Discrete Event Simulation of Molecular Dynamics
with Configurable Logic*

Josh Model

Martin C. Herbordt

Department of Electrical and Computer Engineering
Boston University; Boston, MA 02215
EMail: {jtmodel|herbordt}@bu.edu

Abstract: Molecular dynamics simulation based on
discrete event simulation (DMD) is emerging as an
alternative to time-step driven molecular dynamics
(MD). DMD uses simplified discretized models, en-
abling simulations to be advanced by event, with a
resulting performance increase of several orders of mag-
nitude. Even so, DMD is compute bound. More-
over, unlike MD, causality issues make DMD difficult
to scale, with O(,/p) being the best so far achieved.
We find that FPGAs are extremely well suited to ac-
celerating DMD. The chaotic execution, which results
in there being virtually no prediction window, is over-
come with a long processing pipeline augmented with
associative structures analogous to those used in CPU
reorder buffers. Our primary result is a microarchitec-
ture for DMD that processes events with a throughput
equal to a small multiple of the FPGA’s clock, resulting
in a hundred-fold speed-up over serial implementations.

1 Introduction

Molecular dynamics (MD) simulations are a fundamen-
tal tool for gaining understanding of chemical and bio-
logical systems; its acceleration with FPGAs has right-
fully received much recent attention [1, 3, 9, 12, 13, 21].
A major limitation, however, is that even when scaled
to thousands of processors, simulations of time scales
beyond nanoseconds is problematic; 9-12 orders of mag-
nitude more time is needed to model many important
biological phenomena, e.g., the protein association and
aggregation subsequent to misfolding that is integral to
many disease processes [6, 23].

An emerging alternative is molecular dynamics
based on discrete event simulation, referred to as dis-
crete molecular dynamics, or DMD [5, 6]. DMD uses
simplified models: atoms as hard spheres, covalent

*This work was supported in part by the NIH through award
#RR020209-01 and facilitated by donations from Xilinx Corpo-
ration. Web: http://www.bu.edu/caadlab.

bonds as infinite barriers, and van der Waals forces as
square wells. This discretization enables simulations to
be advanced by event, rather than time step. Events
occur when two particles reach a discontinuity in inter-
particle potential. The result is simulations that are up
to 108 to 10% times faster than traditional MD [6]. The
simplified model can be substantially compensated for
by the capability of researchers to interactively refine
simulation models [25].

Even so, current DMD simulations are also compute
bound, sometimes taking a month or more (e.g., [22]),
although with far less resources than used for high-end
MD simulations. In fact, a major problem with DMD is
that, as with discrete event simulation (DES) in general
[8], causality concerns make DMD difficult to scale to
a significant number of processors [16]. FPGA acceler-
ation of DMD is therefore doubly important: not only
would it multiply the numbers of computational exper-
iments or their model size or detail, it would do this
many orders of magnitude more cost-effectively than
could be done on a massively parallel processor, if it
could be done that way at all.

What’s so hard about parallelizing DMD, or more
generally, parallel discrete event simulation (PDES)?
Simulated events may change the system state in at
least two ways: by causing new events, and by caus-
ing events currently scheduled to not occur. If these
changes of state are unpredictable, as they are in DMD,
then the concurrent processing of events is problematic.
The basic problem is that overhead associated with
bookkeeping of the parallel execution (e.g., updating
event queues), is large with respect to the time to pro-
cess an event. In some PDES application domains, it
is possible to circumvent this by predicting a window
during which event execution is “safe,” or by making a
similar assumption to ensure that the amount of work
that may need to be undone is limited [8]. DMD, how-
ever, is chaotic: new events are unpredictable. There
is no safe window [14].

Our primary result is a microarchitecture for DMD
that processes events at a small multiple of clock fre-
quency, currently about one event per 1.5 cycles for
small models (of a few thousand particles), for a re-
sulting speed-up over serial implementations of 440x.!
The critical factor enabling high performance is the
use of broadcast buses that allow event invalidations
and several insertions to all be processed in a single
cycle. This allows use of a long processing pipeline
with logic somewhat analogous to the reorder buffers
used in contemporary CPUs; a key result is that the
number of stalls is tolerable. Other important features
are hierarchical event processing, which allows delayed
processing for events far in the future thus enabling
support for large models; precision management; and
a novel priority queue structure. We currently imple-
ment hard spheres and covalent bonds — extensions to
more complex force models are underway, but do not
change the overall design.

2 Discrete Molecular Dynamics

2.1 DMD Models

The physical processes that lend themselves to DMD
are often inherently long time-scale and amenable to
simplified models. Examples are protein folding and
aggregation. That these and other typical applica-
tions involve polymers contributes to the approxima-
tion model used. Rather than simulate every atom, as
is done with finer models (used in MD), higher molec-
ular structures (entire amino/nucleic acids or parts
thereof) are represented as a small number of entities.
These structures, often called beads, are the primary
unit of simulation [19].

(@)

a

(b)

v
v

Figure 1: DMD force models.

Forces are also simplified — all interactions are
folded into a square-well potential model. Figure la

1We are currently implementing support for large models and
our simulations indicate that we will be able to do this with little
slowdown. This is described in Section 3.3.

shows the infinite barrier used to model a hard sphere;
Figure 1b an infinite well for a covalent bond; and
Figures 1c and 1d the van der Waals model used in
MD, together with square well and multi-square-well
approximations, respectively.

Extensions to DMD come from solvent modeling
and protein coarse-graining. Solvents are often im-
plicit, but in larger simulations have also been mod-
eled explicitly. Protein coarse-graining is useful when
various behaviors of a protein element cannot be cap-
tured in a single bead. Several types of beads are then
used to model the various desired behaviors, such as
the hydrophobic nature of some amino acids [5].

2.2 DMD Overview

Overviews of DMD can be found in many standard MD
references, particularly Rapaport [20]. A DMD system
consists of the

e System State, which contains the particle char-
acteristics such as velocity, position, time of last
update, and type;

e Event Predictor, which transforms the particle
characteristics into pairwise interactions (events);
and

e Event Processor, which turns the events back
into particle characteristics.

Events between pairs of particles are predicted by
solving the ballistic equations of motion, yielding the

. . . —btA/b2—v2%(r2—02 .
interaction time 7 = e () , where v is the

relative velocity, r the distance, o the diameter, and
b = v x r. Note that, unlike in MD, interactions con-
serve energy. The event processor similarly computes
the post-collision motion parameters.

In serial implementations the major functional com-
ponent, besides the predictor and processor, is the
event calendar. This generally involves a dynamically
balanced tree, leading to O(log N) processing per event
insertion, although an optimization by Paul reduces
this to O(1) [18].

Execution progresses as follows. After initialization,
the next event (processing, say, particles a and b) is
popped off the calendar and processed. Then, previ-
ously predicted events involving a and b, which are
now no longer valid, are removed from the calendar.
Finally, new events involving a and b are predicted and
inserted into the calendar.

To bound the complexity of event prediction, the
simulated space is subdivided into cells (as in MD).
Since there is no system-wide clock advance during
which cell lists can be updated, bookkeeping is facili-
tated by treating cell crossings as events and processing
them explicitly.

There is some trade-off as to how many predictions
per particle to insert into the event calendar as a result

of each new event. The method used here is to record
only, for each bead, the next potential cell crossing plus
the next bead interaction, if that would come first (see,
e.g., [14]). Event execution can therefore cause at most
four new events to be predicted.

3 FPGA Algorithm and Design

3.1 Overall design

The overall goal of our design is to pipeline the entire
simulation described in Section 2.2 so that one event
is committed every cycle. We begin with a high level
description of the overall design and its components.
We then address complications arising from the unpre-
dictable event invalidations and insertions inherent in

DMD.

] Bead .
Event Memory Banks i<
Insertion =
1
m Commit [
o3 =P Event Processor ||| —2uffer
23 Event
®g Predictor
:2 Units
Particle Tags Invalidation Broadcast

Figure 2: Block diagram of DMD simulator.

As seen in Figure 2, the FPGA DMD system con-
sists of several hardware units. The event processor
and predictor are analogues of the event processing
and event prediction functions described in Section 2.2.
The bead memory banks provide broadside access to
bead information, such as position, velocity and time
tag, for each bead in an event neighborhood (cells).

Dataflow R
Non-compute stages Compute stages
. Event
Off-Chip OEn -gr:]tlp g=) Predictor
Event Heap Pri tv Q g Units
riority Queue| & "= mit T
T

1 } Invalidations i}) 1
| | 7

New Event Insertions stalls inducing Insertions

Figure 3: Conceptual diagram of DMD simulator.

The overall concept of our design is shown in Fig-
ure 3. The entire system is effectively a time-keyed pri-
ority queue. At the front of the queue are the event pro-
cessor (labeled “collider”) and event predictor, which

together form the computation pipeline. No processing
takes place in the rest of the queue. Complications re-
sult from the fact that invalidations and insertions can
take place anywhere in the priority queue, including
the processing parts.

The event processor transforms cell-crossings and
collisions into bead updates, while the predictor gener-
ates new events from the update computations. Each
new event has an associated time tag. These events
are inserted into the queue at the appropriate location,
based on the time tag. Insertion of events into the pro-
cessing section of the queue requires special handling in
order not to foul the computation in progress (see Sec-
tion 3.2); insertion into the non-processing section of
the queue is done using standard hardware constructs
(see Section 4).

The bead memory banks store the system state.
Memory is interleaved in such a way that the contents
of an entire cell neighborhood can be accessed at once
[26]. Committing an event involves writing the bead’s
new position, velocity, and time to these memories. A
memory controller ensures that the collider-predictor
is fed, and handles cell membership changes.

As bead updates emerge from the collider, corre-
sponding events need to be generated. A given cell
neighborhood could easily contain ten to twenty beads
depending on the local density, in addition to the three
candidate walls for cell crossing. Each is a poten-
tial event partner. The time of each partner must be
computed. Despite all this computation, we schedule
at most two events per particle prediction (four per
event): the next cell crossing and the next collision, as
in [14].

3.2 Complications

In an ideal DMD pipeline, the following would all take
place in a single pipeline stage: events would be pro-
cessed, new events predicted, invalidated events can-
celled, and new events inserted into the event queue.
This is not the case, however, as (currently) the event
processor takes 6 and the event predictor 23 stages.
Complications occur when:

Case 1. Events need to be cancelled that are
already in the computation stages.

Case 2. Events need to be inserted into the
computation stages.

Case 3. An event entering the event prediction
processor has potentially stale information be-
cause of an event ahead that has not yet written
its new state information.

The key is to retain the concept of commitment that
takes place at the head of the ideal DMD pipeline.
In the non-ideal DMD pipeline, just as in the ideal

pipeline: an event has committed when it emerges from
the head of the priority queue (the event predictor),
and when the associated invalidations and insertions
have been committed (for on-chip cases this last com-
mitment is the same as completion). The complications
are addressed as follows (referring to the list above).

Case 1. This is easily accomplished in a single cycle
by broadcasting the tags of the particles just processed.
Case 2. The complication here is that, although an
event needs to be inserted, say, into the 3rd stage of
the event processor, it has not yet gone through the
first two stages. We handle this by stalling the entire
pipeline, inserting the new event at the beginning of
the processing pipeline, and then restarting when the
inserted event has “caught up.”

Case 3. As events enter the event predictor, they must
check to see whether any events ahead in the queue are
taking place in its own cell or its neighbors. If so, then
the pipeline is stalled until that event is completed.

We now describe the effects on performance of the
complications. The first two cases result from the ob-
served uniform distributions of invalidations and inser-
tions with respect to priority queue position.

Case 1. Event cancellations have little effect. The
reasons, however, are different for the compute part
and non-compute parts of the pipeline. For the non-
compute part of the pipeline, we observe that the entire
system is in steady state between insertions and dele-
tions. With the priority queue design described in the
next section we see that holes are quickly filled. For
the compute part of the pipeline, we observe that this
is a very small fraction of the event queue of a typical
simulation (usually less than .05%). Moreover the ef-
fect of an unfilled hole is local: it only means that no
payload will be delivered on a single cycle.

Case 2. Insertions into the compute part of the queue
have more effect. Although the probability is the same
as with cancellations, insertions cause a number of
stalls on the order of the number of stages in the com-
pute part of the queue. The actual number is compli-
cated by implementation details, but still results in less
than 1% loss of performance.

Case 3. Coherence stalls have similar cost as in case
2. The probability, however, is related not to the point
of insertion, but rather to the ratio of the combined
neighborhoods of all the events in the event predictor
to the total volume of the simulation. Here is a simpli-
fied (and conservative) version of the full computation.
Each event has a neighborhood of 27 cells; this times
the number of events in the event predictor (23 in the
current implementation) is the volume potentially af-
fected. The total volume of the simulation in cells is
a tunable parameter; 32 x 32 x 32 is common. To ob-

tain the expected performance degradation, we multi-
ply this ratio by the number of stall cycles induced per
stall (again 23) obtaining a bound of .44 stall cycles
per event committed.

3.3 Handling Large Models

So far we have assumed that the entire model can fit
in the on-chip portion of the priority queue (see Figure
3). While this is true for many important cases—up
to several hundred beads, or several thousand particle
equivalents—large models are likely to require, at least
for the near future, that the substantial part of the
priority queue be stored off-chip.

The question is whether this off-chip access will re-
duce the overall throughput to the level of software, i.e.,
a few hundred times slower than the on-chip through-
put. Although we have not yet finished implementing
the off-chip portion of the design, our preliminary ex-
amination indicates that off-chip access will not reduce
performance substantially.

We begin by observing that any particular access
to the off-chip priority queue will not be on the criti-
cal path that limits event processing throughput. This
is because events off chip are roughly a thousand po-
sitions from the head of the queue and therefore not
needed for many cycles, if ever. The question is then
whether the overall throughput of off-chip processing
is sufficient to feed the on-chip part. The rest of the
argument runs as follows.

1. Off chip access does not entail processing an entire
event; rather, only scheduling (and not event process-
ing and prediction). Our profiling of serial reference
codes indicates that, when using the classical tree data
structure, scheduling consists of roughly 30% of the ex-
ecution time.

2. Events advance substantially more slowly the fur-
ther away they are from the head of the queue. This
is because of insertions and invalidations. Our simula-
tions indicate that the flow rate around location 1000
is less than half that at the head of the queue.

3. This still leaves a large factor to be accounted for.
This is done by changing the monolithic tree to a hier-
archical O(1) data structure, as proposed by G. Paul
[18]. His basic idea is that events likely to be used soon
are inserted into a small ordered tree (20-30 elements)
at the head of the queue, while the rest are placed into a
coarsely ordered array of linked lists. The tree provides
a sorting “buffer” wherein small errors in ordering can
be corrected.

We extend this algorithm by replacing the small
ordered tree with a hardware structure at the back
of the on-chip part of the priority queue. By simply
adding swapping capability among neighboring cells

in the queue, we enable reordering as the queue ad-
vances. The resulting design requires only that the
off-chip component process four memory accesses per
event advancement, i.e., every 25ns for that point in
the queue. This should be easily achievable in systems
with parallel access to multiple SRAM banks (e.g., [2]).

4 Implementation

In this section we sketch implementations of the pri-
mary components of the DMD simulator, accounting
for the causality-based complications described in Sec-
tion 3.2.

Jnvalidations
Routing

Randomize _l_l}_l_l_f
._Jf T¢T T o]
e e

Event

New Elements | P
From Event %&fﬁ rocessor
Predictor ‘
A 'y
DeQ <
. 1 [Comparator
Logic > Network

Figure 4: Four insertion event priority queue.

Event Priority Queue
The event priority queue must, on every cycle: (i) de-
liver the next event in time order, (ii) invalidate an
unbounded number of events in the queue, and (iii)
correctly insert up to four new events. This is accom-
plished by using broadcast mechanisms available in an
FPGA. The queue is composed of four single-insertion
shift register units, as seen in Figure 4. The event pre-
dictor presents two to four new elements to the routing
network at each cycle. One of the 24 possible routing
scenarios is pseudorandomly selected and each of the
four shift register units determine the correct location
to enqueue its new element. Simultaneously, dequeue-
ing is performed by examining the heads of each of the
four shift register units, and choosing the next event.
The shift register units themselves are an extension
of the hardware priority queue described in [17]. Each
shift register unit cell contains a time tag, the pay-
load (bead references), a valid bit, comparators and
shift control logic (see Figure 5). Since the queue is
strictly ordered, the shift control logic is completely de-
termined by the comparator results in the current and
a neighboring shift register unit cell. While simulta-
neously dequeueing and enqueueing, the next neighbor
is examined. When only enqueueing, which happens
when the priority queue is not selected for dequeueing

Left Right
Dataln | —— | | — Data In
DeQ [fTTT /" TTI_EnQ

Valid Out Valid Bit Valid In
‘Data Out | 7] Payload Data Out
Time Tag
Comparison) i \ Comparison
Result Left Result Right
Comparison New
Result Out + Elements

43

Figure 5: Single insertion, “scrunching,” priority queue

unit cell.

on a particular cycle, the previous neighbor is exam-
ined. The values of the tags cause the shift register
control logic to perform one of four possible actions:
shift forward, stay put, shift backward, or insert new
element.

With up to four enqueue operations per clock cycle
and only a single dequeue, the event priority queue
would quickly overflow. Steady-state is maintained,
however, as on average an equal number of events are
inserted as removed. Invalidations are broadcast to
each element of the queue every clock cycle. The issue
now becomes dealing with the “holes” thus opened in
the queue; these are filled through “scrunching”: by
looking at the valid bit of the next shift unit cell, the
priority queue can use its shift control logic to remove
invalid events from the queue. If the next unit is in-
valid, then the action is “upgraded.” That is, a Shift
Backwards signal becomes a Stay Put signal, and a
Stay Put signal becomes a Shift Forward. Through
this mechanism, new insertions do not overwhelm the
queue, and holes are filled yielding payload on every
cycle with high probability.

Event Processor

The event processor handles collisions and cell cross-
ings, computing them in as few cycles as possible to
avoid stalls. The implementation is a straightforward
pipelining of the momentum conservation equations.
The only subtlety here is that the division is replaced
by a constant multiplication, as all interactions take
place with a predefined radius. Parallel to the compu-
tation pipe, bead tag valid bits are propagated forward
in lockstep in order to invalidate any predictions in-
volving beads emerging from the commit buffer. In
the same way, bead times are also retained to catch
causality stalls. In the case of a stall, the event proces-
sor state is stored in a set of shadow registers, and the

current computation yields to the incoming event.

Event Predictor

The event predictor generates the new events to replace
those that have been processed. In doing so, it provides
final confirmation that updates are safe to commit, or
failing that, causes a stall. Again, this is a straight-
forward pipelining of the ballistic equations. Various
operations (division and square root) are overlapped
bringing the answer together with a multiply at the
end, rather than performing them serially. Similar to
the event processor, a set of shadow registers maintains
state in the event of a stall.

Precision Management

Precision management is not as essential to DMD as in
time-step driven MD. This conclusion stems from two
facts. First, energy is conserved to the limits of pre-
cision, rather than being related to the time-step size.
Second, it is only essential to preserve causal orderering
of events, not calculate their precise interaction times.
Where precision matters most in DMD is in velocity
recomputation. Here, rounding errors can result in en-
ergy being added to or removed from the simulation,
and as much precision as is practical is desired.

The main datapath is 32-bits wide. For a 1284
simulation box, this corresponds to a resolution of
2.9 x 10~8 Angstroms in position. Full 32-bit precision
is used in the event processor to minimize velocity
variation. In the event predictors, however, the
parameters used for modeling covalent bond length are
accurate only to 10™3 Angstroms. This corresponds
to twelve bits (plus the five implied by the cell index),
allowing us to reduce the precision used for the inputs.
The output precision is returned to 32-bits over the
course of its operation.

Cell-indexed 8- Bead ID’s INext Free Slotl
PBc_aad 8-Bead ID'’s INext Free Slotl
ointer T
Memory 8-Bead ID’s INext Free Slotl
Cell I Cell

Address Neighborhood

Position, Velocity, Time, etc. l Slot‘
Tag-indexed ;

Bead Memory Position, Vlel?uty, Time, etc. l Slot‘

Position, Velocity, Time, etc. l Slot‘

To
Event Predictor

Figure 6: Bead memory block diagram.

Bead Memory

There is one type of read operation and two types of
write operations the bead memory architecture must
support. The read involves a neighborhood access,
that, given a cell address, presents the entire neigh-

borhood, broadside, to the event predictor. The cell
address is simply the higher-order bits of the (X,Y,Z)
position vector of each bead. A committed collision
results in a simple write of the new position, velocity,
and time to bead memory. This presents no hazard, as
the FPGA RAM elements are dual-ported and can be
configured to write-before-read mode.

A committed cell-crossing is more complicated.
Two small auxiliary memories are required. The cell
slot memory contains a bit vector for each cell indicat-
ing which slots are free. The bead slot memory stores a
one-hot encoded bit vector indicating the current slot
occupied by each bead. The cell slot memory values
for the new and old cells are fetched as cell-crossings
emerge from the commit buffer, as is the bead’s current
slot. This allows the bead to be placed into the new
cell in a single clock cycle.

The read-mechanism works as follows. Due to the
limited size of the on-chip RAM, the bead memories
are arranged in a hierarchical structure as in shown
in Figure 6. The bead pointer memory is interleaved
by position and contains the (up to) eight pointers to
beads in the addressed cell.2 Valid bead addresses are
routed to bead memories which, on the following cycle,
present their contents to the event predictor.

Cell-crossing can be accomplished in a single cycle,
given that the old cell slot, new cell slot, and old bead
slot memory terms are available. These are fetched as
the event moves through the commit buffer, and can be
ready for the memory controller upon exit. The bead
is inserted into the new cell by writing a pointer to the
bead to the location in bead pointer memory indicated
by the new cell slot. The new cell slot memory is up-
dated to reflect its now fuller state. Removal of the
bead from the old cell is accomplished simultaneously
by writing a null pointer to the old-cell slot and updat-
ing the old cell slot memory to indicate its now empty
state.

5 Performance and Accuracy

System Level Issues

Unlike FPGA implementations of cycle-driven MD,
DMD does not appear to require substantial inter-
vention by the host processor. This is because of
the simplified models used and the favorable energy
conservation properties. FPGA configurations were
created in VHDL; the development flow uses Xilinx
and Synplicity tools. Arithmetic retains 32-bits of
precision through binary scaling except where reduced
precision is safe (see Section 4).

2The cell size is roughly equal to the bead diameter, and as
such, at most eight beads—as positioned by their centers—can
be physically contained in a given cell.

2.9995

Double Precision
Single Precision

2.9991 J

2.9985|

2.998

2.9975

2.997 1

2.99651 1

2.996

0 500 1000 1500 2000 2500
Simulation Time

Figure 7: Total energy versus cycle for single and dou-

ble precision simulations.

Validation

As with traditional MD [10], DMD is chaotic and
so validation requires multiple parts. The correct
working of the design is verified with a cycle accurate
reference code. The operation of the cycle accurate
reference code is verified with a serial reference code
based on that of Rapaport [20]. The effect of reduced
precision must be measured indirectly: the standard
mechanism is to measure fluctuations in what should
be physical invariants, such as energy. As can be
seen in the snapshot shown in Figure 7, the effect of
reducing precision from 53 to 24 bits does not appear
to be large, so the 32 bits we are currently using
could be adequate. Also, unlike MD, DMD is energy
conserving to the precision of the arithmetic. In any
case, precision will remain a design parameter to be
varied by the computational biologist as a part of the
DMD interactive experimental protocol.

Performance

Performance has two parts: throughput in events per
second, and size and detail of the model that can be
simulated. We first examine throughput, assuming the
model fits on chip (for a discussion of off-chip access,
see Section 3.3): it has three components.

1. Clock cycle time. For all implementations we
have had no difficulty achieving cycle times below 10ns.
Moving to the latest FPGA technology and further op-
timizing the implementation could improve this result.
2. Clock cycles to commit an event. With current
hardware, we are able to commit events in a single cy-
cle yielding an ideal throughput (no stalls) of one event
per clock cycle.

3. Stalls per clock cycle. As discussed in Section
3.2, the number of stalls per cycle in the current design
is less than .5 for a 50% reduction in performance from

this source.
Combining these results, we obtain a throughput of
one event per 15ns.

The model size we can fit on chip (in beads; typi-
cally multiply by 4-15 to obtain atom count) is roughly
one half the size of the on-chip part of the priority
queue, a result obtained from our DMD simulations.
This in turn depends on the FPGA resources available
and the resources required for the compute parts of the
priority queue. The latter is independent of the model
and FPGA size.

A sample system has been implemented on the Xil-
inx Virtex-II-Pro XC2VP70 -5, which we use on our
Annapolis Microsystems Wildstar II-Pro. It consists
of 19 Event Predictors (1920 FF per predictor) and 1
Event Processor (1922 FF). This leaves 27,774 FFs and
33,398 4-LUTs for the Event Priority Queue. This is
enough logic for 150 on-chip stages. With the Xilinx
V4L.X200, the size of the processing section remains
similar, resulting over 1000 stages fitting on-chip.

Increasing the complexity of the force model
increases the size of the event processor. As this is
currently a small fraction of the overall logic, the effect
on model size should be modest.

Performance of Serial DMD Codes

Two serial codes were each run on two different plat-
forms for a variety of models. The platforms were a
1.8GHz dual Opteron with 2GB RAM and compiled
with GCC -O and a 2.8GHz Xeon with 2GB RAM and
compiled with Microsoft Visual C++ .NET with per-
formance optimization set to maximum. In all cases
the Opteron was somewhat faster; those results are
now described. The serial codes were from Rapaport
[20], modified by us to handle covalent bonds, and from
Donev, developed for [7]. Unlike the hardware version
(modulo earlier discussion about off-chip access), se-
rial DMD performance is dependent on model size and
type. For example, simulations of small sparse mod-
els are faster than the converse. The Rapaport code
achieved from 56,000 to 103,000 events per second for a
range of densities and bead counts from 8,000 to 1,000.
The Donev code was faster and had a substantially nar-
rower range, achieving 143,000 to 151,000 events per
second. Using the highest serial throughput numbers,
we obtain a speed-up of 440x for the smaller models.

6 Discussion and Future Work

We have presented a microarchitecture for DMD and
its implementation on FPGAs that obtains a substan-
tial speed-up over serial implementations. This re-
sult is especially significant because, for reasons given
throughout this paper, it will be very difficult to dupli-

cate either by replicating CPUs or with other emerging
computational architectures (GPUs, Cell).

We believe this study to be the first in DMD using
FPGAs. FPGAs have been used previously for other
applications of DES such as traffic modeling and com-
munication networks, and for hardware implementa-
tions of components used in DES, such as event gen-
erators and FIFOs. For a sample of this work see
[4, 11, 15, 24]. These other applications have causality
structures substantially different from DMD, leading to
different FPGA solutions.

So far we have mostly described designs indepen-
dent of whether they are implemented in ASIC or
FPGA. We anticipate that configurability will be crit-
ical to successful DMD hardware architectures. As
stated in the introduction, simulating phenomena over
long time-scales is only one aspect of DMD use; an-
other is its use in interactive computational experi-
ments. More so than in typical MD usage, the DMD
user designs experimental protocols around refinement
of computational models, leading to the necessity of
flexible DMD simulator design.

Work in progress includes finishing the off-chip pri-
ority queue and more complex force models, and per-
forming more detailed precision studies.

Acknowledgments. We thank the anonymous re-
viewers for their many helpful comments.

References

[1] Alam, S., Agarwal, P., Smith, M., Vetter, J., and
Caliga, D. Using FPGA devices to accelerate biomolec-
ular simulations. Computer 40, 3 (2007), 66-73.

[2] Annapolis Micro Systems, Inc. WILDSTAR II PRO
for PCI. Annapolis, MD, 2006.

[3] Azizi, N., Kuon, I, Egier, A., Darabiha, A., and Chow,
P. Reconfigurable molecular dynamics simulator. In
Proc. Field Prog. Custom Computing Machines (2004),
pp. 197-206.

[4] Bumble, M., and Coraor, L. An architecture for a
nondeterministic distributed simulator. IEEE Trans-
actions on Vehicular Technology 51, 3 (2002), 453—-471.

[5] Ding, F., and Dokholyan, N. Simple but predictive
protein models. Trends in Biotechnology 3, 9 (2005),
450-455.

[6] Dokholyan, N. Studies of folding and misfolding us-
ing simplified models. Current Opinion in Structural
Biology 16 (2006), 79-85.

[7] Donev, A., Stillinger, F., and Torquato, S. Neighbor
list collision-driven molecular dynamics simulation for
nonspherical particle (parts 1 and 2). Journal of Com-
putational Physics 202, 2 (2005), 737-793.

[8] Fujimoto, R. Parallel discrete event simulation. Com-
munications of the ACM 383, 10 (1990), 30-53.

[9] Gu, Y., and Herbordt, M. C. FPGA-based multigrid
computations for molecular dynamics simulations. In
Proc. Field Prog. Custom Computing Machines (2007).

[10] Gu, Y., VanCourt, T., and Herbordt, M. C. Accelerat-
ing molecular dynamics simulations with configurable
circuits. IEE Proceedings on Computers and Digital
Technology 1583, 3 (2006), 189-195.

[11] Keane, J., Bradley, C., and Ebeling, C. A compiled
accelerator for biological cell signaling simulations. In
Proc. Field Prog. Gate Arrays (2004).

[12] Kindratenko, V., and Pointer, D. A case study in port-
ing a production scientific supercomputing application
to a reconfigurable computer. In Proc. Field Prog. Cus-
tom Computing Machines (2006).

[13] Komeiji, Y., Uebayasi, M., Takata, R., Shimizu, A.,
Itsukashi, K., and Taiji, M. Fast and accurate molec-
ular dynamics simulation of a protein using a special-
purpose computer. Journal of Computational Chem-
istry 18, 12 (1997), 1546-1563.

[14] Lubachevsky, B. Simulating billiards: Serially and in
parallel. Int. J. Comp. in Sim. 2 (1992), 373-411.

[15] McConnell, D., and Lysaght, P. Queue simulations
using dynamically reconfigurable FPGAs. In Proc. UK
Teletraphic Symposium (1996).

[16] Miller, S., and Luding, S. Event-driven molecular dy-
namics in parallel. Journal of Computational Physics
193, 1 (2004), 306-316.

[17] Moon, S.-W., Rexford, J., and Shin, K. Scalable hard-
ware priority queue architectures for high-speed packet
switches. IEEE Transactions on Computers TC-49, 11
(2001), 1215-1227.

[18] Paul, G. A complexity O(1) priority queue for event
driven molecular dynamics simulations. Journal of
Computational Physics 221 (2006), 615-625.

[19] Rapaport, D. Molecular dynamics study of a polymer
chain in solution. J. Chemical Physics 71, 8 (1979).

[20] Rapaport, D. The Art of Molecular Dynamics Simu-
lation. Cambridge University Press, 2004.

[21] Scrofano, R., and Prasanna, V. Preliminary investi-
gation of advanced electrostatics in molecular dynam-
ics on reconfigurable computers. In Supercomputing
(2006).

[22] Sharma, S., Ding, F., and Dokholyan, N. Multiscale
modeling of nucleosome dynamics. Biophysical Journal
92 (2007), 1457-1470.

[23] Snow, C., Sorin, E., Rhee, Y., and Pande, V. How
well can simulation predict protein folding kinetics and
thermodynamics? Annual Review of Biophysics and
Biomolecular Structure 34 (2005), 43-69.

[24] Tripp, J., Mortveit, H., Hansson, A., and Gokhale,
M. Metropolitan road traffic simulation on FPGAs. In
Proc. Field Prog. Custom Computing Machines (2005).

[25] Urbanc, B., Borreguero, J., Cruz, L., and Stanley, H.
Ab initio discrete molecular dynamics approach to pro-
tein folding and aggregation. Methods in Enzymology
412 (2006), 314-338.

[26] VanCourt, T., and Herbordt, M. Application-
dependent memory interleaving enables high perfor-
mance in FPGA-based grid computations. In Proc.
Field Prog. Logic and Applications (2006), pp. 395
401.

