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Abstract

Although microarrays are already having a tremendous impact on biomedical science, they still present great computational challenges.

We examine a particular problem involving the computation of linear regressions on a large number of vector combinations in a high-

dimensional parameter space, a problem that was found to be virtually intractable on a PC cluster. We observe that characteristics of this

problem map particularly well to FPGAs and confirm this with an implementation that results in a 1600-fold speed-up over an optimized

serial implementation. Some of the other contributions involve the data routing structure, the analysis of bit-width allocation, and the

handling of missing data. Since this problem is representative of many in functional genomics, part of the overall significance of this work is

that it points to a new area of applicability for FPGA coprocessors.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Microarrays measure simultaneously the expression

products of thousands of genes in a tissue sample and so

are being used to investigate a number of critical biology

questions [1,3,6,10,12,22]. Among these are (paraphrasing

from pages 19 to 20 of Ref. [17]): Given the effect of 5000

drugs on various cancer cell lines, which gene is most

predictive of the responsiveness of the cell line to a

particular chemotherapeutic agent? or Is there a group of

genes that can serve to distinguish the outcomes of patients

with disease ijk who are otherwise indistinguishable? or

Which of all known genes have a pattern of expression

similar to those genes regulated by factor xyz?

As exciting as this usage is, microarray analysis is

extremely challenging. One issue is that the data are noisy

and the noise is often difficult to characterize. Another issue

is that the number of measured quantities is invariably much

larger than the number of samples. This results in an

underconstrained system not amenable to traditional

statistical analysis such as finding correlations. As a result

of these and other difficulties, techniques are used (often

derived from machine learning) that provide a focus of

attention, or a visualization, from which biological signifi-

cance can be inferred. Among these are various forms of

clustering, inference nets, and decision trees. Their

computational complexity ranges from the trivial to the

intractable. However, given the cost of obtaining microarray

data, the fact that further biological interpretation is usually

still required, and the value of many of the most rudimentary

computations, most analysis applications are tailored to run

fairly quickly on ordinary PCs.

It is undoubtedly the case, however, that biologists would

like to ask far more complex questions and that increased

computational capability would help to answer them. With

applications such as those listed above, however, even a

slightly harder question can result in an increase by orders of

magnitude in computation. This is true of the problem we

investigate here.
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Kim et al. [16] would like to find a set of genes whose

expression can be used to determine whether liver tissue

samples are metastatic or non-metastatic. For biological

reasons, it is likely that three genes is an appropriate number

to make this determination. Kim et al. further propose that

use of linear regression would be appropriate to evaluate the

gene subsets over the available samples. Since there are tens

of thousands of potential genes, 1011 to 1012 data subsets

need to be processed. Although simple to implement, he

reported that this computation was intractable even on his

small cluster of PCs.

We decided to investigate the prospects of supporting

this computation on an FPGA-based coprocessor. There are

many reasons:

† It is an excellent match computationally. The data-set

size, the amount of computation per datum, the nature of

the individual computations, and the data-type size all

are favorable to FPGAs.

† This computation is representative of a large number of

similar computations in microarray analysis as well as in

broader bioinformatics and computational biology

(BCB). Therefore, demonstrating the efficacy for this

problem would have much wider significance. Note that

others (e.g. Refs. [11,24,27]) have shown similar success

(to what we show here) for another application in

bioinformatics; that is, of applying dynamic program-

ming to sequence analysis. However, the computational

characteristics of that particular application bear no

resemblance to the problem addressed here.

† There is a large number—perhaps thousands—of

potential users. Therefore, a low-cost distributed solution

is much more attractive than a centralized resource such

as a large-scale cluster. This is especially true since (as

we will show) it would take a very large cluster to match

performance.

† The state of algorithmics in microarray analysis (and

some other areas of bioinformatics) is one of flux.

Therefore, a solution based on a generic PC-and-

coprocessor may be more attractive than hardwired

alternatives such as ASICs. The same would be true

with respect to turn-key software/hardware systems,

such as those provided by a number of vendors,

assuming that they provided solutions to these

problems at all. Also, both of these ‘hardwired’

alternatives are extremely expensive.

What we have found is that we can obtain a speed-up of a

factor of 1600 over an optimized serial version running on a

1.7 GHz Pentium IV PC. These results have so far been

achieved in simulation using post place-and-route timing for

the Xilinx XC2VP100-7.

Our most basic contribution is the speed-up for this

particular problem: data sets of nearly 10,000 genes can be

examined in less than 20 min instead of 19 days. Other

contributions have to do with the actual implementation,

including a novel data routing structure, development of an

architectural family of computations, the analysis of the bit-

width allocation (precision management), and our handling

of missing data. Finally, as this problem has similar

characteristics to many others in microarray analysis, we

show that there is potential for broader applicability of

FPGA coprocessors in this very important domain.

The rest of this paper is organized as follows. In Section

3 we present the problem formally and describe the serial

implementation. There follows a description of the FPGA

design and implementation including an analysis of data

path widths. Then comes a description of extensions. We

conclude with a discussion.

2. Application detail and serial implementation

The data to be analyzed are derived from n microarrays,

each a sample from a diseased or healthy (control) tissue.

The data consist of a binary diagnosis and an expression

value for each of the genes being analyzed. Expression

values are tabulated in a matrix with row vectors

corresponding to microarrays and column vectors corre-

sponding to particular genes. The outcomes are tabulated in

a column vector Y: The technique used is to compute the

linear regressions for all three-way combinations of genes.

Pearson’s R2 defines the goodness of fit for each regression.

Examining a standard statistics reference [23], we find that

the estimators b̂0;…; b̂n comprising the column vector b̂
can be computed as follows:

b̂ ¼ ðXTXÞ21XTY

The first column of X consists of n 1s and each remaining

column consists of the n expression values for one gene of

the subset being considered in this particular combination.

However, since much of computational complexity results

from the inversion, it is important to reduce its rank. This is

done by centering the data, which results in a b̂ ¼ b̂1;…; b̂n

of

b̂ ¼ ½ðXþÞTXþ�21ðXþÞTYþ

and

R2 ¼
b̂ðXþÞTYþ

ðYþÞTYþ

where Xþ is the n £ 3 matrix containing column vectors

with elements Xij 2 �Xi and Yþ is the column vector

containing the values of Yj 2 �Y: Note that in centered

mode we do not need to compute b̂0 and thus do not need the

column of ones in X: We therefore operate on 3 £ 3

matrices rather than 4 £ 4.

The covariance matrix

cij ¼ ðXi 2 �XiÞ
TðXj 2 �XjÞ
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can also be written as

ncij ¼ n
X

k
ðXikXjkÞ2

�X
k
Xik

��X
k
Xjk

�

The factor of n cancels in later operations, and eliminates

the need to perform the division implied by �Xi: The entire

computation for each gene combination thus partitions into

two parts: the first consists of the nine dot products and four

summations while the second consists of computing the

covariance matrix, inverting the matrix, and using those

results to obtain b̂ and R2:

In our tests we used data derived from a human breast

tumor study by Perou et al. [22]. The data are typical of

those generated in microarray studies and consist of

expressions of 9218 genes (including controls) from 84

microarray samples. Raw expression data are ratios. As is

standard practice, we took the log, normalized, and rounded

the data to integer values in the range 24 to þ4. Using four

bits is on the high end of information per sample; often only

two bits are used. The result vector is binary: 0/1 for

diseased/healthy.

An important consideration in microarray analysis is

dealing with missing data. That is, the microarray value for

a gene/sample expression is sometimes unreadable; in that

case no value at all is reported. In the Perou data set, 46% of

genes contain missing data. If not handled properly, missing

data can dominate the regressions and render results

meaningless. We take a simple approach: for a given

combination of three genes, for each sample with missing

data, we eliminate that sample from consideration for all

genes. The combination is rejected completely if too many

healthy samples are dropped.

Statistical literature [18] refers to this as a form of

complete-case analysis within any one combination of

genes, and available-case analysis in selecting combinations

of genes. A x2 test of Perou’s data shows that the frequency

of missing values is not decisively different among healthy

samples than among diseased samples. Thus, the missing

data matches the Missing At Random assumption and

complete-case analysis appears justified.

When implementing the algorithm, one notes that each

dot-product and sum is used a large number of times. It

seems to make sense to precompute all of the n £ n dot

products, then use them in the ð n
3
Þ inversions later. This

eliminates roughly a factor of n dot products. Unfortunately,

this does not account for missing data: each dot-product can

have drop-outs not just from data missing from the two

vectors being multiplied, but also from the third vector of

the set. Since this third vector changes for every set, it

follows that all dot products must be recomputed for every

iteration.

We created two versions of the serial code. One was a

mirror of the FPGA implementation and was used to verify

results, especially with respect to maintaining precision.

The other was used to generate timing and so was highly

optimized for serial execution on a modern processor.

The R2 for each set of genes was computed in 10.1 ms on

a 1.7 GHz Pentium IV PC. Because of the tremendous data

locality, there was no drop-off in performance with respect

to the number of gene combinations evaluated. This means

that evaluating three-way combinations of 1000 genes takes

about half an hour, while three-way combinations of 10,000

genes takes more than 19 days, and 20,000 genes takes more

than five months. Clearly L1 cache and available ILP are

being used to a very high degree, the latter not surprisingly

due to the numerous multiply–accumulate (MAC) compu-

tations and the hardwired invert.

Still, these results confirm our initial assumption: that

this computation, while perhaps not ‘heroic’ in the grand-

challenge sense, is still outside the realm of usage in

exploratory data analysis. For this and similar computations

to be readily usable as part of an analysis toolkit, days need

to be reduced to minutes.

3. FPGA methods, implementation, and results

3.1. Hardware model

The overall hardware model is simply an FPGA on a PCI

board plugged into a PC. As the amount of reuse per datum

is very high, details about the particular board and interface

do not have a significant impact on our results: only a

KB/second input rate needs to be supported. Several

commercial products meet these criteria (e.g. Refs. [2,21]).

The rest of the discussion in this section describes

simulations, synthesis, and place-and-route in the Xilinx

ISE 5.2.02i environment [25] for Virtex-II Pro XC2VP100

gate array [26] and anticipates implementation on a generic

coprocessor board when one becomes available for this chip

in 2004. The Virtex-II Pro product family is especially

interesting here because of its large gate count, large on-

chip memory, and high number of dedicated multipliers.

Implementations on other devices in this family follow from

the one described here using analogous optimizations and

are described in Section 4.

We use standard VHDL language constructs throughout

the design. Chip-specific synthesis controls are used only for

indicating where RAMs be synthesized and for choosing

between hardwired and synthesized (LUT-based)

multipliers.

3.2. Parallel algorithm

As is often the case, the serial algorithm needs to be

substantially reworked to obtain maximal performance on

an FPGA. The key differences are: (i) use of minimal initial

data type size and use of precision management to keep this

minimality throughout the computation and (ii) paralleliz-

ing the computation, which results in hundreds of pipelines

and a complex data distribution network to service those

pipelines. There are also differences that may be termed
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technology-oriented rather than algorithmic. These include

use of combinational logic to perform safety checks in

parallel, hardwiring substantial computations, performing

boolean operations with single gates, and avoiding division.

The FPGA implementation is summarized in Fig. 1. The

circuitry consists of three parts: (i) vector data memory and

distribution network (VDM) and the two computational

segments described in Section 2: (ii) dot-products and

summations (DPS) and (iii) covariance matrix, inverse, and

regression (CIR).

We now show how the serial algorithm maps onto the

parallel hardware. For clarity, we assume 10,000 vectors

(genes per microarray) of length 100 (number of micro-

arrays/samples in the medical study). Recall that the outer

loop requires computing regressions of all ð 10;000
3

Þ ¼

1:66 £ 1011 three-way combinations of vectors. In the

parallel version, the outer loop consists of choosing nine

vectors at a time (of the 10,000) and processing in parallel

all ð 9
3 Þ ¼ 84 combinations of those nine vectors. The

processing within each of the 84 combinations is also

done in parallel. In one iteration of the outer loop the

following steps occur:

† The vector memory provides elements from the nine

vectors in parallel; the 100 elements/vector are provided

serially so nine streams of data are sent in parallel to the

distribution network.

† The distribution network replicates the nine streams to

feed the 84 combinations of three vectors (for a total of

252 streams of 100 elements) into the 84 DPS units.

† Each to the 84 DPS units performs in parallel all of the

dot products and summations required for a single three-

way vector combination.

† The outputs of the DPS units are scalar elements of the

covariance matrix. Processing the matrices is done by the

CIRs. Because the CIRs are much faster than the DPSs,

each CIR is fed by a number of DPSs.

† The results from the best combinations (above some

threshold) are retained in result memory before transfer

to the host.

We can currently store about 10% of the entire data set

on-chip, so the vector memory must be reloaded period-

ically. However, even with each vector being used with

eight others in parallel, vectors are still used in a large

number of nine-way combinations before they need to be

swapped.

We next give details of the implementation, starting with

the DPS and CIR. In the following sections we talk about

optimizations and safety checks and then about timing,

integration, and speed-matching. At that point the respon-

sibilities of the VDM are clear and it is then described.

3.3. DPS and CIR overview

Each DPS accepts four data vectors, three X values and

one Y : The Y represents the diagnosis, 0 or 1 for cancerous

or healthy samples, respectively. The X values represent

expression levels, encoded as four bit values. The encoding

represents a symmetric range from 2N to þN: Earlier, we

noted that the application works well when expression data

is quantized to a range of 24 to 4 (encoded as 0–8). A

special value (15, binary 1111) is a Not-a-Number (NaN)

code that represents missing or invalid input data. The DPS

unit, illustrated in Fig. 2, consists of: counters to tally valid

data sets and Y values, accumulators to total the X vectors

and XY dot products, and MAC sections to total the XiXj dot

products and X2
i :

Note the handling of missing data. In Fig. 2, the box

labeled ¼ NaN? detects missing data and propagates that

fact to the MAC units where the accumulation of the invalid

summands is blocked. If, for example X1i is a missing value,

then the summands X2
1i;X1iX2i;X1iX3i and X1iYi are

obviously meaningless. Following Ref. [18], X2i; X2
2i; X3i;

X2
3i; X2iX3i; X2iYi; X3iYi; and Yi are also omitted from their

respective sums and from the vector length count.

This DPS computation takes advantage of the 1-bit Y

values in several ways. First, the summation of Y values

reduces from an accumulator to a counter. Second, the

summation of Y2 values is redundant. Given 0 and 1 as the

only possible Y values, the sums of Y and Y2 are identical.

Third, the XY sums are accumulators, conditionally adding

Fig. 1. Schematic of entire computation.
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X elements depending on Y being 0 or 1. Only the dot

products of X vectors require true multiplication, 4 £ 4 bit

products of unsigned values, giving 8 bit results or less.

Once the vector is processed, DPS results are latched for

input to the CIR (see Fig. 3). DPS results consist of outputs

from all accumulators in Fig. 2, a valid data counter, and the

validity indicator (overflow and minimum-Y tests—details

below). The result is presented broadside to the CIR. That

section consists entirely of unclocked combinational logic,

including adders, subtracters, and multipliers. It first

computes the 3 £ 3 covariance matrix from the dot

products. That feeds the closed form inversion of the

covariance matrix.

3.4. DPS and CIR details: optimizations and safety checks

One fundamental optimization is to minimize the

datapath width at all points. Worst-case calculations of the

minimum width are simple and safe, but result in a far more

conservative implementation than necessary. We address

this by: (i) a priori determining the maximum datapath

widths and (ii) confirming that overflow has not occurred.

There are two aspects to datapath width determination: the

bits that can be dropped at the high end (because of worst

cases that never occur in practice) and bits that can be

dropped at the low end (because the loss of precision is

insignificant).

The a priori path width determination is done in two

ways: empirical and theoretical. On the theoretical side,

the need for less significant bits is estimated using interval

arithmetic [9]. Precision is verified empirically by

sampling test data off-line. That is, covariance and

inversion calculations are simulated on samples of the

actual data. Then the covariance and inverse matrices are

multiplied together. The ideal result would be an identity

matrix; measured precision is acceptable if results lie

within a specified distance of the ideal. Note that although

this application resembles common signal processing in

some ways, the meanings of truncation errors differ.

Existing techniques for determining numbers of significant

bits are based on controlling signal-to-noise ratios [8]

throughout the computation. It is difficult to assign

meaning to an SNR in this statistical inference application;

instead, our analysis is based on confidence intervals. Part

of our ongoing research includes formalization and

automation of that analysis.

Also on the theoretical side, worst-case analysis sets an

upper bound on the number of high-order bits required. It is

interesting that most authors (e.g. Ref. [20]) perform worst-

case bit allocation in whole bit increments, even when their

Fig. 2. A dot-products and summations (DPS) unit.

Fig. 3. A covariance matrix, inverse, and regression (CIR) unit and its interfaces to DPS units and result memory.

T. Van Court et al. / Microprocessors and Microsystems 28 (2004) 213–222 217



bitwidth allocation is otherwise sensitive to application data

values. For example, consider the accumulator needed to

add up 84 terms in a dot-product of vectors with nine

element values, 0–8, as described above. Naively, that

would require 7 þ 4 þ 4 ¼ 15 bits. In fact, the accumulator

need only hold dlog2ð84 £ 8 £ 8Þe ¼ 13 bits to handle the

worst-case for this application.

Empirical estimates of high order bit requirements also

come from measurements of calculations on sample data.

The calculation is performed off-line, for a meaningful

subset of the application cases, and the number of bits used

at each step is measured. This gives statistics of actual bit

usage. High-order bits are allocated to cover the samples

observed, plus some margin based on observed standard

deviations. The implementation, then, handles all data

values that can reasonably be expected. To be thorough,

however, the FPGA logic checks for overflow at each step.

The DPS and CIR stages both present validity indicators,

stating whether an erroneous calculation was detected at any

point.

As noted earlier, some regressions may be invalid

because missing data values leave too few Y ¼ 1 (healthy)

samples. Fig. 2 shows the ‘Y sum valid?’ check, a

configurable test requiring some minimum number of

healthy samples in a data vector. If inadequate data with

Y ¼ 1 appears, that also marks the whole calculation as

invalid. A similar test of the number of Y ¼ 0 samples is not

necessary for this data set.

In the CIR, one optimization is the use of closed form

inversion. Although this method has many problems when

applied to large matrices, it works well with these matrix,

vector, and data sizes. Besides the obvious speed advantage,

hardwiring allows us to keep cofactors and determinant

separate for independent use in computing correlation

coefficients and regression.

Another optimization is that all multiplications in the

CIR use the FPGA’s block multipliers. The DPS, with

smaller operands, uses multipliers built from logic. Further,

optimization may be possible in the CIR by exchanging

some block multipliers for multipliers built from logic for

sufficiently small operands.

Various other obvious optimizations were found not to be

beneficial due to timing and resource allocation tradeoffs.

These include pipelining the CIR and processing DPS

vectors in parallel.

3.5. Putting together the DPS and CIR: timing and speed-

matching

Overall throughput is described later; here we begin the

description of timing in the context of speed-matching the

parallel DPS’s and CIRs. Timing is computed statically,

using post place-and-route (PAR) results. PAR is comple-

tely automatic, with no manual guidance, timing con-

straints, or floor-planning. Timing estimates are based on

synthesis of nine CIR units, each supplied by 10 DPS units

(90 DPSs total; see Fig. 3 for one CIR/10 DPS unit) and

VDM as described below. The target is a XC2VP100

gate array with speed grade 27. The entire design, minus

‘glue’ needed to attach the application logic to its host

environment, occupies 73% of the logic slices and 94% of

the block multipliers. This design is naturally the product of

several iterations: throughput balancing depends on the

timings of synthesized circuits, but the circuits are designed

to balance throughput in each section.

Post-PAR timing analysis indicates a DPS clock of

5.35 ns while propagation delay through the CIR to its result

register is 47.36 ns. Using conservative approximations, this

implies a 5.5 ns DPS clock rate and very roughly a 10:1 ratio

of CIR delay to DPS rate. The system clock is set to the DPS

rate. A separate counter divides the system rate down so that

CIR results are latched and new results presented to the CIR

at 1/10 the DPS clock rate.

Given data vectors of length , 80; the DPS requires

about 500 ns to compute a result for one set of vectors. The

CIR vs. DPS imbalance, about 50 vs. 500 ns, is conspicuous.

The other conspicuous imbalance is in the resources used by

each section. Each CIR requires 48 of the target FPGA’s

444 block multipliers. The DPS, however, uses only 4 £ 4-

bit products, which can be built more effectively from

ordinary logic. A DPS uses smaller, less specialized logic

resources, under 1% of the chip total. Considering both

execution time and logic resources used, to achieve

maximum logic activity, each CIR serves 10 DPS units.

Fig. 3 shows how this is done.

The DPSs all start and end their computations at the same

time, latch their results, and begin processing the next set of

vectors. After latching the DPS results, separate logic

presents results from each DPS to its CIR sequentially. A

counter (not shown in Fig. 3) holds input stable for the CIR

propagation delay, then latches the CIR result and reads the

next saved DPS result.

These design values (vector length, CIR propagation

delay, etc.) and available resources are all parameters

specific to the problem and technology at hand. The effect of

varying these parameters is described in Section 4.

3.6. Feeding the pipelines: vector data memory

Recall that each DPS unit processes three vectors and

that there are 90 DPS units. Therefore, the VDM must

simultaneously distribute 270 vector streams (see Fig. 4). A

general (but impractical) solution would be to store all

v ¼ 10,000 vectors on chip in a 270-ported memory. Size

itself is not the problem: the entire data set fits in 1 MB. Our

solution leverages the v2 reuse of each vector in a

hierarchical structure.

We observe that nine vectors form ð 9
3
Þ ¼ 84 combi-

nations and so are nearly sufficient to keep the 90 DPS units

busy. This leaves six DPSs idle, the price paid for efficient

memory access. A simple network (see Fig. 5) distributes

vector data to the DPSs.

T. Van Court et al. / Microprocessors and Microsystems 28 (2004) 213–222218



Each vector store unit (labeled X1· · ·Xm in Fig. 6 and

within the VDM in Fig. 5) feeds one of the distribution

network’s nine X inputs and is indexed by an independent

address register (labeled index1· · ·indexm). The sequence of

vectors is stored in the Vector Select Ram. The chip’s 16 Kb

RAM blocks can each hold 50 vectors, so vector storage

uses only a small amount of the available RAM. Vector

store units and the Vector Select RAM are loaded from off-

chip. Double buffering ensures that loading does not

interfere with data access for computation. Note that many

more values are read from the vector stores than are loaded

into them, since each vector is reused in many size-9

combinations, so the DPS should never be idle while the

VDM is reloaded.

Operation is as follows. A set of nine vectors is chosen at

the beginning of a vector computation, one from each vector

store unit, as indicated by the address registers. Successive

vector elements are read by incrementing all of the data

address registers in unison, through the length of the vector.

At the end of a vector, the address registers are reloaded

from the Vector Select RAM and the next set of data vectors

is ready for transfer. The Y vector is reused with all sets of X

vectors.

This VDM design supports the solution of the following

combinatorial problem: choosing sets of size 9 (or k) from a

set of 9218 (or v) elements such that every size-3 subset of

those v appears in one size-k set (again, see Fig. 5). This is

exactly the Steiner System Sð3; k; vÞ: Generating algorithms

exist for these size-k sets [13], but are not amenable to

FPGA implementation. Off-line computation generates that

set of size-k sets, and loads the vector stores and Vector

Select RAM accordingly. The Vector Select RAM and

vector stores must be reloaded 105 –106 times to cover all

size-3 sets; however, this is a trivial requirement for a run of

several minutes.

Fig. 4. VDM requirements are derived from the number and specification of

the DPS pipelines.

Fig. 5. The Vector Data Memory (VDM) network. Note that m ¼ 9 vectors are sufficient to process 84 sets simultaneously.

Fig. 6. The Vector Data Memory indexing structures. For each combination of 84 sets, the index registers step through the appropriate set of m ¼ 9 vectors. The

sequence of initial values of the index registers, stored in the Vector Select Ram, is determined off-line.
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3.7. Performance

As described, the basic component of our design consists

of a pipeline with a single CIR (,50 ns) and single DPS

(,500 ns for a length-80 vector). This gives a speed-up of

a factor of 20 over the serial PC version. The chosen Virtex

II Pro easily fits nine of these units (the critical resource

being the multipliers) increasing the speed-up to 180. Each

CIR serves 10 DPSs reducing the cycle time of the original

unit to 50 ns and increasing the total speed-up to a factor of

1800. Combinatoric inefficiency in the VDM reduces this

factor to 1600. These results are summarized in Table 1.

4. Extensions

Being a new application/technology combination, this

work lends itself to myriad extensions.

4.1. Resource allocation for other FPGAs and data set sizes

The size of the data input for microarray computations

is severely constrained by the application itself: the number

of vectors is limited by the number of sites on the

microarray and the vector size by the number of

microarrays. In any case, the number of vectors has

virtually no effect on either the hardware configuration or

the throughput. The vector length, however, affects the

ratio of DPS’s to CIRs. This and the effect of the

computational resources of the target FPGA on throughput

is summarized in Table 2. The number of hard multipliers

per chip is the constraining resource and is likely to remain

so up to DPS/CIR ratio of at least 20 (corresponding to a

doubling of vector length). Table 3 shows resource

allocations when the FPGAs and the vector lengths are

varied. X Data Rams refers to the number of vectors being

read simultaneously from the Vector Data Management

unit. Recall that this number grows very slowly as it

suffices for the number, taken three-at-a-time, be larger

than the number of DPS’s. The throughput follows almost

immediately from the resource allocation.

4.2. Larger combinations of genes

Although the set size of three emerged from domain

knowledge, being able to evaluate larger set sizes would

also be useful. Assuming (at first) that the configuration

beyond the VDM remains the same as does the performance

requirement (,20 min for the result), the combinatorics

dictate a bound of about 1500 genes for a set size of four and

500 genes for a set size of five. Reductions such as these are

already typical in current microarray computations and are

done using various filtering techniques. These present an

obvious trade-off: more filtering means better performance,

but also an increased likelihood that important results will

be eliminated unintentionally. As with many types of

computations, we see that the end-result of a 1000-fold

speed-up is less an increase throughput and more an

improvement in quality.

The prominent effect of set size on the back-end is in the

matrix inversion. With a set size $4, our method of a

hardwired combinational circuit using rational arithmetic

may be untenable and Gaussian elimination may be

Table 3

Performance summary

Hardware Time Per work done per hardware

DPS vector time 5 £ , 100

¼ ,500 ns

Per combination per DPS DPSs

10 DPSs per CIR 500/10 ¼ 50 ns Per combination per CIR

9 CIRs per chip 50/9 ¼ 5.5 ns Per combination per chip

93% Combinatoric

inefficiency

5.5/0.93 ¼ 5.9 ns Per combination per chip

FPGA ,710 s For all combinations per chip

PC 10 ms ¼ 104 ns Per combination per PC

PC ,2 weeks For all combinations per PC

Ratio of PC time to FPGA time is ,1600.

Table 2

Effect of resource constraints on throughput

Constraint Determines

Multipliers-per-chip/multipliers-per-CIR No. of CIRs

Vector-length £ DPS-cycle-time DPS time per vector

DPS-time/CIR-time DPSs per CIR

DPS’s-per-CIR £ No.-of-CIRs No. of DPSs

MAX m s.t. ð m
3
Þ # No.-of-DPSs No. of X memories

ð n
3
Þ/No. of DPSs Combinatoric efficiency

min (DPS-time/DPSs-per-CIR, CIR time) Vector time

No.-of-DPSs £ combinatoric-

efficiency/vector time

Throughput

Table 1

Resource allocations for other FPGAs and vector sizes

Xilinx

model

Hard

multipliers

CIRs DPSs-

per-CIR

X data

RAMs

DPSs,

triplets

2vp125 556 11 20 12 220, 220

15 11 165, 165

11 10 121, 120

8 9 88, 84

2vp100 444 9 14 10 126, 120

10 9 90, 84

7 8 63, 56

2vp70 328 6 20 10 120, 120

12 9 84, 84

10 8 60, 56

Triplets refers to the number of DPS’s actually used after accounting for

combinatorial inefficiency.
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required. In that case, it is likely that the throughput of the

entire computation would reduce to the throughput of

the parallel inversions. More likely would be a change in the

back-end to a simpler metric, for example, one related to

correlation.

4.3. Changing the back-end

As we just mentioned, linear regression is only one of

several possible methods to score combinations of genes.

We have also examined the use of a linear discriminator

[22] where the figure of merit is a Mahalanobis distance

measurement between the X values corresponding to Y ¼ 1

and Y ¼ 0 [15]. The overall implementation follows that of

the regressor, with many components being reused and

overall resource allocation and timing also being similar.

Other distance measurements under investigation include

standard tests of the statistical significance of differences

between the two sets of X values.

4.4. Use as part of higher order tool-kit

Research into Microarray analysis is perhaps only in its

initial stages: they were invented less than ten years ago,

their usage has a growth rate of 70% per year, and papers on

microarray analysis techniques provide a large (and

increasing) faction of those presented at bioinformatics

symposia. One of the key aspects of this work is therefore

design is for extendability. In particular, the components

were built with reuse in mind and so are highly

parameterized. Also, we have considered the generalization

of higher-level system components to enable their inter-

changeability while maintaining maximum resource allo-

cation and throughput.

5. Discussion

We have described work in accelerating a computation in

functional genomics by using an FPGA coprocessor. The

1000-fold þ speed-up derived from our FPGA implemen-

tation achieves our goal of reducing the duration of this

computation from days to minutes. This is done while

keeping the system cost (hardware and IT support) low. It is

therefore quite plausible that this and related techniques

could indeed become part of a computational toolbox for

functional genomics, broadening the types of inferences

possible from microarray data.

This application differs fundamentally from others in

BCB to which computational coprocessors have been applied

[5,4,7,14,19]. Those have resembled the most typical usage

of FPGAs: deeply pipelined computational structures such as

are used in data communications and signal processing.

Rather, we have applied the massive computational and

communication capability within the FPGA to manage an on-

chip combinatorial explosion. Also in contrast to previous

bioinformatics coprocessors is that the present system

performs much more complex arithmetic than is required

for the common BCB targets of acceleration (e.g. Needle-

man–Wunsch string matching and BLAST). As such it

requires non-trivial optimization of resources, especially the

higher level components such as the hard multipliers.

In Section 1, we described why the potential for speed-up

was so great for this application, even though it already can

use a serial processor at close to maximum capacity. Here

we present those points in a slightly different way and state

that a large number of BCB problems have a similar

characteristic structure. In particular, they have:

† A high-dimensional parameter set that must be searched

or enumerated to find an optimal solution,

† Simple performance criteria (score functions) derived

from the parameters,

† A decomposable search strategy and/or score function,

† A large but manageable sample data set that must be

processed to evaluate the score function for each

candidate element in the parameter set, and

† Data elements representable in modest numbers of bits,

† Significant reuse of data elements across candidate

solutions.
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