the predicted 3D head 
poses for each one. Pitch refers to the amount of backward 
tilt, yaw refers to the amount of left turn, while tilt mea­
sures the amount of clockwise head rotation. We use the 
tracked position of the eyes and eyebrows to compute their 
bounding box in each frame (we will refer to the region in­
side this bounding box as the eye region). We then apply 
the computer vision algorithm of the Scale Invariant Fea­
ture Transform (SIFT) by David Lowe [13], to extract dense 
discriminative features from within this bounding box to 
characterize the local texture and appearance of this eye re­
gion, and learn to recognize lowered eyebrows and squinted 
eyes. The computed SIFT features are invariant to scale and 
rotation changes, meaning that they can still be detected in 
challenging the ASL video sequences in which the face moves 
closer or further to the camera and changes pose. 

4.2 Codebook Construction 
The codebook approach, inspired by the word-document 

representation used in text retrieval, was first applied to im­
ages in the work of Leung and Malik [11]. This approach 
allows classification of images by representing them as a bag 
of features, for example SIFT features [13], which are in turn 
represented as discrete prototypes [8]. Typically researchers 
use unsupervised clustering to obtain a codebook, V , of pro­
totypes, w, from a random subset of the training data and 
label each feature by its best representing prototype. Then 
they count how many times each prototype occurs in an im­
age and stack these frequencies in a vector, which becomes 
the new representation of the image and can later be used 

for classification purposes. This codebook representation is 
essentially a histogram of prototypes. 

However, quantizing features in this manner creates prob­
lems. For example, if some feature is too distant from all 
available prototypes, forcing such a hard assignment could 
mean that the resulting encoding is implausible. Moreover, 
if a feature is very close to more than one prototype, it be­
comes ambiguous as to which one would represent it the 
best. The authors of [8] overcome these problems of code­
word plausibility and codeword ambiguity by employing ideas 
from kernel density estimation. They propose a soft assign­
ment of prototypes, resulting in a Kernel Codebook (KCB) 
representation of an image for each prototype, w: 

� 1 
n 

KCB(w) = Kσ(D(w, ri)) , (2) 
w 

i=1 

where n is the number of features in the image, ri is the	 ith 

ith feature, D(w, ri) is the distance of prototype w from the 
feature, and σ is the smoothing parameter of kernel K. In 
our work, we adopt this method of soft quantization, setting 
K to be a Gaussian kernel and using Euclidean distance as 
our distance metric, D(w, ri). 

4.3 Pyramid Representation 
After we extract and softly quantize [8] the discriminative 

SIFT features of each frame, we utilize the work on pyra­
mid representation of Lazebnik et al. [10], which enables us 
to model the spatial relationships among features and also 
provides the means for measuring feature similarity between 
frames, using a pyramid match kernel. 

Denote the set of quantized features extracted from two 
frames as X and Y . To build a pyramid with L levels, for 
each level l = 0, 1, ..., L, we divide the frame into an imagi­
nary grid of 22×l cells, along both the x and y dimensions, 
so that the cells in level l are bigger than the cells in level 
l+1 above it. We histogram the quantized features that fall 
in each cell (for each feature we know its position within the 
frame it came from), yielding separate histograms for each 
cell for each of the L levels. These histograms represent 
the feature distribution of a particular cell, in terms of the 
relative frequency of occurrence of each feature prototype 
within that cell. Because cells at different levels have dif­
ferent sizes, their histograms are computed over image sub­
regions of different sizes, yielding an image representation 
of different levels of resolution. The topmost layer, having 
the smallest sized cells, forms the most detailed representa­
tion of the feature distribution within an eye region, while 
the bottommost layer the least detailed. Collectively, the 
histograms at each level form the pyramid representation of 

78



Figure 3: First column shows the input frame, second column shows the tracked face with the estimated 
3D pose, and third column shows the extracted eye and eyebrow region. The top signer is producing a 
Wh-Question, while the bottom signer is producing a negative expression (best viewed in color) 

Figure 4: Spatial pyramids of SIFT descriptors (50­
word codebook, σ = 0.2). Pyramid levels are in­
creasing with increasing bin index. Left plot is for a 
Wh-Question. Right plot is for a Negative expres­
sion 

the feature distribution within an image, which is effectively 
a concatenated vector of the bin values of all the histograms 
in the pyramid. 

Figure 4 shows two spatial pyramid representations ex­
tracted from video sequences containing different facial ex­
pressions. The pyramid on the left corresponds to a frame 
in which the signer was producing a wh-question expression, 
while the pyramid on the right comes from a video of a neg­
ative expression. Examining the two plots, the difference 
in the pyramids is evident, especially in the levels of finer 
resolution (finer resolution bins are on the left). The input 
frames, together with the tracked faces and the extracted eye 
regions, that generated these spatial pyramids are shown in 
Figure 3. 

In order to measure the distance between the feature sets 
X and Y , and eventually measure the dissimilarity in ap­
pearance between any pair of frames,we just need to compare 
their pyramid representations, essentially meaning compar­
ing the bins of these histograms to see how much they match. 

Similar to [10], we measure histogram similarity at each level 
l, using the histogram intersection function presented in the 
work of Swain and Ballard [19] and defined as: 

� 
I(H l l 

X , HY ) = min (H l l 
X(j), HY (j)) , (3) 

C 

j=1 

where H l and H l 
X Y are the histogram representations of the 

two frames at level l, C is the number of cells at level l, while 
H l l 

X(j) and HY (j) are the respective histograms of frames 
X and Y in the jth cell of level l. 

Since higher levels are of a finer resolution, it is intuitive 
to weigh the similarity match of cells in these levels with a 
higher weight than that used for the lower levels of coarser 
resolution. Moreover, if a match is found at a level l, it will 
also be found in the coarser level l − 1, so when comparing 
feature sets, we should only consider the new matches found 
at each levels. This leads to the following match kernel for 
spatial pyramids having L levels: 

� L 
1 1L

I
0 + l

K (X, Y ) = I , (4) 
2L 2L−l+1 

l=1 

 where I0 is the intersection score at level 0 and I l is the 
intersection score at level l [10]. 

Furthermore, we propose a natural extension of this pyra­
mid representation to the temporal domain. The ASM face 
tracker predicts the head pose in each frame. We compute 
the change in yaw angle between successive frames and softly 
quantize the yaw derivatives using a codebook that we com­
pute from a random subset of the training set. Then we 
construct a temporal pyramid for each video, by dividing a 
sequence of frames into cells, in a similar fashion as done for 
spatial pyramids and using the same match kernel. In this 
way, we form a representation which allows us to detect the 
head shake of a signer. This is because we expect to see a 
distinct uniform pattern of yaw angle derivatives resulting 
from a head shake during a negative expression, which is 
distinct from the pattern of yaw derivatives resulting from 
other ASL expressions. This difference in yaw angle deriva­
tive patterns is illustrated in Figure 5. 
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Table 1: Dataset Composition 
Training Testing Total 

Wh-question 25 11 36 
Non-Wh-question 25 11 36 
Total 50 22 72 

Negative Expression 22 10 32 
Non-Negative Expression 22 10 32 
Total 44 20 64 

Table 2: Performance metrics 
Precision Recall Accuracy 

Stacked Wh-question 91.7% 100% 95.5% 

SIFT Wh-question 90.9% 90.9% 90.9% 
Pose Wh-question 63.6% 63.6% 63.6% 

Negative Expression 90.9% 100.0% 95.0% 

Table 3: Confusion matrix for recognition of nega­
tive expressions 

Predicted as Predicted 
as Negative as Non-Negative 

True Negative 10 0 
True Non-Negative 1 9 

Figure 5: Sample plots of yaw angles, yaw derivatives and smoothed derivatives for two video sequences of 
different class. Top row plots are from a Wh-Question. Bottom plots are from a Negative construction 

5. EXPERIMENTAL RESULTS 
The Boston University American Sign Language Linguis­

tic Research Project (ASLLRP) dataset used for the re­
search reported here consists of 15 spontaneous short nar­
ratives plus over 400 additional elicited utterances collected 
from several native signers of ASL [16]. Synchronized video 
cameras captured the signing from multiple viewpoints (two 
stereoscopic front views plus a side view and a close-up of 
the face). The data were annotated using SignStream R®, 
software2 developed by our group specifically for linguistic 
annotation of visual language data [14]. The annotations 
include identification of start and end frames of individual 
signs as well as labeling of facial expressions and head move­
ments that have grammatical significance. 

In our experiments we used the close up view of the face 
only from isolated utterances. We selected a total of 36 video 
sequences showing wh-questions and 32 sequences showing 
negative expressions. These formed our set of positive ex­
amples for each of the two classes. An equal number of neg­
ative examples were collected by randomly selecting video 
sequences from different classes. We then randomly split our 
two datasets of wh-questions and negative expressions into 

2http://www.bu.edu/asllrp/SignStream/ 

a training and validation set, and into a test set, ensuring 
that both sets contained data from different signers. The 
duration of the video sequences ranged from 1.6 seconds to 
6 seconds. The training sets contained about 70% of the 
total data, while the remaining data formed the testing set. 
Table 1 shows the dataset composition in more detail. 

We used the ASM face tracker of [9] to track the signer’s 
face in each sequence and extract their eye region, as well as 
predict their 3D head pose. Figure 3 shows sample results of 
tracking, pose prediction and localization of the eye region. 
The pose angle predictions were smoothed with a one-sided 
Gaussian filter with σ = 2 and a length of 7 frames, so that 
the pose in a given frame was a weighted combination of the 
pose predictions in that frame and of those in the 6 frames 
before it, in order to filter out noise. Pose angle derivatives 
were computed, as the difference in pose angle between two 
successive frames, and then a random subset was used to 
construct a codebook of 75 codewords using soft assignment 

80



Table 4: Confusion matrix for recognition of wh­
expressions using pose information only 

Predicted Predicted as 
as Wh-Exp Non-Wh-Exp 

True Wh-Exp 7 4 
True Non-Wh-Exp 4 7 

[8] with a Gaussian kernel and σ = 0.1 (larger size code-
books did not achieve better recognition). Temporal pyra­
mids with three levels (i.e. L = 2) were then constructed for 
each video sequence and a Support Vector Machine (SVM) 
with the pyramid match kernel discussed in Section 4.3 was 
trained via cross-validation, and used to classify the test set 
sequences into negative and non-negative expressions. An 
SVM is a popular machine learning algorithm that can be 
trained to discriminate two classes of objects, using some 
characteristic features of these classes (in this case the tem­
poral pyramid representation), when presented with exam­
ple instances from each class. 

The SVM classifier achieved a precision accuracy of 90.9% 
and a recall rate of 100%, with an overall recognition accu­
racy of 95%. Using more levels in the temporal pyramid 
hurt the performance. Here, by recognition accuracy we re­
fer to the percentage of instances in the training set that 

tp + tn 
were correctly classified (i.e. ). Precision is the ra-N 

tp tp 
tio and recall is the ratio , where N stands 

tp + fp tp + fn
for the total number of test set instances, tp stands for true 
positive, fp for false positive and fn stands for false nega­
tive. The detailed classification results are shown in Table 
2, while Table 3 shows the confusion matrix, where we see 
that our proposed method of temporal pyramids yields only 
one false positive. 

Similarly, from the localized eye regions we have extracted 
dense SIFT features [13], which we also quantized using soft 
assignment [8] with a Gaussian kernel and σ = 0.2. Sam­
ple spatial pyramids with four levels (i.e. L = 3) extracted 
from frames in which different signers are producing different 
grammatical constructs, are shown in Figure 4. We exper­
imented with different codebook sizes but we found that a 
codebook of 100 words for the spatial pyramids performed 
adequately: for recognizing the wh-questions a single SVM 
classifier (which we call the “SIFT Wh-question” recognizer) 
only achieved a recognition accuracy of 90.9%. 

However, as seen in Table 5 this classifier had room for 
improvement. We trained a second SVM (which we call the 
“Pose Wh-question” recognizer) on the pitch angle of the 
signer’s head in each frame, which achieved an accuracy of 
63.6%, revealing an unknown weak correlation between head 
pose and the expression produced by the signer in a given 
frame. Therefore, we implemented a stacked SVM (which we 
call the “Stacked Wh-question recognizer”) [20, 26] to com­
bine the predictions of the “SIFT Wh-question” recognizer 
with those of the “Pose Wh-question” recognizer. Stacking 
[20, 26] is a machine learning method for training a classifier, 
which learns to smartly combine the individual predictions 
of multiple base classifiers in order to improve classification 
accuracy, by utilizing the specific expert knowledge learned 
during training by each of the base classifiers. The stacked 
SVM took as input features the prediction scores output by 
each of the other two SVM classifiers, and classified frames 

Table 5: Confusion matrix for recognition of wh­
expressions using spatial pyramids only 

Predicted Predicted as 
as Wh-Exp Non-Wh-Exp 

True Wh-Exp 10 1 
True Non-Wh-Exp 1 10 

Table 6: Confusion matrix for recognition of wh­
expressions using spatial pyramids and pose infor­
mation 

Predicted Predicted as 
as Wh-Exp Non-Wh-Exp 

True Wh-Exp 11 0 
True Non-Wh-Exp 1 10 

using an RBF kernel, with its σ parameter chosen by cross 
validation, into frames depicting wh-questions and frames 
depicting non-wh-questions. Majority voting was used to 
decide the class label prediction of each sequence, based on 
the predicted labels of their constituent frames. Recognition 
results are summarized in Table 2 and the confusion matrices 
of the base SVM classifiers and of the stacked SVM classifier 
are shown in Tables 4, 5 and 6, respectively. By looking at 
these tables, one can see that by combining both the appear­
ance features and the head pose information, helped improve 
the recognition accuracy of the overall method, by correctly 
classifying the one false negative instance of the “SIFT Wh­
question” recognizer. It is likely that, as research continues, 
for differentiation of non-manual markings that differ very 
subtly from one another, it is going to be crucial to combine 
multiple evidence (e.g., use head positions and movements, 
appearance features around the nose, etc.). 

6. FUTURE WORK 
Currently our system uses spatial pyramids and pose an­

gles to determine whether there is a wh-question facial ex­
pression in each frame, and then uses majority voting to do 
the final recognition for the video sequence. In other words, 
predictions are made for each frame in isolation from its 
neighboring frames. However, successive frames in a video 
sequence are dependent. Thus, modeling the temporal de­
pendency between features extracted from successive frames 
can make the system more robust to noisy measurements, 
enabling it to make more accurate predictions. To address 
this we began experimenting with spatio-temporal pyramids, 
which also take into account the time dimension and have al­
ready been successfully used to match objects in video shots 
[4]. Similarly, in order to improve our negative expression 
recognizer we are also investigating methods for temporal 
alignment and normalization of our features, which could 
help improve the discrimination power of our temporal pyra­
mid representation. 

As mentioned at the end of Section 5, combining multi­
ple evidence will be crucial in helping recognize classes of 
non-manual markings that are only subtly different, so as 
part of our future research we will be looking at combin­
ing appearance information obtained from multiple regions 
of interest on the face, for example, the nose and even the 
mouth. Ultimately, for automatic translation of sign lan­
guage to written or spoken language, automatic recognition 
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of sentence boundaries will also be an interesting and im­
portant avenue to pursue. 

7.	 CONCLUSIONS 
We presented a novel framework for robust real time face 

tracking and facial expression analysis from a single uncal­
ibrated camera. Using spatial pyramids, along with their 
temporal extension, we obtained a feature representation 
that is signer independent. We demonstrated that our frame­
work can recognize the non-manual components of signs en­
countered in isolated utterances of ASL video, by success­
fully recognizing both wh-questions and negative expressions 
with excellent accuracy. Lastly, we discovered a correlation 
between a signer’s head pose, in particular their head’s pitch 
angle, and the appearance of their eyes and eyebrows, and 
used it to improve classifier performance, in a stacked SVM 
framework. This finding reinforces the belief that combi­
nation of multiple evidence will be crucial in distinguishing 
the subtle differences between certain classes of non-manual 
markings. Future steps include extending our work to per­
form accurate recognition in longer and more challenging 
video sequences, as well as modeling temporal dependencies 
between successive frames to improve recognition accuracy. 
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