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Abstract

Although the oral cavity is easily accessible to inspection, patients with oral cancer most
often present at a late stage, leading to high morbidity and mortality. Autofluorescence
imaging has emerged as a promising technology to aid clinicians in screening for oral neo-
plasia and as an aid to resection, but current approaches rely on subjective interpretation.
We present a new method to objectively delineate neoplastic oral mucosa using autofluor-
escence imaging.

Autofluorescence images were obtained from 56 patients with oral lesions and 11 normal
volunteers. From these images, 276 measurements from 159 unique regions of interest (ROI)
sites corresponding to normal and confirmed neoplastic areas were identified. Data from
ROls in the first 46 subjects were used to develop a simple classification algorithm based
on the ratio of red-to-green fluorescence; performance of this algorithm was then validated
using data from the ROls in the last 21 subjects. This algorithm was applied to patient
images to create visual disease probability maps across the field of view. Histologic sections
of resected tissue were used to validate the disease probability maps.

The best discrimination between neoplastic and nonneoplastic areas was obtained at 405
nm excitation; normal tissue could be discriminated from dysplasia and invasive cancer with
a 95.9% sensitivity and 96.2% specificity in the training set, and with a 100% sensitivity and
91.4% specificity in the validation set. Disease probability maps qualitatively agreed with
both clinical impression and histology. Autofluorescence imaging coupled with objective im-
age analysis provided a sensitive and noninvasive tool for the detection of oral neoplasia.

Head and neck cancer, including cancers of the oral cavity,
currently ranks as the sixth most common malignancy in the
world. There were more than 270,000 new cases of oral cancer
reported in 2002 (1). In the United States, approximately 50%
of these individuals will present with stage III or IV disease,
and 40% will die within 5 years of diagnosis (2). Screening
individuals at risk for oral cancer and its precursors has the
potential to improve early detection, providing the opportu-
nity to intervene when treatment is most effective. In addition,
surveillance of patients who have survived their initial oral
cancer is important to identify local recurrences and second
primary oral tumors, which occur at a higher rate than for
any other tumor (3, 4).
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Conventional oral examination using incandescent white
light is the current standard of care for screening and surveil-
lance for oral cancer and precancerous lesions. The sensitivity
of visual examination is limited by several factors including
the experience and index of suspicion of the examiners. In pri-
mary care situations, cases of malignancy may be rarely seen
and clinicians may have difficulty discriminating the some-
times subtle mucosal changes associated with premalignant
lesions and early cancers from more common benign inflam-
matory conditions (5). Furthermore, it can be challenging to
delineate the boundaries of neoplastic lesions using conven-
tional oral examination, making the choice of a biopsy location
difficult.

Several new approaches have been proposed to address the
limitations of conventional oral examination, including the
use of toluidine blue, brush cytology, reflectance visualization
after acetic acid application, and illumination with a chemilu-
minescent light source. Although useful in certain situations,
each of these approaches is associated with a high rate of false-
positives (5-8). Recently, several studies have shown that
autofluorescence imaging may improve the ability to distin-
guish normal from premalignant and malignant oral tissue
(9-15). When tissue is illuminated in the UV-visible region, a
portion of photons are absorbed by molecules within the tis-
sue called fluorophores which then emit lower energy photons
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that can be detected as fluorescence from the mucosal surface.
Examples of fluorophores which produce autofluorescence
signals in tissue include NADH and FAD in the epithelial lay-
er, and collagen and elastin crosslinks in the stroma (16). In
comparison with normal oral tissue, neoplastic lesions are as-
sociated with a decrease of green fluorescence when excited
with UV or near-UV light (9, 10, 12, 17), which is attributed
to decreased signal from collagen crosslinks in the stroma
(18). Increased red fluorescence has also been observed by
several groups in oral lesions and is frequently attributed to
porphyrins (19). Several groups have proposed that this per-
ceived loss of green fluorescence and increase in red fluores-
cence can be useful as a diagnostic aid to help detect and
diagnose early neoplastic disease in several anatomic sites in-
cluding the oral cavity, bronchus, cervix, esophagus, and colon
(13, 20-23). In addition, the changes in fluorescence may aid in
surgical resection by delineating the extent of neoplastic
changes beyond the clinically apparent margins (9, 10).

Recently, the U.S. Food and Drug Administration approved
an autofluorescence imaging device for early detection of oral
neoplasia. The device, marketed as the VELscope (LED Den-
tal, Inc., White Rock, British Columbia, Canada), uses a blue/
violet light (400-460 nm wavelengths) to illuminate oral tissue
and long-pass and notch filters to enable clinicians to directly
visualize fluorescence in the oral cavity (9, 13). The VELscope
and other proposed fluorescence imaging devices rely on
qualitative observations to detect and delineate neoplastic oral
lesions and therefore reliable screening with these instruments
necessitates well-defined and standardized image interpreta-
tion criteria, and appropriate user training. This may not be
feasible in many primary care situations. We hypothesize that
the application of digital image processing techniques to auto-
fluorescence imaging of oral tissue will provide the ability to
objectively identify and delineate the peripheral extent of neo-
plastic lesions in the oral cavity. This will provide a powerful
tool in patient care locations where experts are not available or
where physicians encounter few cases of malignant and pre-
malignant neoplasia. Low-cost digital cameras with sufficient
sensitivity to record tissue autofluorescence in near real-time
are now readily available (24), making the clinical application
of such automated image processing feasible.

The primary goal of the present study was to evaluate the
use of quantitative autofluorescence imaging for the detection
and delineation of oral neoplastic lesions. We show that a sim-
ple, objective method can be used to accurately classify regions
of interest (ROI) within an autofluorescence image with 100%
sensitivity and 91.4% specificity relative to histopathology.
This method can delineate the presence and extent of neoplas-
tic lesions within a field of view and provide results which cor-
relate with the histopathologic assessment of extent of disease.
Thus, quantitative autofluorescence imaging may provide a
noninvasive and objective method to improve screening and
margin delineation of oral cancers and precancers.

Materials and Methods

Human subjects

Study subjects were enrolled in a clinical protocol reviewed and ap-
proved by the Institutional Review Boards at The University of Texas
M.D. Anderson Cancer Center and Rice University. Patients were eli-
gible and recruited if they were 18 years of age or older, and had
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known or suspected precancerous or cancerous squamous lesions lo-
cated in the oral mucosa. Patients may have had previous surgical,
radiation, or chemotherapeutic treatments. Normal volunteers were
eligible and recruited if they were 18 years of age or older and had
no history of oral pathology. All subjects enrolled in the study gave
written informed consent. The average age of patients in this study
was 59, 42% of the patients were female and 58% were male. The av-
erage age of normal volunteers in this study was 27.4, 27% were fe-
male and 73% were male.

Imaging procedure

Autofluorescence images were obtained from the oral cavity of 56
patients with clinically abnormal lesions and 11 normal volunteers.
Data were divided into a training set and a validation set. Data ac-
quired from the first 39 patients and 7 normal volunteers imaged be-
tween June 2006 and January 2008 were allocated to the training set,
and were used to develop an algorithm for the detection of neoplasia.
Data acquired from the subsequent 17 patients and 4 normal volun-
teers imaged between March and June 2008 formed a validation set
and were used to test the performance of this algorithm relative to
histopathology.

White light and autofluorescence images were obtained at 365, 380,
405, and 450 nm excitation using a Multispectral Digital Microscope.
This device is described in detail elsewhere (25), but briefly, the Mul-
tispectral Digital Microscope is a wide-field optical microscope which
collects digital autofluorescence and reflectance images with a color
CCD camera from a variable field of view, ranging in size from ~1
to 7 cm. Patients were imaged either in an outpatient clinic or in the
operating room under general anesthesia prior to surgery. A physician
positioned the patient and microscope so that the suspicious lesion or
area of interest was clearly in the field of view of the device. Clinically
normal areas distant from or contralateral to the lesion were also im-
aged. Following imaging in the clinic, suspicious lesions were biop-
sied. In the operating room, previously biopsied lesions were
surgically resected.

Histopathologic correlation

Biopsies and resected tissues were evaluated using standard histo-
pathologic analysis by a board-certified pathologist (either A. El-Nag-
gar or M.D. Williams). The location of biopsies and resected lesions was
recorded using digital photography so that pathology results could lat-
er be correlated to multispectral imaging results. In addition, the loca-
tions of gross anatomic features were noted in both autofluorescence
images and histology specimens to aid in correlation. The resulting his-
topathology sections were evaluated to provide a diagnosis along the
entire length of the epithelium, also noting any submucosal abnormal-
ities in each slide. Histopathology diagnosis included the following cat-
egories: normal, mild dysplasia, moderate dysplasia, severe dysplasia/
carcinoma in situ, and invasive carcinoma. For the purposes of diagnos-
tic algorithm development, two major categories were defined: normal
tissue (including inflammation and hyperplasia) and neoplastic tissue
(including dysplasia, carcinoma in situ, and cancer).

Analysis and statistical methods

Images were preprocessed to subtract signals from ambient room
light and translated so that white light and fluorescence images of
the same field of view were spatially registered. Two hundred and
seventy-six measurements corresponding to 159 unique ROI sites of
clinically normal and suspicious regions of tissue were selected from
white light images by a head and neck surgeon (A.M. Gillenwater)
blinded to the results of the autofluorescence imaging. In some cases,
repeat measurements were obtained from the same ROI site to help
ensure image data was collected without motion artifacts; often both
the first and repeat measurements were included in the analysis.
These repeat measurements account for the difference between the
number of measurements and the number of ROI sites. Heterogeneity
in pathologic diagnoses may occur within relatively small areas of
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diseased oral mucosa (26, 27), therefore, ROIs were stringently selected
from suspicious areas using one of the following four criteria: (a) areas
corresponding to the same size and location as a biopsy with a patho-
logic diagnosis, (b) ROIs from locations which could be correlated to a
histopathology slide with a corresponding pathologic diagnosis, (c)
areas within well-defined exophytic tumors confirmed by pathologic
diagnosis, and (d) ROIs from a location which was clinically normal
and deemed by the physician to be sufficiently distant from the lesion.

Autofluorescence images from the training set were analyzed to de-
termine whether specific image features could be used to classify a
measurement site as normal or neoplastic. The autofluorescence
images and white light images were spatially registered so that the
ROIs chosen in the white light images corresponded to the same re-
gion of tissue in the autofluorescence images. The training set includ-
ed data from the first 39 patients and 7 normal volunteers and
included measurements from 173 measurements of 102 unique ROIs.
Qualitatively, neoplastic ROIs were associated with a decrease in av-
erage green fluorescence intensity and often an increase in red fluores-
cence intensity. The mean ratio of red-to-green pixel intensities inside
each of the ROIs was calculated from the fluorescence images at each
excitation wavelength. Red and green pixel intensities were obtained
from the collected Red-Green-Blue color images, created by the Bayer
color mask on the CCD detector. A classifier was developed to distin-
guish neoplastic and normal ROIs using linear discriminant analysis
with the single input feature of average ratio of red-to-green fluores-
cence. When more than one measurement corresponded to a ROI site,
the mean of the feature values was used for classification. The classi-
fier was trained using all of the ROI sites in the training set and the
prior probability input into the classifier was chosen to represent
the percentage of abnormal to normal measurements in the data set.
The classifier was developed after images were acquired from patients
in the training set but before measurements were acquired from
patients in the validation set. Classifier accuracy in the training set
was assessed by plotting the receiver operating characteristic (ROC)
curve, the area under the ROC curve (AUC), and the sensitivity and
specificity at a particular operating point on the ROC curve (28-30).
The positive and negative predictive values were also calculated at the
operating point. Confidence intervals (CI) were calculated for operat-
ing characteristics using the Wilson “score” method including a con-
tinuity correction (31).

The algorithm was then applied to data from the validation set us-
ing the red-to-green ratio threshold found to produce the highest com-
bination of sensitivity and specificity in the training set. The validation
set was designed to rigorously test the algorithm, and for most pa-
tients, ROI and biopsy pairs were collected on the clinical margins
of the lesion in addition to directly on the lesion and in clinically nor-
mal areas. The validation set included 103 measurements from 57
unique ROIs in a second group of 17 patients and 4 normal volunteers.

An additional analysis step was explored to increase the perfor-
mance of the classifier by normalizing the red-to-green ratio measure-
ments for each patient. An additional unique and nonoverlapping
ROI of clinically normal tissue was chosen from the same anatomic
site and in the same field of view for each of the ROIs described above.
At each excitation wavelength, the mean red-to-green autofluores-
cence ratio was calculated in this ROI; the mean red-to-green ratios
from the other ROIs were normalized by this value. This method pro-
vides a way to compensate for anatomic and patient to patient varia-
tions in red-to-green fluorescence intensity ratio. Identical statistical
analysis was done using this measured feature with both the training
set and the validation set. The method using the magnitude of the red-
to-green fluorescence intensity ratio is termed the raw red-to-green
method and the method using a normalized red-to-green fluorescence
intensity ratio is termed normalized red-to-green method.

Disease probability maps

The classification algorithms described above provided a relation-
ship between the magnitude of the red-to-green fluorescence intensity
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ratio for a particular region of interest within the image and the prob-
ability of that region having a diagnosis of abnormal. This relationship
was used to predict the probability of a diagnosis of dysplasia or can-
cer for each pixel in an image, given the normalized red-to-green fluo-
rescence intensity ratio at that pixel. The posterior probability values
at each pixel in the image were computed and pixels which corre-
sponded to a 50% or greater probability of being classified as dysplas-
tic or cancerous were color-coded and digitally overlaid onto the
white light images. This method provides a means to illustrate areas
of tissue with the highest probability of being neoplastic. The assump-
tion was made that the region of interest method described above
could be generalized on a pixel by pixel basis. Disease probability
maps were compared with histologic images of tissue resected from
the field of view to confirm the accuracy of this method.

Results

Tables 1 and 2 summarize the anatomic site and histopath-
ologic diagnoses of the 159 sites included in this analysis. The
most common sites were the tongue, buccal mucosa, and floor
of the mouth, followed by the palate, lip, and gingiva. The
training set contained 52% normal, 28% dysplastic, and 20%
invasive carcinoma sites, whereas the validation set contained
61% normal, 25% dysplastic, and 14% invasive carcinoma
sites. The normal histopathologic category could include tis-
sue with hyperkeratosis, hyperplasia, and/or inflammation
as long as there was no dysplasia or carcinoma. The normal
sites in the training set, based on available pathology (not in-
cluding normal volunteers and normal sites in which no biop-
sy was taken), included seven sites (13.2% of normal sites)
with hyperplasia and hyperkeratosis, four sites (7.5% of nor-
mal sites) with hyperkeratosis, and three sites (5.7% of normal
sites) with hyperplasia and/or fibroadipose tissue. The valida-
tion set included three sites (8.6% of normal sites) with hyper-
plasia and hyperkeratosis, one site (2.9% of normal sites) with
hyperplasia, one site (2.9% of normal sites) with a submucosal
hemorrhage, and one site (2.9% of normal sites) with marked
inflammation and osteonecrosis. The abnormal histopatholo-
gy category could include dysplasia and carcinoma. In the
training set, 59.2% of the abnormal sites were premalignant
(mild, moderate, or severe dysplasia); in the validation set,
63.6% of the abnormal sites were premalignant.

Figure 1 shows white light and autofluorescence images
from the buccal mucosa of a patient with pathologically

Table 1. Anatomic sites of ROIs in the training and
validation set

Anatomic No. of sites in the No. of sites in the
site training set (%) validation set (%)
Tongue 37 (36.3) 19 (33.3)
Buccal mucosa 12 (11.8) 15 (26.3)
Floor of mouth 22 (21.6) 4 (7.0)
Gingiva 2 (2.0) 7 (12.3)

Lip 14 (13.7) 4 (7.0)
Palate 15 (14.7) 8 (14.0)
Total 102 (100) 57 (100)

NOTE: Percentages may not add up to 100% because of
rounding.
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Table 2. Pathology diagnosis of ROI sites in the

training and validation sets

Diagnosis No. of sites in the No. of sites in the
training set (%) validation set (%)

Normal 53 (52.0) 35 (61.4)

Mild dysplasia 11 (10.8) 5 (8.8)

Moderate dysplasia 6 (5.9) 5 (8.8)

Severe dysplasia/CIS 12 (11.8) 4 (7.0

Invasive carcinoma 20 (19.6) 8 (14.0)

Total 102 (100) 57 (100)

confirmed invasive carcinoma. The white light image (Fig. 1A)
shows two ROIs, one of which corresponds to a pathologically
confirmed invasive carcinoma, and the other which was clin-
ically normal and outside of the pathologically confirmed
clear resection margin. Figure 1B-D show autofluorescence
images at different excitation wavelengths that were taken be-
fore surgery from the same field of view. The autofluorescence
image obtained at 405 nm excitation qualitatively shows the
greatest visual contrast between the normal and neoplastic
ROI. This observation was typical for study patients.

Table 3 summarizes the performance of both diagnostic al-
gorithms, based on either the raw or the normalized mean red-
to-green fluorescence intensity ratios, for classifying lesions in
the training set. At each excitation wavelength, the classifier
that used the normalized red-to-green fluorescence intensity
ratio (normalized R/G ratio) had slightly higher AUC than
the algorithm based on the raw red-to-green fluorescence
intensity ratio (raw R/G ratio). In all cases, the highest AUC

was obtained at 405 nm excitation. The sensitivity and speci-
ficity values at the point on the ROC curve nearest the gold
standard (Q-point) are also reported in Table 3.

A scatter plot of the normalized red-to-green ratio at 405 nm
excitation for each of the 102 sites in the training set, as well as
the threshold of 1.19 used in the classification algorithm, is
shown in Fig. 2A. Of the 102 sites, 4 were misclassified, includ-
ing 1 site of fibroadipose tissue on the lower lip misclassified as
abnormal, 1 hyperkeratotic site on the right buccal misclassi-
fied as abnormal, 1 cancer site on the right lateral tongue mis-
classified as normal, and 1 site on the left soft palate with focal
ulceration and dysplasia misclassified as normal. Figure 2B
shows the ROC curve for this classifier; the AUC is 0.988,
and at the Q-point, the sensitivity was 95.9% (95% CI, 84.9-
99.3%) and the specificity was 96.2% (95% CI, 85.9-99.3%).
The positive predictive value was 95.9% (95% CI, 84.9-99.3%)
and the negative predictive value was 96.2% (95% CI, 85.9-
99.3%). This operating point is indicated on the ROC curve.

The algorithm using the normalized red-to-green fluores-
cence intensity ratio at 405 nm excitation was applied to the
validation set. In Fig. 2C, a scatter plot of the normalized R/G
ratio for each site in the validation set is shown along with the
threshold that had been previously selected for the training
set. Figure 2D depicts the ROC curve with the operating point
selected for the training set indicated. A 100% sensitivity (95%
CI, 81.5-100%) and 91.4% specificity (95% CI, 75.8-97.8%) and
an AUC of 0.987 were achieved at this operating point for the
validation set. The positive predictive value was 88.0% (95%
CI, 67.7-96.9%) and the negative predictive value was 100%
(95% CI, 86.7-100%). Of the 57 sites in the validation set,
3 were misclassified as abnormal including 1 site on the left
buccal with hyperplasia, 1 site on the right buccal, and anoth-
er site on the left buccal.

Fig. 1. Autofluorescence and white

light images of the buccal mucosa of a
typical study patient. A, white light
image showing regions of interest of
histopathologically confirmed normal
tissue and invasive carcinoma. B,
fluorescence image at 365 nm excitation.
C, fluorescence image at 405 nm
excitation. D, fluorescence image at

450 nm excitation.
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Table 3. Classification results at each fluorescence excitation wavelength using both the raw R/G ratio method
and the normalized R/G ratio method in the training set

Fluorescence excitation wavelength (nm)

Raw R/G ratio

Normalized R/G ratio

AUC  Sensitivity (%) Specificity (%) AUC  Sensitivity (%) Specificity (%)
365 0.832 83.7 73.6 0.856 83.7 86.8
380 0.891 89.8 77.4 0.924 83.7 88.7
405 0.971 91.8 92.5 0.988 95.9 96.2
450 0.922 81.6 92.5 0.906 85.7 90.6

Figure 3 shows white light— and 405 nm-excited autofluor-
escence images from a study patient with moderate dysplasia
and carcinoma in situ located on the floor of mouth. The white
light image is also shown with an overlay of the calculated
disease probability map; regions corresponding to a predictive
probability of a neoplastic lesion greater than 50% are shaded
as indicated by the color bar. The disease probability map in-
dicates the probability that a particular pixel in the image cor-
responds to a neoplastic area of tissue. Histologic sections
obtained at six areas in the tissue are also shown. Only one
of these areas was included in the previous classification anal-
ysis. The disease probability map shows qualitative agreement
with the presence of dysplasia and cancer in the areas
corresponding to the histologic sections.

Figure 4 shows representative white light images with and
without superimposed disease probability maps from four

study patients. Images in the first three rows correspond
to patients with histologically confirmed neoplasia, whereas
the image in the bottom row is from a normal volunteer
with no clinically suspicious lesions. Although the lesion
in Fig. 4A is obvious, those in B and C are less so, highlight-
ing the potential to aid clinicians in identifying the presence
of neoplasia and identifying optimal sites for further evalu-
ation with biopsy. Images in Fig. 4A and B are from a pa-
tient with an invasive carcinoma on the floor of mouth.
Images in Fig. 4C and D are from a patient with a region
of severe dysplasia on the tongue. The images in Fig. 4E
and F are from a patient with a region of moderate dyspla-
sia on the gingiva. In all three cases, the disease probability
map delineates the suspicious regions identified clinically by
an oral cancer specialist blinded to the results of the auto-
fluorescence imaging and are consistent with histopathologic
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Fig. 3. A, white light image of floor of the mouth
with histopathologically confirmed dysplasia

and carcinoma in situ. B, 405 nm excitation
fluorescence image showing areas with deceased
autofluorescence. C, white light image with disease
probability map showing the predictive probability of
a neoplastic lesion superimposed. Letters indicate
specific locations where pathology is known. The
key indicates pathology. The histology slides show
tissue sections from these areas (bottom). Bar, 1 mm.
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sections obtained. Figure 4G and H are from the inner lip of
a normal volunteer and the disease probability map does
not indicate any lesions.

Discussion

Our results illustrate how autofluorescence imaging may
enhance the ability of clinicians to detect and delineate areas
of oral dysplasia and carcinoma. Although all four illumina-
tion conditions tested allowed the visualization of changes
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in autofluorescence with neoplasia, illumination with the 405
nm wavelength produced the highest discriminatory capabil-
ity. This corresponds to previous findings comparing illumina-
tion wavelengths for autofluorescence imaging in freshly
resected oral cancer surgical specimens (17). Although subjec-
tive interpretation of loss of autofluorescence has been shown
to be useful (9, 13), there are several important advantages as-
sociated with objective and quantitative analysis of changes in
autofluorescence signal. First, quantitative analysis methods
provide a rigorous and repeatable way to determine the
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threshold for demarcating a lesion, even for providers with
less experience. Second, digital imaging allows the operator
to save and process images, directly comparing data from
multiple patients in a series or from a single patient over time.
Third, ratios of fluorescence intensity values provide a way to

reduce variations in images associated with spatial nonunifor-
mities in illumination.

In the present study, the performance of a simple classifier
based on the ratio of red-to-green autofluorescence intensity at
405 nm excitation was tested and found to discriminate

Fig. 4. A and B, images from a patient
with an invasive carcinoma on the floor of
the mouth. A, white light image; B, white
light image with disease probability
mapping showing the predictive
probability of a neoplastic lesion; C and D,
images from a patient with a region of
severe dysplasia on the tongue; E and F,
images from a patient with a region of
moderate dysplasia on the gingiva; G and
H, images from the inner lip of a normal
volunteer.

50%

White Light Images Disease Probability Mapping
L | 2 L

75% 100%
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neoplastic and nonneoplastic tissue with a sensitivity and
specificity of 96% in the training set and 100% sensitivity
and 91.4% specificity in the validation set. These results com-
pare favorably with the performance of visual oral examina-
tion, which has been systematically reviewed by Downer et al.
(32). Downer identified eight prospective studies between
1980 and 2002 that involved conventional oral exam with gold
standard verification provided by an expert observer. In four
of the studies, the screeners were general dentists and in four
of the studies, the screeners were trained health workers. Sen-
sitivity ranged from 59% to 97%, specificity ranged from 75%
to 99%, and meta-analysis resulted in a weighted pooled sen-
sitivity of 85% and a specificity of 97%. Other reports of the
performance of visual oral screening include Sankaranaraya-
nan et al. (sensitivity 77%, specificity 76%; ref. 33), Ramadas
et al. (sensitivity 82%, specificity 85%; ref. 34), and Nagao et
al. (sensitivity 92%, specificity 64%; ref. 35). The classifier in
this study can be applied to entire images of the oral cavity
to visualize areas with a high probability of being neoplastic;
disease probability maps are consistent with histologic sec-
tions obtained from tissue in the field of view.
Autofluorescence imaging has shown great promise for en-
hancing the visualization of neoplastic areas in recent studies
(9, 10, 13-15, 17). In a study of 44 patients, Lane et al. showed
high sensitivity and specificity in discriminating normal oral
mucosa from severe dysplasia, carcinoma in situ, or invasive
carcinoma based on visual assessment of loss of autofluores-
cence in diseased mucosa at excitation wavelengths between
400 and 460 nm (13). In another study by the same group, the
potential for autofluorescence imaging to enhance delineation
of the margins of neoplastic changes was shown. In some
cases, fluorescence loss extended as far as 25 mm beyond
the clinically apparent margin (9). Autofluorescence endo-
scopic imaging technologies for lung and the gastrointestinal
tract using ratios of red and green signal have been available
for over a decade and have greatly increased the sensitivity of
disease detection in these organ systems (20, 36-38). The laser-
induced fluorescence emission (LIFE) system is an autofluor-
escence bronchoscopy device which provides the user with a
real-time image in which changes in hue correspond to suspi-
cious and/or abnormal areas. Users of the device must be
trained in order to interpret these changes in image hue (37).
A potential confounding factor which may limit the specific-
ity of classifiers based on the red-to-green fluorescence intensi-
ty ratio for automated image analysis software is the frequent
presence of red fluorescence on normal papillae of the dorsal
aspect of the tongue. At 405 nm excitation, increased fluores-
cence above 600 nm emission has been observed in oral lesions
and is thought to originate from porphyrins, although it is un-
certain whether the origins of these porphyrins are intrinsic or
derived from bacterial contamination (39). Red porphyrin-like
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