
Computing in Science & Engineering	 This article has been peer-reviewed.� 35

N o v e l
A r c h i t e c t u r e s

Computing Models
for FPGA-Based Accelerators

Field-programmable gate arrays are widely considered as accelerators for compute-intensive
applications. A critical phase of FPGA application development is finding and mapping to
the appropriate computing model. FPGA computing enables models with highly flexible
fine-grained parallelism and associative operations such as broadcast and collective
response. Several case studies demonstrate the effectiveness of using these computing
models in developing FPGA applications for molecular modeling.

F or many years, computational scientists
could depend on continual access to ever
faster computers. In the past few years,
however, power concerns have caused

microprocessor operating frequencies to stagnate.
Moreover, while advances in process technology
continue to provide ever more features per chip,
these are no longer used primarily to augment
individual microprocessors; rather, they’re com-
monly used to replicate the CPUs. Production
chips with hundreds of CPU cores are projected
to be delivered in the next several years. Replicat-
ing cores, however, is only one of several viable
strategies for developing next-generation high-
performance computing (HPC) architectures.

Some promising alternatives use field-pro-
grammable gate arrays.1 FPGAs are com-
modity integrated circuits whose logic can be
determined, or programmed, in the field. This
is in contrast to other classes of ICs (such as ap-
plication-specific ICs, or ASICs), whose logic is
fixed at fabrication time. FPGAs are less dense
and slower than ASICs, but their flexibility often
more than makes up for these drawbacks. Ap-
plications accelerated with FPGAs often deliver
100-fold speedups per node over microproces-
sor-based systems. This, combined with the cur-
rent ferment in computer architecture activity,
has resulted in such systems moving toward the

mainstream, with the largest vendors providing
integration support.

Even so, few developers of HPC applications
have thus far test-driven FPGA-based systems.
Developers commonly view FPGAs as hardware
devices requiring the use of alien development
tools. New users might also disregard the hardware
altogether by translating serial codes directly into
FPGA configurations (using one of many available
tools). Although this results in rapid development,
it can also result in unacceptable performance loss.

Successful development of FPGA-based HPC
applications (that is, high-performance reconfig-
urable computing, or HPRC) requires a middle
path. Developers must avoid getting caught up
in logic details while keeping in mind an appro-
priate FPGA-oriented computing model. Several
such models for HPRC exist, but they differ sig-
nificantly from models generally used in HPC
programming. For example, whereas parallel
computing models are often based on thread
execution and interaction, FPGA computing

Martin C. Herbordt, Yongfeng Gu, Tom VanCourt,
Josh Model, Bharat Sukhwani, and Matt Chiu
Boston University

1521-9615/08/$25.00 © 2008 IEEE

Copublished by the IEEE CS and the AIP

36� Computing in Science & Engineering

can exploit more degrees of freedom than are
available in software. This enables models based
on the fundamental characteristics from which
FPGAs get their capability, including highly
flexible fine-grained parallelism and associative
operations such as broadcast and collective re-
sponse. Andre DeHon and his colleagues discuss
these issues from a design pattern viewpoint.2 To
make their presentation concrete, we describe
several case studies from our work in molecular
modeling.

FPGA Computing Models
Models are vital to many areas of computer sci-
ence and engineering and range from formal
models used in complexity theory and simulation
to intuitive models sometimes used in computer
architecture and software engineering. Here we
consider the latter. By computing model, we mean
an abstraction of a target machine used to facili-
tate application development. This abstraction
lets the developer separate an application’s de-
sign, including the algorithms, from its coding
and compilation. In other words, a computing
model lets us put into a black box the hardware
capabilities and software support common to the
class of target machines, and thus concentrate
on what we don’t yet know how to do. In this
sense, computing models are sometimes similar
to programming models, which can mean “the
conceptualization of the machine that the pro-
grammer uses.”3

With complex applications, there’s often a
trade-off between programmer effort, program
portability and reusability, and program perfor-
mance. The more degrees of freedom in the tar-
get architecture, the more variable the algorithm
selection, and the less likely that a single comput-
ing model will let application developers achieve
all three simultaneously.

A common computing model for single-
threaded computers is the RAM.4 There, the
target machine is abstracted into a few compo-
nents: input and output streams (I/O), sequential
program execution, and a uniform random access
memory (RAM). Although the RAM model has
often been criticized as being unnecessarily re-
strictive (see, for example, John Backus’s famous
paper advocating functional programming5), it’s
also how many programmers often conceptualize
single-threaded programs. Using this model sim-
ply means assuming that the program performs
computing tasks in sequence and that all data ref-
erences have equal cost. Programs so designed,
when combined with software libraries, compil-

ers, and good programming skills, often run ef-
ficiently and portably on most machines in this
class. For high performance, programmers might
need to consider more machine details, especially
in the memory hierarchy.

For multithreaded machines, with their addi-
tional degrees of freedom, selecting a computing
model is more complex. What features can we
abstract and still achieve performance and porta-
bility goals? Is a single model feasible? What ap-
plication and hardware restrictions must we work
under? The issue is utility: does the computing
model enable good application design? Does the
best algorithm emerge? Several classes of paral-
lel machines exist—shared memory, networks of
PCs, networks of shared-memory processors, and
multicore—and the preferred mapping of a com-
plex application might vary significantly among
the classes.

Three computing models (and their combi-
nations) span much of the multithreaded archi-
tecture space. According to David Culler and
his colleagues,3 these models, each based on the
threaded model, are

shared address, in which multiple threads com-
municate by accessing shared locations;
message passing, in which multiple threads com-
municate by explicitly sending and receiving
messages; and
data parallel, which retains the single thread but
lets operations manipulate larger structures in
possibly complex ways.

The programmer’s choice of computing model de-
pends on the application and target hardware. For
example, the appropriate model for a large com-
puter system comprised of a network of shared-
memory processors might be message passing
among multiple shared address spaces.

Low-Level FPGA Models
Historically, the computing model for FPGAs was
a “bag of gates” that designers could configure
into logic designs. In the past few years, embedded
components such as multipliers, independently ad-
dressable memories (block RAMs, or BRAMs),
and high-speed I/O links have begun to dominate
high-end FPGAs. Aligned with these changes,
a new low-level computing model has emerged:
FPGAs as a “bag of computer parts.” A designer us-
ing this model would likely consider the following
FPGA features when designing an application:

reconfigurable in milliseconds;

•

•

•

•

November/December 2008 � 37

hundreds of hardwired memories and arithme-
tic units;
millions of gate-equivalents;
millions of communication paths, both local
and global;
hundreds of gigabit I/O ports and tens of multi-
gigabit I/O ports; and
libraries of existing designs analogous to the
various system and application libraries com-
monly used by programmers.

As with microprocessors, making FPGAs ap-
propriate for HPC requires added support. This
too is part of the low-level model. A sample sys-
tem is Annapolis Microsystems’ Wildstar board.
Although now dated, this design is particularly
well balanced. The design’s seven independently
addressable memory banks per FPGA (SRAMs
and SDRAM) are critical (see Figure 1a). Because
HPRC applications manage memory explicitly,
they offer no hardware caching support. Com-
munication with the host takes place over an I/O
bus (PCI).

In the past few years, HPRC systems have
tended toward tighter integration of the FPGA
board into the host system—for example, by
making FPGA boards plug-compatible with In-
tel front-side bus slots (see Figure 1b). The effect
is to give FPGAs access to main memory (and
other system components) equal to that of the
microprocessors.

Why FPGAs for HPC?
A first step in defining higher-level FPGA-based
computing models is to consider how FPGAs get
their performance for HPC. Microprocessors
owe much of their tremendous success to their
flexibility. This generality has a cost, however,
because a several orders-of-magnitude gap exists
between microprocessor performance and the
computational potential of the underlying sub-
strate.6 Whereas fabrication costs limit ASICs
mostly to high-volume applications, FPGAs of-
fer a compromise. They can often achieve much
of an ASIC’s performance but are available off
the shelf.

Practically, the enormous potential performance
derivable with FPGAs comes from two sources:

Parallelism. A factor of 10,000× parallelism is
possible for low-precision computations.
Payload per computation. Because most control is
configured into the logic itself, designers don’t
need to emulate overhead instructions (such as
array indexing and loop computations).

•

•
•

•

•

•

•

On the other hand, significant inherent chal-
lenges exist. One is the low operating frequency,
usually less than 1/10th that of a high-end micro-
processor. Another is Amdahl’s law: to achieve
the speedup factors required for user acceptance
of a new technology (preferably 50×),7 almost 99
percent of the target application must lend itself

FPGA 32

PCI

32

PCI bus interface

I/
O

FPGA accelerator board

FPGA

Local
memory

Second
FPGA

Local
memory

Intel Xeon processor
with front-side

bus architecture

FBDIMM

I/O hub

Graphics

DRAM bank

36

SRAM
bank

36

SRAM
bank

36

SRAM
bank

36

SRAM
bank

36

SRAM
bank

36

SRAM
bank

(a)

(b)

Memory hub

Figure 1. Field-programmable gate arrays in high-performance
computing. (a) In this coprocessor board, the seven independently
addressable memory banks per FPGA are critical. (b) The
diagram shows an Intel view of accelerator integration into a
multiprocessor system.

38� Computing in Science & Engineering

to substantial acceleration.8 As a result, the per-
formance of HPC applications accelerated with
FPGA coprocessors is unusually sensitive to the
implementation’s quality.

FPGA Computation Basics
The next step in defining higher-level FPGA-
based computing models is to examine FPGA at-
tributes for how they translate into the capability
just described. If we view FPGAs as a configurable
bag of computer parts, we must lay these parts out
in two dimensions and in finite space. This puts
a premium on connecting computational blocks
with short paths, exploiting long paths with high
fan out (namely, broadcast), and low-precision
computation. As with microprocessors, HPRC
systems must support various working set sizes
and the bandwidth available to swap those work-
ing sets. The HPRC memory hierarchy typically

has several distinct levels. Most have analogs in
conventional PCs, but with somewhat different
properties, especially with regard to supporting
fine-grained parallelism:

On-chip registers and lookup tables. The FPGA
substrate consists of registers and LUTs
through which logic is generated. These com-
ponents can be configured into computational
logic or storage, with most designs having a
mix. Although all register contents can poten-
tially be accessed every cycle, LUTs can only be
accessed one or two bits at a time. For example,
the Xilinx Virtex-5 LX330T has 26 Kbytes of
registers and 427 Kbytes of LUT RAM; the ag-
gregate potential bandwidth at 200 MHz is 12
terabits per second (Tbps).
On-chip BRAMs. High-end FPGAs have several
hundred independently addressable multiport-
ed BRAMs. For example, the Xilinx Virtex-5
LX330T has 324 BRAMs with 1.5 Mbytes total
storage and each accessible with a word size of
up to 72 bits; the aggregate potential bandwidth
at 200 MHz is 1.2 Tbps.
Onboard SRAM. High-end FPGAs have hun-
dreds of signal pins that can be used for off-

•

•

•

chip memory. Typical boards, however, have
between two and six 32-bit independent SRAM
banks; recent boards, such as the SGI RASC,
have almost 100 Mbytes. As with the on-chip
BRAMs, off-chip access is completely random
and per cycle. The maximum possible such
bandwidth for the Xilinx Virtex-5 LX330T is
49 gigabits per second, but between 1.6 Gbps
and 5 Gbps is more common.
Onboard DRAM. Many boards either have both
SRAM and DRAM or replace SRAM com-
pletely with DRAM. Recent boards support
multiple Gbytes of DRAM. The bandwidth is
similar to that with SRAM but has higher ac-
cess latency.
Host memory. Several recent boards support
high-speed access to host memory through, for
example, SGI’s NumaLink, Intel’s Front Side
Bus, and Hypertransport, used by AMD sys-
tems. Bandwidth of these links ranges from 5 to
20 Gbps or more.
High-speed I/O links. FPGA applications often
involve high-speed communication. High-end
Xilinx FPGAs have up to 24 3-Gbps ports.

The actual performance naturally depends on the
existence of configurations that can use this band-
width. In our work, we frequently use the entire
available BRAM bandwidth and almost as often
use most of the available off-chip bandwidth as
well. In fact, we interpret this achievement for any
particular application as an indication that we’re
on target with our mapping.

Putting these ideas together, we can say that a
good FPGA computing model lets us create map-
pings that make maximal use of one or more levels
of the FPGA memory hierarchy. These mappings
commonly contain large amounts of fine-grained
parallelism. The processing elements are often
connected as either a few long pipelines (some-
times with 50 stages or more) or broadside with
up to a few hundred short pipelines.

Another critical factor of a good FPGA model
is that code size translates into FPGA area.
We achieve the best performance, of course, if
we use the entire FPGA, usually through fine-
grained parallelism. Conversely, if a single pipe-
line doesn’t fit on the chip, performance might
be poor. Poor performance can also occur with
applications that have many conditional com-
putations. For example, consider a molecular
simulation in which the main computation is
determining the potential between pairs of par-
ticles. Moreover, let the choice of function to
compute the potential depend on the particles’

•

•

•
The more degrees of freedom in the target

architecture, the less likely that a single

computing model will let application

developers achieve all three simultaneously.

November/December 2008 � 39

separation. For a microprocessor, invoking each
different function probably involves little over-
head. For an FPGA, however, this can be prob-
lematic because each function takes up part of
the chip, whether it’s being used or not. In the
worst case, only a fraction of the FPGA is ever
in use. All might not be lost, however: designers
might still be able to maintain high utilization by
scheduling tasks among the functions and recon-
figuring the FPGA as needed.

FPGA Computing Models
Concepts such as “high utilization” and “deep
pipelines” are certainly critical, but are still far
removed from the application conceptualization
with which most programmers begin the design
process. We found several computing models to
be useful during this initial stage. That is, we’re
on our way to a plausible design if we can map
our application into one of these models. Please
note that the models overlap and are far from
exhaustive.2

Streaming. The streaming model is well-known
in computer science and engineering. It’s charac-
terized, as its name suggests, by streams of data
passing through arithmetic units. Streams can
source/sink at any level of the memory hierarchy.
The FPGA streaming model differs from the
serial computer model in the number and com-
plexity of streams supported and the seamless
concatenation of computation with the I/O ports.
Streaming is basic to the most popular HPRC
domains: signal, image, and communication pro-
cessing. Many FPGA languages, such as Streams
C,9 ASC,10 and Score11; IP libraries; and higher-
level tools such as Xilinx’s Sysgen for digital signal
processing explicitly support streaming.

The use of streams is obvious in the 1D case—
for example, when a signal passes through a se-
ries of filters and transforms. But with FPGAs,
streaming geometrically—that is, considering
the substrate’s dimensionality—can also be ef-
fective. For example, we can make a 1D stream
long by snaking computing elements through
the chip. Other ways involve changing the aspect
ratio (for example, with broadside sourcing/sink-
ing through the hundreds of BRAMs) or using
stream replication, which is analogous to map-
ping to parallel vector units. Less obvious, but
still well-known, is the 2D streaming array used
for matrix multiplication. In our work, we use
2D streams for performing ungapped sequence
alignment. We use the first dimension to perform
initial scoring at streaming rate and the second

dimension to reduce each alignment to a single
maximal local score.

Associative computing. Associative (or content-
addressable) computing is characterized by its ba-
sic operations:12

broadcast,
parallel tag checking,
tag-dependent conditional computing,
collective response, and
reduction of responses.

This model is basic to computing with massively
parallel SIMD arrays and with artificial neural
networks.

CPU internals, such as reorder buffers and
translation look-aside buffers, also use this model.
Although analogous software operations are ubiq-
uitous, they don’t approach the inherent perfor-
mance offered by an FPGA’s support of hardware
broadcast and reduction. Instead of accessing data
structures through O(logN) operations or com-
plex hashing functions, FPGAs can often process
associative data structures in a single cycle.

Highly parallel, possibly complex, memory access. We
already mentioned that using the full bandwidth at
any level of the memory hierarchy will likely make
the application highly efficient. In addition, on an
FPGA, you can configure complex parallel mem-
ory-access patterns. Much study in the early days
of array processors focused on this problem.13 The
objective was to enable parallel conflict-free access
to slices of data, such as array rows or columns,
and then align that data with the correct process-
ing elements. With the FPGA, the programmable
connections let designers tailor this capability to
application-specific reference patterns.14

Standard hardware structures. In a way, this model
is trivial—it uses preexisting components. The
value added here is with their use. Standard data
structures such as FIFOs, stacks, and priority
queues are common in software but often have
much higher relative efficiencies in hardware. The
model’s power is twofold:

to use such structures when called for, and
to steer the mapping toward the structures with
the highest relative efficiency.

One such hardware structure—the systolic array
used for convolutions15 and correlations—is per-
haps the most commonly used in all of HPRC.

•
•
•
•
•

•
•

40� Computing in Science & Engineering

Functional parallelism. Although having function
units lying idle is the bane of HPRC, functional
parallelism can also be one of its strengths. Again,
the opportunity has to do with FPGA chip area
versus compute time. Functions that take a long
time in software but relatively little space in hard-
ware are best. For example, a simulator might
require frequent generation of high-quality ran-
dom numbers. Such a function takes relatively
little space on an FPGA, can be fully pipelined,
and can thus provide random numbers with the
latency completely hidden.

Case Studies in Molecular Modeling
Methods for simulating molecules lie at the
core of computational chemistry and are cen-
tral to computational biology. Applications of
molecular modeling range from the practical
(for example, drug design) to basic research in
understanding disease processes. Molecular

modeling is also compute bound. Whereas stud-
ies conducted in a few minutes on a small desk-
top system are often useful, the reality is that
the computing demand is virtually insatiable.
Simulating a larger physical system for a lon-
ger physical time with a more detailed model
will improve almost any molecular simulation.
Large-scale computational experiments run for
months at a time. Even so, the gap between the
largest published simulations and cell-level pro-
cesses is at least 10 orders of magnitude, mak-
ing their acceleration all the more critical. We
describe several case studies that demonstrate
the effectiveness of FPGA-based accelerators in
molecular modeling.

Short-Range Force Computation
Molecular dynamics is an iterative application of
Newtonian mechanics to ensembles of atoms and
molecules. Time steps alternate between force
computation and motion integration. The non-
bonded force computation’s short- and long-range
components dominate execution. Because these
components have different characters, especially
when mapped to FPGAs, we consider them sepa-
rately. The short-range force part, especially, has
been well-studied for FPGA-based systems.16–20

Molecular dynamics forces might include van
der Waals attraction and Pauli repulsion (ap-
proximated together as the Lennard-Jones, or LJ,
force), Coulomb, hydrogen bond, and various co-
valent bond terms:

Ftotal = �Fbond + Fangle + Ftorsion + FH Bond
+ Fnonbonded.� (1)

Because the hydrogen bond and covalent terms
(bond, angle, and torsion) affect only neighboring
atoms, computing their effect is O(N) in the num-
ber of particles N being simulated. The motion
integration computation is also O(N). Although
some of these O(N) terms are easily computed on
an FPGA, their low complexity makes them likely
candidates for host processing, which is what we
assume here.

We express the LJ force for particle i as

 Fi
LJ ab

abj

ab

jir
=











≠
∑
∈

σ

σ
2

1

14

12 −−


























6

8

σab

jir





r ji,� (2)

where the ∈ab and σab are parameters related to
the particle types—that is, particle i is type a and
particle j is type b.

POS

r2

r2

r –14,
r –8,
r –3

r –14,
r –8,
r –3,
r –2

Pseudo
force

Host memory

POS,
type memory

Acceleration
memory

Acceleration
cache

Bus

Force pipeline array

Cutoff
check

Extract format, a, (x – a)

((C3*(x – a) + C2)*(x – a) + C1)*(x – a) + C0

Lennard-Jones
force

Boundary
condition

check

Distance
squared

Short-range
part of

computational
force

POS,
type cache

Figure 2. Pipeline for short-range force computation. The three-
part force computation includes components for checking validity,
adjusting for boundary conditions, and computing r2 (blue);
computing the exponentials in r (purple); and combining these terms
with the particle type coefficients to generate the force (orange).

November/December 2008 � 41

We express the Coulombic force as

Fi

C
i

j

ji
j

jiq
q

r
r=











≠
∑ 3

1
.� (3)

In general, we must compute the forces between
all particle pairs, leading to an undesirable O(N2)
complexity. The common solution is to split the
nonbonded forces into two parts:

a fast-converging short-range part consisting of
the LJ force and the nearby Coulombic compo-
nent, and
the remaining long-range Coulombic part
(which we describe later).

This solution reduces the short-range force com-
putation’s complexity to O(N) by only processing
forces among nearby particles.

Figure 2 shows the short-range computation
kernel, using the streaming computational mod-
el.21 Particle positions and types are the input,
and accelerations are the output. Streams source
and sink in the BRAMs. The number of streams
is a function of FPGA hardware resources and the
computation parameters, with the usual range be-
ing from two to eight.

We also implement the wrapper around this ker-
nel in the FPGA. The wrapper ensures that parti-
cles in neighborhoods are available together in the
BRAMs. The wrapper logic swaps these neighbor-
hoods in the background as the computation pro-
gresses. The force computation has three parts:

Part 1 (shaded blue in Figure 2) checks for va-
lidity, adjusts for boundary conditions, and
computes r2.
Part 2 (purple) computes the exponentials in r.
As is typical even in serial molecular dynam-
ics codes, we don’t compute these terms di-
rectly, but rather with table lookup followed
by interpolation. Figure 2 shows third-order
interpolation.
Part 3 (orange) combines the r−n terms with the
particle type coefficients to generate the force.

Most current high-end FPGAs are well-balanced
with respect to this computation. Designs simul-
taneously use the entire BRAM bandwidth and
most of the computation fabric. If the balance is
disturbed, we can restore it by adjusting the in-
terpolation. This allows for a trade-off of BRAM
(table size) and computational fabric (interpola-
tion order).

•

•

•

•

•

Using Multigrid
for Long-Range Force Computation
Numerous methods reduce the complexity of the
long-range force computation from O(N2) to O(N
logN), often using the fast Fourier transform (FFT).
Because these have so far proven difficult to map ef-
ficiently to FPGAs, however, the multigrid method
might be preferable22 (a description of its applica-
tion to electrostatics is available elsewhere23).

The difficulty with the Coulombic force is that
it converges too slowly to restrict computation
solely to proximate particle pairs. The solution
begins by splitting the force into two components,
a fast converging part that can be solved locally
without loss of accuracy, and the remainder. This
splitting appears to create an even more difficult
problem: the remainder converges more slowly
than the original. The key idea is to continue this
splitting process, each time passing the remain-
der to the next coarser level, where it’s split again.
This continues until a level is reached where the
problem size (N) is small enough for the direct
all-to-all solution to be efficient.

Figure 3 shows the schematic of the overall mul-
tigrid algorithm. Starting at the upper left, the al-
gorithm partitions the per-particle potentials into
short- and long-range components. It computes the
short-range components directly, as we described
earlier, and applies the long-range component to
the finest grid. Here, it splits the force again, with
the high-frequency component solved directly and
the low-frequency passed on to the next coarser
grid. This continues until it reaches the coarsest

Short-range force with cell lists

Apply particles to grid

Anterpolating grid

Anterpolating grid

Apply grid to particles

Interpolating grid

Interpolating grid
Direct solution

Correction

Correction

Figure 3. Schematic of the multigrid method for the Coulomb force.
The left side shows the successive splitting, the lowest level the direct
solution, and the right side the successive mergers with the previously
computed corrections.

42� Computing in Science & Engineering

level, where it solves the problem directly. We then
successively combine this direct solution with the
previously computed finer solutions (corrections)
until we reach the finest grid. Here, we apply the
forces directly to the particles.

When mapping to an FPGA, we partition the
computation into three functions:

applying the charges to a 3D grid,
performing multigrid to convert the 3D charge
density grid to a 3D potential energy grid, and
applying the 3D potential to the particles to
compute the forces.

•
•

•

The two particle–grid functions are similar
enough to be considered together, as are the vari-
ous phases of the grid–grid computations.

The particle–grid computations in our imple-
mentation involve one real-space point and its 64
grid neighbors. For the HPRC mapping, we use
the third computing model: highly parallel, possi-
bly complex, memory access. We begin with judi-
cious selection of coordinates. We can then almost
immediately convert the real-space position into
the BRAM indices and addresses of each of the 64
grid points. A standard initial distribution of grid
points guarantees that the BRAMs will be disjoint
for every position in real space. There follows the
remarkable result that an entire tricubic interpola-
tion can be computed in just a few cycles: data are
fetched in parallel and reduced to a single value.

In practice, getting the fetched grid points to
their correct processing elements requires addi-
tional routing, as Figure 4 shows in 2D. In Figure
4a, an index indicates 16 memory banks, each with
four elements. Any 4 × 4 square overlaying the grid
will map to independent memory banks, allowing
fully parallel access, but is likely to be misaligned.
For example, the green overlay would be fetched in
the position shown at the beginning of Figure 4b,
and then require two rotations to get into correct
alignment. The 3D routing is analogous.

For the 3D grid–grid convolutions, we use the
fourth computational model: use of a standard
hardware structure. Here, the structure is the well-
known systolic array.15 Figure 5 shows its iterative
application to build up 2D and 3D convolvers.

Discrete Event-Based Molecular Dynamics
Increasingly popular is molecular dynamics with
simplified models, such as the approximation of

03020100

13121110

23222120

33323130

03020100

13121110

23222120

33323130

03020100

13121110

23222120

33323130

03020100

13121110

23222120

33323130
03020100

13121110

23222120

33323130

03 020100

13 121110

23 222120

33 323130

03020100

13121110

23222120

33323130

x

y

(a) (b)

Figure 4. An example of a 2D interleaved memory reference. The diagrams show (a) the grid points (shaded) to be recovered,
and (b) the two rotations needed to get the shaded points into correct position.

(a)

(b) (c)

Init_A
PE

A(k) A(L)

FIFO

S

A(0)

C(k)

A(L – 1) A(L – 2)

B(i)

0

… …

… …

a33 a32 a31 a30
First in, �rst out

(FIFO)

a23 a22 a21 a20 FIFO

a13 a12 a11 a10 FIFO

a03 a02 a01 a00 S

bij

aij3

FIFO

aij2

FIFO

aij1

aij0

bijk

Figure 5. Iterative application of the systolic array. We apply (a) a 1D
systolic convolver array and its extension to (b) 2D and (c) 3D.

November/December 2008 � 43

forces with step-wise potentials.24 This approxi-
mation results in simulations that advance by dis-
crete event rather than time step.

Discrete event-based molecular dynamics (DMD)
is an intuitive, hypothesis-driven modeling
method based on tailoring simplified models to
the physical systems of interest.25 Using intuitive
models, simulation length and time scales can ex-
ceed those of time-step-driven molecular dynam-
ics by eight or more orders of magnitude.26 Even
so, not only is DMD still compute bound, causal-
ity concerns make it difficult to scale to a signifi-
cant number of processors.

Figure 6a gives an overview of discrete event
simulation. The primary DES components are
the event queue, event processor, event predic-
tor (which can also cancel previously predicted
events), and system state. DES parallelization
generally follows one of two approaches:

conservative, which guarantees causal order, or
optimistic, which allows some speculative violation
of causality and corrects violations with rollback.

Neither approach has worked well for DMD. The
conservative approach, which relies on there being a
safe window, falters because DMD has no such win-
dow. Processed events invalidate predicted events
anywhere in the event queue with equal probability
and potentially anywhere in the simulated space.
For similar reasons, the optimistic approach has
frequent rollbacks, resulting in poor scaling.

We take a different approach, based primarily
on the associative computing model.27 We pro-
cess the entire simulation as a single long pipe-
line (see Figure 6b). Although dozens of events
are processed simultaneously, at most one event
is committed per cycle. To achieve maximum
throughput, we must accomplish several tasks
within a single cycle:

update the system state,
process all causal event cancellations,
process new event insertions, and
advance the event-priority queue.

This process, in turn, uses the associative primi-
tives of broadcast, tag check, and conditional
execution. When the event-processing pipeline
commits an event, it broadcasts the relevant par-
ticles’ IDs to the events in the priority queue. If an
ID match exists, the predicted event is cancelled.
Similarly, when the pipeline predicts events, it
broadcasts their time stamps throughout the pri-
ority queue. Existing events compare their time

•
•

•
•
•
•

stamps to that of the new event, and the event-
processing pipeline inserts it accordingly.

Docking Rigid Molecules
Another case study involved applications of
docking,28 in which computations approximate
molecules as rigid structures mapped to grids.
Docking applications differ in central data type,
data structure, and algorithm, and so provide a
good view of the richness of the space of effective
FPGA computational models.

Noncovalent bonding between molecules, or
docking, is basic to the processes of life and the ef-
fectiveness of pharmaceuticals. Although research-
ers sometimes use detailed chemical models, such
techniques are computationally exorbitant and
infeasible for answering the first question: at what
approximate offsets and orientations could the
molecules possibly interact at all? Many docking
applications use less costly techniques to initially
estimate the docked pose and the relative offset
and rotation that give the strongest interaction.
They might assume rigid structure as a simplify-
ing approximation. Then 3D voxel grids repre-

Event
insertion

W
rite back

Particle tags Invalidation broadcast

= = = = =

Bead, cell memory banks

Commit
buffer

Event
p

riority q
ueue

Event
predictor

units

Event processor

Event predictor (and remover)

System state Event processor

Events

New state info
Events and

invalidations

Time-ordered event queue
arbitrary insertions and deletions

State info

(a)

(b)

Figure 6. Event-based molecular dynamics. The block diagrams show
(a) a generic discrete event simulation and (b) an FPGA mapping of
discrete molecular dynamics.

44� Computing in Science & Engineering

sent the interacting molecules and 3D correlation
helps determine the best fit.29

We base our approach on a combination of
standard hardware structures (in particular, the
systolic convolution array) and latency hiding
with functional parallelism. This gives us a three-
stage algorithm.30

(Virtual) molecule rotation. We test the molecules
against one another in rotated orientations. FFT
versions rotate molecules explicitly, but direct
correlation lets us implement the rotations by ac-
cessing elements of one of the molecules through
a rotated indexing sequence. Because explicitly
storing these indices would require exorbitant
memory, we generate them on the fly. The index-
generation logic (an 18-parameter function) sup-
plies the indices just in time, hiding the rotation’s
latency entirely. This is also a good example of
how we can easily implement function-level par-
allelism on an FPGA.

Generalized correlation. We based the correlation
array on the structure used in the multigrid ex-
ample (see Figure 5), generalized with respect to
arbitrary scoring functions.

Data reduction filter. The correlation can generate
millions of scores but only a few will be interest-
ing. The challenge is to return at least a few scores
from every significant local maximum (potential
binding), rather than just the n highest scores. We
address multiple maxima by partitioning the re-
sult grid into subblocks and collecting the highest
scores reported in each.

A n open question is how computing
models relate to programmer effort. A
more basic question is which tools sup-
port which models. In our lab, we use

a hardware description language (VHSIC Hard-
ware Description Language [VHDL]) together
with our own LAMP tool suite,31 which supports
reusability across variations in application and
target hardware. The latter, unfortunately, isn’t
yet publicly available. Otherwise, we believe that
important characteristics include

support for streams, which many HPRC lan-
guages have;
support for embedding IP, again, supported by
most HPRC languages;
support for object-level parameterization, which
is rarely fully supported; and

•

•

•

access to essential FPGA components as virtual
objects, which also is rarely fully supported.

Although you can use a computational model’s
characteristics only if you can access them, you
can still get good results with higher-level tools.
Paradoxically, the more general the development
tools, the more care might be needed because
their effects with respect to the underlying sub-
strate are harder to predict.

Returning to programmer effort, in our own
experience, we rarely spend more than a few
months before getting working systems, al-
though more time is usually needed for test, vali-
dation, and system integration. The advantage of
having a good computing model is therefore not
so much in saving effort, but rather in increas-
ing design quality. In this respect, the benefit is
similar to that with using appropriate parallel
computing models. It might not take any longer
to get a working system using an inappropriate
model, but achieving good performance might
prove impossible.�

Acknowledgments
We thank the anonymous referees for their many
helpful comments and suggestions. This work was
supported in part by the US National Institutes of
Health through awards R01 RR023168-01 and R21
RR020209-1, and facilitated by donations from Xilinx
Corporation, SGI, and XTremeData.

References
M. Gokhale et al., “Promises and Pitfalls of Reconfigurable
Supercomputing,” Proc. 2006 Conf. Eng. Reconfigurable
Systems and Algorithms, CSREA Press, 2006, pp. 11–20.

A. DeHon et al., “Design Patterns for Reconfigurable
Computing,” Proc. IEEE Symp. Field Programmable Custom
Computing Machines, IEEE CS Press, 2004, pp. 13–23.

D. Culler, J. Singh, and A. Gupta, Parallel Computer Architecture:
A Hardware/Software Approach, Morgan Kaugmann, 1999.

A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, 1974.

J. Backus, “Can Programming Be Liberated from the Von
Neumann Style? A Functional Style and Its Algebra of Pro-
grams,” Comm. ACM, vol. 21, no. 8, 1978, pp. 613–641.

E. Roza, “Systems-on-Chip: What Are the Limits?” Electronics
and Comm. Eng. J., vol. 12, no. 2, 2001, pp. 249–255.

D. Buell, “Reconfigurable Systems,” keynote talk, Reconfigu-
rable Systems Summer Institute, July 2006; http://gladiator.ncsa.
uiuc.edu/PDFs/rssi06/presentations/00_Duncan_Buell.pdf.

G. Amdahl, “Validity of the Single Processor Approach to
Achieving Large-Scale Computing Capabilities,” Proc. Am.
Federation of Information Processing Societies (AFIPS) Conf.,
AFIPS Press, 1967, pp. 483–485.

J. Frigo, M. Gokhale, and D. Lavenier, “Evaluation of the
Streams-C C-to-FPGA Compiler: An Applications Perspec-

•

1.

2.

3.

4.

5.

6.

7.

8.

9.

November/December 2008 � 45

tive,” Proc. Field Programmable Gate Arrays, IEEE CS Press,
2001, pp. 134–140.

O. Mencer, “ASC: A Stream Compiler for Computing with
FPGAs,” IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 15, no. 9, 2006, pp. 1603–1617.

A. DeHon et al., “Stream Computations Organized for Re-
configurable Execution,” Microprocessors and Microsystems,
vol. 30, no. 6, 2006, pp. 334–354.

A. Krikelis and C. Weems, “Associative Processing and Proc
essors,” Computer, vol. 27, no. 11, 1994, pp. 12–17.

D.H. Lawrie, “Access and Alignment of Data in an Array Proces-
sor,” IEEE Trans. Computers, vol. 24, no. 12, 1975, pp. 1145–1155.

T. VanCourt and M. Herbordt, “Application-Dependent
Memory Interleaving Enables High Performance in FPGA-
Based Grid Computations,” Proc. IEEE Conf. Field Programma-
ble Logic and Applications, IEEE CS Press, 2006, pp. 395–401.

E. Swartzlander, Systolic Signal Processing Systems, Marcel
Drekker, 1987.

S. Alam et al., “Using FPGA Devices to Accelerate Biomolecu-
lar Simulations,” Computer, vol. 40, no. 3, 2007, pp. 66–73.

N. Azizi et al., “Reconfigurable Molecular Dynamics Simula-
tor,” Proc. IEEE Symp. Field Programmable Custom Computing
Machines, IEEE CS Press, 2004, pp. 197–206.

V. Kindratenko and D. Pointer, “A Case Study in Porting
a Production Scientific Supercomputing Application to a
Reconfigurable Computer,” Proc. IEEE Symp. Field Program-
mable Custom Computing Machines, IEEE CS Press, 2006, pp.
13–22.

R. Scrofano et al., “A Hardware/Software Approach to Mo-
lecular Dynamics on Reconfigurable Computers,” Proc. IEEE
Symp. Field Programmable Custom Computing Machines, IEEE
CS Press, 2006, pp. 23–32.

J. Villareal and W. Najjar, “Compiled Hardware Accelera-
tion of Molecular Dynamics Code,” Proc. IEEE Conf. Field
Programmable Logic and Applications, IEEE CS Press, 2008,
pp. 667–670.

Y. Gu, T. VanCourt, and M. Herbordt, “Explicit Design of
FPGA-Based Coprocessors for Short Range Force Computa-
tion in Molecular Dynamics Simulations,” Parallel Comput-
ing, vol. 34, no. 4–5, 2008, pp. 261–271.

Y. Gu and M. Herbordt, “FPGA-Based Multigrid Computa-
tions for Molecular Dynamics Simulations,” Proc. IEEE Symp.
Field Programmable Custom Computing Machines, IEEE CS
Press, 2007, pp. 117–126.

R. Skeel, I Tezcan, and D.J. Hardy “Multiple Grid Methods
for Classical Molecular Dynamics,” J. Computational Chemis-
try, vol. 23, no. 6, 2002, pp. 673–684.

D. Rapaport, The Art of Molecular Dynamics Simulation,
Cambridge Univ. Press, 2004.

F. Ding and N. Dokholyan, “Simple but Predictive Protein
Models,” Trends in Biotechnology, vol. 3, no. 9, 2005, pp.
450–455.

N. Dokholyan, “Studies of Folding and Misfolding Using
Simplified Models,” Current Opinion in Structural Biology, vol.
16, no. 1, 2006, pp. 79–85.

J. Model and M. Herbordt, “Discrete Event Simulation of
Molecular Dynamics with Configurable Logic,” Proc. IEEE
Conf. Field Programmable Logic and Applications, IEEE CS
Press, 2007, pp. 151–158.

D. Kitchen, “Docking and Scoring in Virtual Screening
for Drug Discovery: Methods and Applications,” Nature
Reviews—Drug Discovery, vol. 3, Nov. 2004, pp. 935–949.

E. Katchalski-Katzir et al., “Molecular Surface Recognition:
Determination of Geometric Fit between Proteins and Their
Ligands by Correlation Techniques,” Proc. Nat’l Academy of
Science (PNAS), vol. 89, Mar. 1992, pp. 2195–2199.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

T. VanCourt and M. Herbordt, “Rigid Molecule Docking:
FPGA Reconfiguration for Alternative Force Laws,” J. Applied
Signal Processing, vol. 2006, no. 1, 2006, pp. 1–10.

T. VanCourt, LAMP: Tools for Creating Application-Specific
FPGA Coprocessors, PhD thesis, Dept. of Electrical and Com-
puter Eng., Boston Univ., 2006.

Martin C. Herbordt is an associate professor in the
Department of Electrical and Computer Engineering
at Boston University, where he directs the Computer
Architecture and Automated Design Lab. His research
interests include computer architecture, applying con-
figurable logic to high-performance computing, and
design automation. Herbordt has a PhD in computer
science from the University of Massachusetts. He is
a member of the IEEE, the ACM, and the IEEE Com-
puter Society. Contact him at herbordt@bu.edu.

Yongfeng Gu is a member of the technical staff at
the MathWorks. His research interests include re-
configurable computing, computer architecture, and
hardware/software codesign. Gu has a PhD in com-
puter and systems engineering from Boston Univer-
sity. Contact him at maplegu@gmail.com.

Tom VanCourt is a senior member of the technical staff,
software engineering, at Altera Corp. His research in-
terests include applications and tools for reconfigurable
computing. VanCourt has a PhD in computer systems
engineering from Boston University. He is a member
of the IEEE, the ACM, and the IEEE Computer Society.
Contact him at tvancour@altera.com.

Josh Model is an associate technical staff member at
MIT’s Lincoln Laboratory. His research interests in-
clude the use of FPGAs in scientific computing and
hyperspectral image processing. Model has an MS
in electrical engineering from Boston University. Con-
tact him at jtmodel@bu.edu.

Bharat Sukhwani is a PhD candidate in the Depart-
ment of Electrical and Computer Engineering at Bos-
ton University. His research interests include FPGA
acceleration of scientific applications, high-level de-
sign environments for FPGA-based systems, and VLSI
CAD tools for nanotechnology devices. Sukhwani has
an MS in electrical and computer engineering from
the University of Arizona. He is a student member of
the IEEE. Contact him at bharats@bu.edu.

Matt Chiu is a PhD candidate in the Department of
Electrical and Computer Engineering at Boston Uni-
versity. Chiu has an MS in electrical engineering from
the University of Southern California. Contact him
at mattchiu@bu.edu.

30.

31.

