
Computing in Science & Engineering	 This article has been peer-reviewed.� 35

N o v e l
A r c h i t e c t u r e s

Computing Models  
for FPGA-Based Accelerators

Field-programmable gate arrays are widely considered as accelerators for compute-intensive 
applications. A critical phase of FPGA application development is finding and mapping to 
the appropriate computing model. FPGA computing enables models with highly flexible 
fine-grained parallelism and associative operations such as broadcast and collective 
response. Several case studies demonstrate the effectiveness of using these computing 
models in developing FPGA applications for molecular modeling.

F or many years, computational scientists 
could depend on continual access to ever 
faster computers. In the past few years, 
however, power concerns have caused 

microprocessor operating frequencies to stagnate. 
Moreover, while advances in process technology 
continue to provide ever more features per chip, 
these are no longer used primarily to augment 
individual microprocessors; rather, they’re com-
monly used to replicate the CPUs. Production 
chips with hundreds of CPU cores are projected 
to be delivered in the next several years. Replicat-
ing cores, however, is only one of several viable 
strategies for developing next-generation high-
performance computing (HPC) architectures.

Some promising alternatives use field-pro-
grammable gate arrays.1 FPGAs are com-
modity integrated circuits whose logic can be 
determined, or programmed, in the field. This 
is in contrast to other classes of ICs (such as ap-
plication-specific ICs, or ASICs), whose logic is 
fixed at fabrication time. FPGAs are less dense 
and slower than ASICs, but their flexibility often 
more than makes up for these drawbacks. Ap-
plications accelerated with FPGAs often deliver 
100-fold speedups per node over microproces-
sor-based systems. This, combined with the cur-
rent ferment in computer architecture activity, 
has resulted in such systems moving toward the 

mainstream, with the largest vendors providing 
integration support.

Even so, few developers of HPC applications 
have thus far test-driven FPGA-based systems. 
Developers commonly view FPGAs as hardware 
devices requiring the use of alien development 
tools. New users might also disregard the hardware 
altogether by translating serial codes directly into 
FPGA configurations (using one of many available 
tools). Although this results in rapid development, 
it can also result in unacceptable performance loss. 

Successful development of FPGA-based HPC 
applications (that is, high-performance reconfig-
urable computing, or HPRC) requires a middle 
path. Developers must avoid getting caught up 
in logic details while keeping in mind an appro-
priate FPGA-oriented computing model. Several 
such models for HPRC exist, but they differ sig-
nificantly from models generally used in HPC 
programming. For example, whereas parallel 
computing models are often based on thread 
execution and interaction, FPGA computing 
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can exploit more degrees of freedom than are 
available in software. This enables models based 
on the fundamental characteristics from which 
FPGAs get their capability, including highly 
flexible fine-grained parallelism and associative 
operations such as broadcast and collective re-
sponse. Andre DeHon and his colleagues discuss 
these issues from a design pattern viewpoint.2 To 
make their presentation concrete, we describe 
several case studies from our work in molecular 
modeling.

FPGA Computing Models
Models are vital to many areas of computer sci-
ence and engineering and range from formal 
models used in complexity theory and simulation 
to intuitive models sometimes used in computer 
architecture and software engineering. Here we 
consider the latter. By computing model, we mean 
an abstraction of a target machine used to facili-
tate application development. This abstraction 
lets the developer separate an application’s de-
sign, including the algorithms, from its coding 
and compilation. In other words, a computing 
model lets us put into a black box the hardware 
capabilities and software support common to the 
class of target machines, and thus concentrate 
on what we don’t yet know how to do. In this 
sense, computing models are sometimes similar 
to programming models, which can mean “the 
conceptualization of the machine that the pro-
grammer uses.”3

With complex applications, there’s often a 
trade-off between programmer effort, program 
portability and reusability, and program perfor-
mance. The more degrees of freedom in the tar-
get architecture, the more variable the algorithm 
selection, and the less likely that a single comput-
ing model will let application developers achieve 
all three simultaneously.

A common computing model for single-
threaded computers is the RAM.4 There, the 
target machine is abstracted into a few compo-
nents: input and output streams (I/O), sequential 
program execution, and a uniform random access 
memory (RAM). Although the RAM model has 
often been criticized as being unnecessarily re-
strictive (see, for example, John Backus’s famous 
paper advocating functional programming5), it’s 
also how many programmers often conceptualize 
single-threaded programs. Using this model sim-
ply means assuming that the program performs 
computing tasks in sequence and that all data ref-
erences have equal cost. Programs so designed, 
when combined with software libraries, compil-

ers, and good programming skills, often run ef-
ficiently and portably on most machines in this 
class. For high performance, programmers might 
need to consider more machine details, especially 
in the memory hierarchy.

For multithreaded machines, with their addi-
tional degrees of freedom, selecting a computing 
model is more complex. What features can we 
abstract and still achieve performance and porta-
bility goals? Is a single model feasible? What ap-
plication and hardware restrictions must we work 
under? The issue is utility: does the computing 
model enable good application design? Does the 
best algorithm emerge? Several classes of paral-
lel machines exist—shared memory, networks of 
PCs, networks of shared-memory processors, and 
multicore—and the preferred mapping of a com-
plex application might vary significantly among 
the classes.

Three computing models (and their combi-
nations) span much of the multithreaded archi-
tecture space. According to David Culler and 
his colleagues,3 these models, each based on the 
threaded model, are 

shared address, in which multiple threads com-
municate by accessing shared locations;
message passing, in which multiple threads com-
municate by explicitly sending and receiving 
messages; and 
data parallel, which retains the single thread but 
lets operations manipulate larger structures in 
possibly complex ways.

The programmer’s choice of computing model de-
pends on the application and target hardware. For 
example, the appropriate model for a large com-
puter system comprised of a network of shared-
memory processors might be message passing 
among multiple shared address spaces.

Low-Level FPGA Models
Historically, the computing model for FPGAs was 
a “bag of gates” that designers could configure 
into logic designs. In the past few years, embedded 
components such as multipliers, independently ad-
dressable memories (block RAMs, or BRAMs), 
and high-speed I/O links have begun to dominate 
high-end FPGAs. Aligned with these changes, 
a new low-level computing model has emerged: 
FPGAs as a “bag of computer parts.” A designer us-
ing this model would likely consider the following 
FPGA features when designing an application:

reconfigurable in milliseconds;

•

•

•

•



November/December 2008 � 37

hundreds of hardwired memories and arithme-
tic units;
millions of gate-equivalents;
millions of communication paths, both local 
and global;
hundreds of gigabit I/O ports and tens of multi-
gigabit I/O ports; and
libraries of existing designs analogous to the 
various system and application libraries com-
monly used by programmers.

As with microprocessors, making FPGAs ap-
propriate for HPC requires added support. This 
too is part of the low-level model. A sample sys-
tem is Annapolis Microsystems’ Wildstar board. 
Although now dated, this design is particularly 
well balanced. The design’s seven independently 
addressable memory banks per FPGA (SRAMs 
and SDRAM) are critical (see Figure 1a). Because 
HPRC applications manage memory explicitly, 
they offer no hardware caching support. Com-
munication with the host takes place over an I/O 
bus (PCI). 

In the past few years, HPRC systems have 
tended toward tighter integration of the FPGA 
board into the host system—for example, by 
making FPGA boards plug-compatible with In-
tel front-side bus slots (see Figure 1b). The effect 
is to give FPGAs access to main memory (and 
other system components) equal to that of the 
microprocessors.

Why FPGAs for HPC?
A first step in defining higher-level FPGA-based 
computing models is to consider how FPGAs get 
their performance for HPC. Microprocessors 
owe much of their tremendous success to their 
flexibility. This generality has a cost, however, 
because a several orders-of-magnitude gap exists 
between microprocessor performance and the 
computational potential of the underlying sub-
strate.6 Whereas fabrication costs limit ASICs 
mostly to high-volume applications, FPGAs of-
fer a compromise. They can often achieve much 
of an ASIC’s performance but are available off 
the shelf.

Practically, the enormous potential performance 
derivable with FPGAs comes from two sources: 

Parallelism. A factor of 10,000× parallelism is 
possible for low-precision computations. 
Payload per computation. Because most control is 
configured into the logic itself, designers don’t 
need to emulate overhead instructions (such as 
array indexing and loop computations). 

•

•
•

•

•

•

•

On the other hand, significant inherent chal-
lenges exist. One is the low operating frequency, 
usually less than 1/10th that of a high-end micro-
processor. Another is Amdahl’s law: to achieve 
the speedup factors required for user acceptance 
of a new technology (preferably 50×),7 almost 99 
percent of the target application must lend itself 
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Figure 1. Field-programmable gate arrays in high-performance 
computing. (a) In this coprocessor board, the seven independently 
addressable memory banks per FPGA are critical. (b) The 
diagram shows an Intel view of accelerator integration into a 
multiprocessor system. 
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to substantial acceleration.8 As a result, the per-
formance of HPC applications accelerated with 
FPGA coprocessors is unusually sensitive to the 
implementation’s quality.

FPGA Computation Basics
The next step in defining higher-level FPGA-
based computing models is to examine FPGA at-
tributes for how they translate into the capability 
just described. If we view FPGAs as a configurable 
bag of computer parts, we must lay these parts out 
in two dimensions and in finite space. This puts 
a premium on connecting computational blocks 
with short paths, exploiting long paths with high 
fan out (namely, broadcast), and low-precision 
computation. As with microprocessors, HPRC 
systems must support various working set sizes 
and the bandwidth available to swap those work-
ing sets. The HPRC memory hierarchy typically 

has several distinct levels. Most have analogs in 
conventional PCs, but with somewhat different 
properties, especially with regard to supporting 
fine-grained parallelism:

On-chip registers and lookup tables. The FPGA 
substrate consists of registers and LUTs 
through which logic is generated. These com-
ponents can be configured into computational 
logic or storage, with most designs having a 
mix. Although all register contents can poten-
tially be accessed every cycle, LUTs can only be 
accessed one or two bits at a time. For example, 
the Xilinx Virtex-5 LX330T has 26 Kbytes of 
registers and 427 Kbytes of LUT RAM; the ag-
gregate potential bandwidth at 200 MHz is 12 
terabits per second (Tbps).
On-chip BRAMs. High-end FPGAs have several 
hundred independently addressable multiport-
ed BRAMs. For example, the Xilinx Virtex-5 
LX330T has 324 BRAMs with 1.5 Mbytes total 
storage and each accessible with a word size of 
up to 72 bits; the aggregate potential bandwidth 
at 200 MHz is 1.2 Tbps.
Onboard SRAM. High-end FPGAs have hun-
dreds of signal pins that can be used for off-

•

•

•

chip memory. Typical boards, however, have 
between two and six 32-bit independent SRAM 
banks; recent boards, such as the SGI RASC, 
have almost 100 Mbytes. As with the on-chip 
BRAMs, off-chip access is completely random 
and per cycle. The maximum possible such 
bandwidth for the Xilinx Virtex-5 LX330T is 
49 gigabits per second, but between 1.6 Gbps 
and 5 Gbps is more common.
Onboard DRAM. Many boards either have both 
SRAM and DRAM or replace SRAM com-
pletely with DRAM. Recent boards support 
multiple Gbytes of DRAM. The bandwidth is 
similar to that with SRAM but has higher ac-
cess latency.
Host memory. Several recent boards support 
high-speed access to host memory through, for 
example, SGI’s NumaLink, Intel’s Front Side 
Bus, and Hypertransport, used by AMD sys-
tems. Bandwidth of these links ranges from 5 to 
20 Gbps or more.
High-speed I/O links. FPGA applications often 
involve high-speed communication. High-end 
Xilinx FPGAs have up to 24 3-Gbps ports.

The actual performance naturally depends on the 
existence of configurations that can use this band-
width. In our work, we frequently use the entire 
available BRAM bandwidth and almost as often 
use most of the available off-chip bandwidth as 
well. In fact, we interpret this achievement for any 
particular application as an indication that we’re 
on target with our mapping.

Putting these ideas together, we can say that a 
good FPGA computing model lets us create map-
pings that make maximal use of one or more levels 
of the FPGA memory hierarchy. These mappings 
commonly contain large amounts of fine-grained 
parallelism. The processing elements are often 
connected as either a few long pipelines (some-
times with 50 stages or more) or broadside with 
up to a few hundred short pipelines.

Another critical factor of a good FPGA model 
is that code size translates into FPGA area. 
We achieve the best performance, of course, if 
we use the entire FPGA, usually through fine-
grained parallelism. Conversely, if a single pipe-
line doesn’t fit on the chip, performance might 
be poor. Poor performance can also occur with 
applications that have many conditional com-
putations. For example, consider a molecular 
simulation in which the main computation is 
determining the potential between pairs of par-
ticles. Moreover, let the choice of function to 
compute the potential depend on the particles’ 

•

•

•
The more degrees of freedom in the target 

architecture, the less likely that a single 

computing model will let application 

developers achieve all three simultaneously.
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separation. For a microprocessor, invoking each 
different function probably involves little over-
head. For an FPGA, however, this can be prob-
lematic because each function takes up part of 
the chip, whether it’s being used or not. In the 
worst case, only a fraction of the FPGA is ever 
in use. All might not be lost, however: designers 
might still be able to maintain high utilization by 
scheduling tasks among the functions and recon-
figuring the FPGA as needed.

FPGA Computing Models
Concepts such as “high utilization” and “deep 
pipelines” are certainly critical, but are still far 
removed from the application conceptualization 
with which most programmers begin the design 
process. We found several computing models to 
be useful during this initial stage. That is, we’re 
on our way to a plausible design if we can map 
our application into one of these models. Please 
note that the models overlap and are far from 
exhaustive.2

Streaming. The streaming model is well-known 
in computer science and engineering. It’s charac-
terized, as its name suggests, by streams of data 
passing through arithmetic units. Streams can 
source/sink at any level of the memory hierarchy. 
The FPGA streaming model differs from the 
serial computer model in the number and com-
plexity of streams supported and the seamless 
concatenation of computation with the I/O ports. 
Streaming is basic to the most popular HPRC 
domains: signal, image, and communication pro-
cessing. Many FPGA languages, such as Streams 
C,9 ASC,10 and Score11; IP libraries; and higher-
level tools such as Xilinx’s Sysgen for digital signal 
processing explicitly support streaming.

The use of streams is obvious in the 1D case—
for example, when a signal passes through a se-
ries of filters and transforms. But with FPGAs, 
streaming geometrically—that is, considering 
the substrate’s dimensionality—can also be ef-
fective. For example, we can make a 1D stream 
long by snaking computing elements through 
the chip. Other ways involve changing the aspect 
ratio (for example, with broadside sourcing/sink-
ing through the hundreds of BRAMs) or using 
stream replication, which is analogous to map-
ping to parallel vector units. Less obvious, but 
still well-known, is the 2D streaming array used 
for matrix multiplication. In our work, we use 
2D streams for performing ungapped sequence 
alignment. We use the first dimension to perform 
initial scoring at streaming rate and the second 

dimension to reduce each alignment to a single 
maximal local score.

Associative computing. Associative (or content-
addressable) computing is characterized by its ba-
sic operations:12 

broadcast, 
parallel tag checking, 
tag-dependent conditional computing, 
collective response, and 
reduction of responses. 

This model is basic to computing with massively 
parallel SIMD arrays and with artificial neural 
networks.

CPU internals, such as reorder buffers and 
translation look-aside buffers, also use this model. 
Although analogous software operations are ubiq-
uitous, they don’t approach the inherent perfor-
mance offered by an FPGA’s support of hardware 
broadcast and reduction. Instead of accessing data 
structures through O(logN ) operations or com-
plex hashing functions, FPGAs can often process 
associative data structures in a single cycle.

Highly parallel, possibly complex, memory access. We 
already mentioned that using the full bandwidth at 
any level of the memory hierarchy will likely make 
the application highly efficient. In addition, on an 
FPGA, you can configure complex parallel mem-
ory-access patterns. Much study in the early days 
of array processors focused on this problem.13 The 
objective was to enable parallel conflict-free access 
to slices of data, such as array rows or columns, 
and then align that data with the correct process-
ing elements. With the FPGA, the programmable 
connections let designers tailor this capability to 
application-specific reference patterns.14

Standard hardware structures. In a way, this model 
is trivial—it uses preexisting components. The 
value added here is with their use. Standard data 
structures such as FIFOs, stacks, and priority 
queues are common in software but often have 
much higher relative efficiencies in hardware. The 
model’s power is twofold: 

to use such structures when called for, and 
to steer the mapping toward the structures with 
the highest relative efficiency. 

One such hardware structure—the systolic array 
used for convolutions15 and correlations—is per-
haps the most commonly used in all of HPRC.

•
•
•
•
•

•
•
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Functional parallelism. Although having function 
units lying idle is the bane of HPRC, functional 
parallelism can also be one of its strengths. Again, 
the opportunity has to do with FPGA chip area 
versus compute time. Functions that take a long 
time in software but relatively little space in hard-
ware are best. For example, a simulator might 
require frequent generation of high-quality ran-
dom numbers. Such a function takes relatively 
little space on an FPGA, can be fully pipelined, 
and can thus provide random numbers with the 
latency completely hidden.

Case Studies in Molecular Modeling
Methods for simulating molecules lie at the 
core of computational chemistry and are cen-
tral to computational biology. Applications of 
molecular modeling range from the practical 
(for example, drug design) to basic research in 
understanding disease processes. Molecular 

modeling is also compute bound. Whereas stud-
ies conducted in a few minutes on a small desk-
top system are often useful, the reality is that 
the computing demand is virtually insatiable. 
Simulating a larger physical system for a lon-
ger physical time with a more detailed model 
will improve almost any molecular simulation. 
Large-scale computational experiments run for 
months at a time. Even so, the gap between the 
largest published simulations and cell-level pro-
cesses is at least 10 orders of magnitude, mak-
ing their acceleration all the more critical. We 
describe several case studies that demonstrate 
the effectiveness of FPGA-based accelerators in 
molecular modeling.

Short-Range Force Computation
Molecular dynamics is an iterative application of 
Newtonian mechanics to ensembles of atoms and 
molecules. Time steps alternate between force 
computation and motion integration. The non-
bonded force computation’s short- and long-range 
components dominate execution. Because these 
components have different characters, especially 
when mapped to FPGAs, we consider them sepa-
rately. The short-range force part, especially, has 
been well-studied for FPGA-based systems.16–20

Molecular dynamics forces might include van 
der Waals attraction and Pauli repulsion (ap-
proximated together as the Lennard-Jones, or LJ, 
force), Coulomb, hydrogen bond, and various co-
valent bond terms:

Ftotal = �Fbond + Fangle + Ftorsion + FH Bond  
+ Fnonbonded.� (1)

Because the hydrogen bond and covalent terms 
(bond, angle, and torsion) affect only neighboring 
atoms, computing their effect is O(N ) in the num-
ber of particles N being simulated. The motion 
integration computation is also O(N ). Although 
some of these O(N ) terms are easily computed on 
an FPGA, their low complexity makes them likely 
candidates for host processing, which is what we 
assume here. 

We express the LJ force for particle i as
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where the ∈ab and σab are parameters related to 
the particle types—that is, particle i is type a and 
particle j is type b. 
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Figure 2. Pipeline for short-range force computation. The three-
part force computation includes components for checking validity, 
adjusting for boundary conditions, and computing r2 (blue); 
computing the exponentials in r (purple); and combining these terms 
with the particle type coefficients to generate the force (orange).
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We express the Coulombic force as
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In general, we must compute the forces between 
all particle pairs, leading to an undesirable O(N2) 
complexity. The common solution is to split the 
nonbonded forces into two parts: 

a fast-converging short-range part consisting of 
the LJ force and the nearby Coulombic compo-
nent, and 
the remaining long-range Coulombic part 
(which we describe later). 

This solution reduces the short-range force com-
putation’s complexity to O(N ) by only processing 
forces among nearby particles.

Figure 2 shows the short-range computation 
kernel, using the streaming computational mod-
el.21 Particle positions and types are the input, 
and accelerations are the output. Streams source 
and sink in the BRAMs. The number of streams 
is a function of FPGA hardware resources and the 
computation parameters, with the usual range be-
ing from two to eight.

We also implement the wrapper around this ker-
nel in the FPGA. The wrapper ensures that parti-
cles in neighborhoods are available together in the 
BRAMs. The wrapper logic swaps these neighbor-
hoods in the background as the computation pro-
gresses. The force computation has three parts:

Part 1 (shaded blue in Figure 2) checks for va-
lidity, adjusts for boundary conditions, and 
computes r2. 
Part 2 (purple) computes the exponentials in r. 
As is typical even in serial molecular dynam-
ics codes, we don’t compute these terms di-
rectly, but rather with table lookup followed 
by interpolation. Figure 2 shows third-order 
interpolation. 
Part 3 (orange) combines the r−n terms with the 
particle type coefficients to generate the force.

Most current high-end FPGAs are well-balanced 
with respect to this computation. Designs simul-
taneously use the entire BRAM bandwidth and 
most of the computation fabric. If the balance is 
disturbed, we can restore it by adjusting the in-
terpolation. This allows for a trade-off of BRAM 
(table size) and computational fabric (interpola-
tion order).

•

•

•

•

•

Using Multigrid  
for Long-Range Force Computation
Numerous methods reduce the complexity of the 
long-range force computation from O(N2) to O(N 
logN), often using the fast Fourier transform (FFT). 
Because these have so far proven difficult to map ef-
ficiently to FPGAs, however, the multigrid method 
might be preferable22 (a description of its applica-
tion to electrostatics is available elsewhere23).

The difficulty with the Coulombic force is that 
it converges too slowly to restrict computation 
solely to proximate particle pairs. The solution 
begins by splitting the force into two components, 
a fast converging part that can be solved locally 
without loss of accuracy, and the remainder. This 
splitting appears to create an even more difficult 
problem: the remainder converges more slowly 
than the original. The key idea is to continue this 
splitting process, each time passing the remain-
der to the next coarser level, where it’s split again. 
This continues until a level is reached where the 
problem size (N ) is small enough for the direct 
all-to-all solution to be efficient.

Figure 3 shows the schematic of the overall mul-
tigrid algorithm. Starting at the upper left, the al-
gorithm partitions the per-particle potentials into 
short- and long-range components. It computes the 
short-range components directly, as we described 
earlier, and applies the long-range component to 
the finest grid. Here, it splits the force again, with 
the high-frequency component solved directly and 
the low-frequency passed on to the next coarser 
grid. This continues until it reaches the coarsest 

Short-range force with cell lists

Apply particles to grid

Anterpolating grid

Anterpolating grid

Apply grid to particles

Interpolating grid

Interpolating grid
Direct solution

Correction

Correction

Figure 3. Schematic of the multigrid method for the Coulomb force. 
The left side shows the successive splitting, the lowest level the direct 
solution, and the right side the successive mergers with the previously 
computed corrections.
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level, where it solves the problem directly. We then 
successively combine this direct solution with the 
previously computed finer solutions (corrections) 
until we reach the finest grid. Here, we apply the 
forces directly to the particles.

When mapping to an FPGA, we partition the 
computation into three functions: 

applying the charges to a 3D grid, 
performing multigrid to convert the 3D charge 
density grid to a 3D potential energy grid, and 
applying the 3D potential to the particles to 
compute the forces. 

•
•

•

The two particle–grid functions are similar 
enough to be considered together, as are the vari-
ous phases of the grid–grid computations.

The particle–grid computations in our imple-
mentation involve one real-space point and its 64 
grid neighbors. For the HPRC mapping, we use 
the third computing model: highly parallel, possi-
bly complex, memory access. We begin with judi-
cious selection of coordinates. We can then almost 
immediately convert the real-space position into 
the BRAM indices and addresses of each of the 64 
grid points. A standard initial distribution of grid 
points guarantees that the BRAMs will be disjoint 
for every position in real space. There follows the 
remarkable result that an entire tricubic interpola-
tion can be computed in just a few cycles: data are 
fetched in parallel and reduced to a single value.

In practice, getting the fetched grid points to 
their correct processing elements requires addi-
tional routing, as Figure 4 shows in 2D. In Figure 
4a, an index indicates 16 memory banks, each with 
four elements. Any 4 × 4 square overlaying the grid 
will map to independent memory banks, allowing 
fully parallel access, but is likely to be misaligned. 
For example, the green overlay would be fetched in 
the position shown at the beginning of Figure 4b, 
and then require two rotations to get into correct 
alignment. The 3D routing is analogous.

For the 3D grid–grid convolutions, we use the 
fourth computational model: use of a standard 
hardware structure. Here, the structure is the well-
known systolic array.15 Figure 5 shows its iterative 
application to build up 2D and 3D convolvers.

Discrete Event-Based Molecular Dynamics 
Increasingly popular is molecular dynamics with 
simplified models, such as the approximation of 
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forces with step-wise potentials.24 This approxi-
mation results in simulations that advance by dis-
crete event rather than time step.

Discrete event-based molecular dynamics (DMD) 
is an intuitive, hypothesis-driven modeling 
method based on tailoring simplified models to 
the physical systems of interest.25 Using intuitive 
models, simulation length and time scales can ex-
ceed those of time-step-driven molecular dynam-
ics by eight or more orders of magnitude.26 Even 
so, not only is DMD still compute bound, causal-
ity concerns make it difficult to scale to a signifi-
cant number of processors.

Figure 6a gives an overview of discrete event 
simulation. The primary DES components are 
the event queue, event processor, event predic-
tor (which can also cancel previously predicted 
events), and system state. DES parallelization 
generally follows one of two approaches: 

conservative, which guarantees causal order, or 
optimistic, which allows some speculative violation 
of causality and corrects violations with rollback. 

Neither approach has worked well for DMD. The 
conservative approach, which relies on there being a 
safe window, falters because DMD has no such win-
dow. Processed events invalidate predicted events 
anywhere in the event queue with equal probability 
and potentially anywhere in the simulated space. 
For similar reasons, the optimistic approach has 
frequent rollbacks, resulting in poor scaling.

We take a different approach, based primarily 
on the associative computing model.27 We pro-
cess the entire simulation as a single long pipe-
line (see Figure 6b). Although dozens of events 
are processed simultaneously, at most one event 
is committed per cycle. To achieve maximum 
throughput, we must accomplish several tasks 
within a single cycle: 

update the system state, 
process all causal event cancellations,
process new event insertions, and 
advance the event-priority queue. 

This process, in turn, uses the associative primi-
tives of broadcast, tag check, and conditional 
execution. When the event-processing pipeline 
commits an event, it broadcasts the relevant par-
ticles’ IDs to the events in the priority queue. If an 
ID match exists, the predicted event is cancelled. 
Similarly, when the pipeline predicts events, it 
broadcasts their time stamps throughout the pri-
ority queue. Existing events compare their time 

•
•

•
•
•
•

stamps to that of the new event, and the event-
processing pipeline inserts it accordingly.

Docking Rigid Molecules
Another case study involved applications of 
docking,28 in which computations approximate 
molecules as rigid structures mapped to grids. 
Docking applications differ in central data type, 
data structure, and algorithm, and so provide a 
good view of the richness of the space of effective 
FPGA computational models.

Noncovalent bonding between molecules, or 
docking, is basic to the processes of life and the ef-
fectiveness of pharmaceuticals. Although research-
ers sometimes use detailed chemical models, such 
techniques are computationally exorbitant and 
infeasible for answering the first question: at what 
approximate offsets and orientations could the 
molecules possibly interact at all? Many docking 
applications use less costly techniques to initially 
estimate the docked pose and the relative offset 
and rotation that give the strongest interaction. 
They might assume rigid structure as a simplify-
ing approximation. Then 3D voxel grids repre-
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Figure 6. Event-based molecular dynamics. The block diagrams show 
(a) a generic discrete event simulation and (b) an FPGA mapping of 
discrete molecular dynamics.
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sent the interacting molecules and 3D correlation 
helps determine the best fit.29

We base our approach on a combination of 
standard hardware structures (in particular, the 
systolic convolution array) and latency hiding 
with functional parallelism. This gives us a three-
stage algorithm.30

(Virtual) molecule rotation. We test the molecules 
against one another in rotated orientations. FFT 
versions rotate molecules explicitly, but direct 
correlation lets us implement the rotations by ac-
cessing elements of one of the molecules through 
a rotated indexing sequence. Because explicitly 
storing these indices would require exorbitant 
memory, we generate them on the fly. The index-
generation logic (an 18-parameter function) sup-
plies the indices just in time, hiding the rotation’s 
latency entirely. This is also a good example of 
how we can easily implement function-level par-
allelism on an FPGA.

Generalized correlation. We based the correlation 
array on the structure used in the multigrid ex-
ample (see Figure 5), generalized with respect to 
arbitrary scoring functions.

Data reduction filter. The correlation can generate 
millions of scores but only a few will be interest-
ing. The challenge is to return at least a few scores 
from every significant local maximum (potential 
binding), rather than just the n highest scores. We 
address multiple maxima by partitioning the re-
sult grid into subblocks and collecting the highest 
scores reported in each.

A n open question is how computing 
models relate to programmer effort. A 
more basic question is which tools sup-
port which models. In our lab, we use 

a hardware description language (VHSIC Hard-
ware Description Language [VHDL]) together 
with our own LAMP tool suite,31 which supports 
reusability across variations in application and 
target hardware. The latter, unfortunately, isn’t 
yet publicly available. Otherwise, we believe that 
important characteristics include

support for streams, which many HPRC lan-
guages have; 
support for embedding IP, again, supported by 
most HPRC languages; 
support for object-level parameterization, which 
is rarely fully supported; and 

•

•

•

access to essential FPGA components as virtual 
objects, which also is rarely fully supported. 

Although you can use a computational model’s 
characteristics only if you can access them, you 
can still get good results with higher-level tools. 
Paradoxically, the more general the development 
tools, the more care might be needed because 
their effects with respect to the underlying sub-
strate are harder to predict.

Returning to programmer effort, in our own 
experience, we rarely spend more than a few 
months before getting working systems, al-
though more time is usually needed for test, vali-
dation, and system integration. The advantage of 
having a good computing model is therefore not 
so much in saving effort, but rather in increas-
ing design quality. In this respect, the benefit is 
similar to that with using appropriate parallel 
computing models. It might not take any longer 
to get a working system using an inappropriate 
model, but achieving good performance might 
prove impossible.�
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