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On the Interpretation of the 
Einstein-Cartan Formalism 

Jobn Staebell 

33.1 Introduction 

Hehl and collaborators [I] have suggested the need to generalize Riemannian ge­
ometry to a metric-affine geometry, by admitting torsion and nonmetricity of the 
connection field. They assume that this geometry represents the microstructure 
of space-time, with Riemannian geometry emerging as some sort of macroscopic 
average over the metric-affine microstructure. They thereby generalize the ear­
lier approach to the Einstein-Cartan formalism of Hehl et al. [2] based on a 
metric connection with torsion. A particularly clear statement of this point of 
view is found in Hehl, von der Heyde, and Kerlick [3]: "We claim that the 
[Einstein-Cartan] field equations ... are, at a classical level, the correct microscopic 
gravitational field equations. Einstein's field equation ought to be considered a 
macroscopic phenomenological equation oflimited validity, obtained by averaging 
[the Einstein-Cartan field equations]" (p. 1067). 

Adamowicz takes an alternate approach [4], asserting that "the relation between 
the Einstein-Cartan theory and general relativity is similar to that between the 
Maxwell theory of continuous media and the classical microscopic electrodynam­
ics" (p. 1203). However, he only develops the idea of treating the spin density that 
enters the Einstein-Cartan theory as the macroscopic average of microscopic angu­
lar momenta in the linear approximation, and does not make explicit the relation 
he suggests by developing a formal analogy between quantities in macroscopic 
electrodynamics and in the Einstein-Cartan theory. 

In this paper, I shall develop such an analogy with macroscopic electrodynamics 
in detail for the exact, nonlinear version of the Einstein-Cartan theory. I discuss 
a correspondence between linearized solutions to the Einstein-Cartan equations 
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and linearized solutions to the Einstein equations that strongly supports the inter­
pretation of the Einstein-Cartan theory as a macroscopic theory. Finally, I discuss 
the prospects for extending these results to exact solutions to the Einstein-Cartan 
equations, and of generalizing the macroscopic approach of this paper to the full 
metric-affine theory. 

33.2 The Analogy: Electromagnetism 

I shall start with what, in order to use a terminology parallel to that used in the 
discussions of gravitation theory cited above [5], I shall call microscopic electro­
dynamics. But it should be born in mind that the term "microscopic" here is really 
a misnomer. It does not carry any implication that the 4-current density introduced 
is to be interpreted atomistically. It is assumed to be a continuous, differentiable 
function of its arguments, and insofar as the atomistic structure of charged matter 
is taken into account, some sort of averaging process is assumed to have already 
been done. What is implied by the term "microscopic" is merely that all sources of 
charge and current, both "free" and "bound," have been included in its evaluation. 

In the 4-dimensional version of microscopic electrodynamics, two antisym­
metric tensor fields are introduced: the covariant tensor or 2-form Fap , which 
incorporates the E and B fields in a particular inertial frame of reference into one 
4-dimensional Lorentz-covariant field; and the contravariant tensor Gap, which 
similarly incorporates the D and H fields [6]. The first set of microscopic Maxwell 
field equations assert that curl F vanishes: 

F[ap.f] = 0 or dF = 0 (1) 

in the differential forms notation, i.e., F is a closed form. Locally, at least, this 
implies that the Fap field can be derived from a 4-vector potential Ap, which 
incorporates the usual scalar and vector potentials rp and A. Indeed, aside from 
topological complications (which do not occur in Minkowski spacetime), this first 
set of Maxwell equations (1) is equivalent to: 

Fap = Ap.a - Aa.p or dA, (2) 

i.e., the form F is exact [7]. These equations may be interpreted as postulating the 
absence of magnetic monopoles. Given the field F, the potentials are not unique, 
but only determined up to a gauge transformation: 

A~ = Aa + rp,a or A' = A + drp. (3) 

As we shall see, Eq. (1) and its consequences are actually common to both the 
microscopic and macroscopic versions of Maxwell's theory. So I shall refer to 
them just as the first set of Maxwell equations. The second set of microscopic 
Maxwell field equations assert that div G equals the total charge-current density: 

Gap - J.a ,p- (4) 
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Here r is the charge-current 4-vector density, which incorporates the usual charge 
and current densities p and j. As emphasized above, this includes both "bound" 
and "free" quantities. 

In order to proceed with any applications of the two sets of microscopic Maxwell 
equations, it is necessary to introduce some relation between the F and G fields. 
In vacuum, the two fields are related by means of the metric tensor gap: 

Gap = ga8 gpr F8r = FaP (5) 

(depending on the system of units used, a constant EO representing the "polarization 
of the vacuum" may be introduced). So in vacuum, the two tensors are effectively 
equal [8]. 

Now we come to what I shall call macroscopic Maxwell theory, in which it is 
assumed that the charges and currents can be divided into "free" and ''bound.'' This 
is done formally by introducing a third antisymmetric contravariant tensor field, 
the polarization tensor pap, inside of matter. This tensor incorporates the usual P 
and - M fields, i.e., the electric and magnetic polarization vectors, respectively. 
Its value will depend on the properties of the matter under consideration, as well 
as on the electromagnetic fields to which the matter is subject. Some Ansatz for 
the form of these vectors in the rest frame at a point of the matter then must be 
introduced. The adequacy of the postulated relations is judged by the success of 
the resulting theory in explaining the observed electrodynamical properties of the 
matter. 

It is also possible to go a step further by introducing a microscopic model of the 
matter, and deriving the form of the polarization tensor by some sort of averaging 
process over the multipole moments of the atomistic constituents of the matter. 
In the usual treatment of dielectrics, for example, the electric polarization vector 
is derived by averaging over the intrinsic or induced electric dipole moments of 
these constituents; while the magnetic polarization vector is similarly derived from 
an averaging over their magnetic dipole moments. In particular, if it is assumed 
that there are no intrinsic magnetic dipole moments, the averaged magnetic dipole 
moment will arise entirely from the circulation of microscopic charge. 

More careful treatments emphasize that these are merely the first two terms in a 
multipole expansion, the terms of which decrease rapidly in value; and may even 
evaluate the next term, the contribution to the electric polarization from the electric 
quadrupole moments of the atomistic constituents [9]. 

The divergence of the polarization tensor gives the "bound" charge-current 4-
vector: 

paPB = jBa . (6) 

By defining a new, macroscopic field G M: 

GMap = Gap _ paP (7) 

and using equations (6), one can rewrite the second set of microscopic Maxwell 
equations (4) as 

(8) 
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where the free charge-current four-vector is defined by: 

. a 'a . a 
JF = J - JB . (9) 

Equations (1), the first set of Maxwell equations for the F field; (5) relating F 
and G; (7) defining the G M field in tenns of the G and P fields, and (8), the 
second set of macroscopic Maxwell equations for the G M field with the j F field 
as its source, constitute the equations defining macroscopic Maxwell theory. They 
must be supplemented by prescriptions for the P and j F fields, plus boundary 
conditions at the interface between matter and vacuum and at infinity, in order to 
solve particular problems. 

33.3 The Analogy: Gravitation 

Let us try to treat gravitation theory in an analogous way. For the microscopic 
Einstein theory, we introduce two fields, the Christoffel symbols of the first kind 
[a,8, r] and a symmetric connection rEiLaP = rEiLpa, which we shall call the 
Einstein connection. The Christoffel symbols of the first kind are derived from a 
set of potentials gap: 

(10) 

Equation (10) is analogous to Eq. (2), the definition ofthe Fap field in tenns of the 
potentials, so we take the Christoffel symbols of the first kind as the gravitational 
analogue of the F field. Just as in the electromagnetic case, these definitions may 
be interpreted as postulating the absence of a gravitational analogue of magnetic 
monopoles. In this sense, they are more fundamental than the set of conditions on 
the Christoffel symbols of the first kind that are equivalent locally to the existence 
ofthe gravitational potentials gap, which are easily derived from the commutativity 
of the second derivatives of the metric tensor: 

([a,8, r] + [ar, ,8]),8 -([8,8, r] + [8r, ,8]),a' (11) 

Equation (11) is then the gravitational analogue ofEq. (1), the first set of Maxwell 
equations. 

The analogue ofEq. (4), the second set of microscopic Maxwell equations, are 
the Einstein equations for the Einstein connection r E: 

(12) 

where the Riemann tensor, Ricci tensor, Ricci scalar, and Einstein tensor are com­
puted from the Einstein connection in the usual way (depending on the units used, 
there may be a coupling constant depending on G, the Newtonian gravitational con­
stant, on the right-hand side of this equation, and in several subsequent equations). 
The TaP field includes the gravitational analogues of both the "free" and "bound" 
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material charges and currents. Like the Gap field, the Tap field is symmetric in its 
indices. 

We see that the Einstein connection is the gravitational analogue of the G field in 
electrodynamics. In vacuum, the Einstein connection and the Christoffel symbols 
of the first kind are related by the metric tensor 

(13) 

where {IL ap} are the Christoffel symbols of the second kind. So the Einstein con­
nection is the symmetric, metric connection, for which gap; Ell = 0, where a 
semicolon followed by a subscript E denotes covariant differentiation with respect 
to the Einstein connection. 

Note the dual role that, as usual, the tensor field gap plays in general relativity: 
it is both the metric tensor and the potentials for the Christoffel symbols of the 
first kind. Because of this dual role, the treatment of gauge transformations here 
differs somewhat from that in electromagnetism. Here, diffeomorphisms play the 
role of gauge transformations. A one-parameter family of such diffeomorphisms 
is generated by any vector field VIL; if the value of the parameter is the infinitesimal 
E, then the tensor field gap is dragged into 

(14) 

where £v is the Lie derivative with respect to the vector field vlL [10]. Since the 
operations of Lie derivation and partial differentiation commute, Lie differentiation 
of Eq. (10) tells us that the Christoffel symbols of the first kind do not remain 
invariant, but are also dragged along by the diffeomorphism. But this is just what 
we should expect. Since the g field represents the metric as well as the gravitational 
potentials, when the metric is dragged by a diffeomorphism, any other field must 
also be dragged along by that diffeomorphism precisely in order to maintain the 
same values at each physical point [11]. 

Now we turn to the macroscopic Einstein-Cartan theory. In this theory, another 
connection r c is introduced, which we shall call the Cartan connection, the gravi­
tational analogue of the G M, the macroscopic electromagnetic field. It is assumed 
that this connection is still metric, that is that the nonmetricity tensor, the covariant 
derivative of the metric tensor with respect to the Cartan connection, vanishes. That 
is, gap;CIL = 0, where a semicolon followed by a subscript C denotes the covariant 
derivative with respect to the Cartan connection. This implies that the difference 
between the Cartan and Einstein connections depends only on the torsion tensor 
s: 

1 
SlLaP = 2(rclLap - rclLpaL (15) 

which is obviously antisymmetric in its lower indices. If we define a tensor K, 
called the contorsion tensor [12], by 

(16) 
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where the indices of the torsion tensor are raised and lowered with the metric 
tensor, then it follows that 

(17) 

With this mathematical background, I return to the physical description of the 
macroscopic theory. It is assumed that the stress-energy tensor can be divided into 
"free" and "bound" portions. This is done formally by assuming that inside matter 
the torsion tensor S and hence the contorsion tensor K do not vanish. Indeed, 
from Eq. (17) we see that the contorsion tensor is the gravitational analogue of 
the polarization tensor (see Eq. (7)); like the latter, it is assumed to depend on the 
properties of the matter being considered as well as on the gravitational field to 
which the matter is subject. Just as in the electromagnetic case, its form may simply 
be postulated in a fully macroscopic theory; or an attempt may be made to derive 
it from a microscopic model of the medium. Here, I shall follow an intermediate 
course, postulating its form, but motivating the Ansatz by a microscopic argument. 

I proceed again by analogy with the electromagnetism. In the case of most 
dielectrics, the elementary constituents (atoms and molecules) are electrically neu­
tral. Therefore, their electric dipole moments (intrinsic or induced) are an invariant 
property (Le., independent of the origin chosen for their evaluation), which can 
be averaged over a volume element to give a macroscopic electric dipole moment 
per unit volume. In the gravitational case, there is no evidence for the existence of 
negative mass, so that we cannot expect the elementary constituents of matter to 
have an invariant mass dipole moment. Indeed, by choosing the evaluation point 
for each such constituent at its center of mass, we can make the mass dipole mo­
ment vanish. Of course, the elementary constituents will have an invariant mass 
quadrupole moment (evaluated at the center of mass point), which can in principle 
contribute to the macroscopic contorsion tensor. We shall return to this point in 
the concluding section, but here we shall assume that this contribution may be 
neglected. 

We shall here consider only the gravitational analogue of the magnetic dipole 
moment (we have seen that Eq. (10) implies the absence of gravitational analogues 
of magnetic monopoles), treated at the macroscopic level. There is a four-velocity 
field U IL associated with each point inside matter, and I shall assume that, in the 
rest frame defined at each point by this velocity field, a spin vector exists, which 
has only spatial ("magnetic-type") components. This is equivalent to the so-called 
Weysenhoff Ansatz [13] for the form of the spin-tensor density field SIL a{J: 

SIL a{J = UILsa{J. where sa{J = -S{Ja' sa{JU{J = O. (18) 

This means, by the usual association between an antisymmetric 3-dimensional 
tensor and a 3-vector, that in the 3-space orthogonal to the 4-velocity UIL at each 
point, the spin tensor is equivalent to a spin vector. In the macroscopic Einstein­
Cartan theory, it is assumed that inside matter the spin-tensor density field is equal 
to the modified torsion tensor TIL a{J [14]; but since the latter only differs from the 
torsion tensor by its trace, which vanishes with the Weyssenhoff Ansatz (Eq. (18)), 
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it follows that SIl-ap = sll-ap [15]. Hence, 

KIl-ap = -sapUIl- + spll-Ua - sll-aUp. 

from which it follows that 

(19) 

KIl-ap = 0, gap KIl-ap = O. (20) 

We can now rewrite the Einstein equations (9) inside matter in the form 

Gap(rc) = TFap • (21) 

where Gap(rc) is the Einstein tensor formed from the Cartan connection, and 
TFap is the "free" portion of the stress-energy tensor of matter, to be defined in a 
moment. Note that, since the Cartan connection is not torsion-free, G ap(r c) is not 
symmetric. 

It remains to discuss the division of the stress-energy tensor into "bound" and 
"free" portions. Inserting Eq. (17) into the definition of the Ricci tensor for the 
Einstein-Cartan connection, and utilizing Eq. (20), we get [16] 

Rap(rc) = Rap(rE) - Kll-ap;EIl- - SUfSUfUaUp. 

Taking the trace of this equation, and using Eq. (20), we get 

R(rc) = R(rE) - SUfSUf, 

so that 

(22) 

(23) 

GaP(r c) = Gap(rE) - KIl-ap;EIl- - SUfSUf ( UaUp - ~ gap) (24) 

Thus, if we define the "bound" stress-energy tensor by 

Il- Uf ( 1) TBap = K ap;EIl- + SUfS UaUp - 2. gap , (25) 

and the "free" stress-energy tensor by 

TFap = Tap - TBap. (26) 

then the macroscopic Einstein-Cartan field equations (21) follow from the micro­
scopic Einstein field equations (12) and these definitions. Note that neither the 
"bound" nor "free" stress-energy tensors are symmetric. 

We have now completed our description of the macroscopic Einstein-Cartan 
theory, which is based on the two sets offield equations (ll)--or (10}-and (21), 
with the definition of the "free" stress-energy tensor given by equations (25) and 
(26), and the Weyssenhoff Ansatz, Eq. (18). 

33.4 Discussion 

In the linear approximation to each theory, Adamowicz has proved a correspon­
dence theorem between solutions of the macroscopic Einstein-Cartan equations 
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and the microscopic Einstein quations. He considers a finite source containing 
a static body with a spin tensor density of the form given by the Weyssenhoff 
Ansatz, Eq. (18), and shows that in this approximation it produces the same exter­
nal gravitational field as does a rotating body without spin-density field but with 
a corresponding distribution of rotational angular momentum density in the lin­
earized Einstein theory [18]. As a consequence, in the linear approximation at any 
rate, a static solution to the Einstein-Cartan equations for an axially symmetric 
body with a suitable Weyssenhoff spin-density field can produce the same external 
field as a stationary solution to the Einstein equations representing the same body 
without any spin-density field, but in rigid rotation about its axis. This is analogous 
to the situation in electrodynamics, where the external fields of a charged magnet 
treated by the macroscopic Maxwell equations, and of a rotating charged body, 
treated by the microscopic Maxwell equations, are the same [19]. The difference 
is inside the body. If we wanted to treat the magnet microscopically, we would 
have to associate an intrinsic magnetic moment with each element of the body, 
and these would add up to produce the same internal field as that of the rotating 
charged body. 

Hence, the analogy here is between the solutions to the macroscopic Einstein­
Cartan equations and macroscopic Maxwell equations on the one hand and the 
solutions to the microscopic Einstein equations and Maxwell equations on the 
other. We suggest this analogy between solutions is a strong argument for the 
analogy between the corresponding macroscopic equations on the one hand and 
the microscopic equations on the other. 

This result, taken together with the exact formulation of the macroscopic 
gravitational-electromagnetic analogy developed in Sections 33.2 and 33.3, sug­
gests that it should be possible to find exact static interior solutions of the 
macroscopic Einstein-Cartan equations that have the same stationary external fields 
as corresponding exact stationary solutions of the microscopic Einstein equations. 
It should even be possible to prove theorems relating entire classes of exact sta­
tionary solutions to the Einstein equations for rigidly rotating sources to classes 
of exact solutions to the Einstein-Cartan equations with the same exterior metric 
but a static interior solution representing a nonrotating source with correspond­
ing spin tensor density distribution. The question also arises of generalizing the 
macroscopic approach from the Einstein-Cartan case to the case of metric-affine 
geometries discussed by HeW and collaborators [20], in which the connection is 
no longer metric. Our discussion suggests that the Einstein-Cartan theory with the 
Weyssenhoff Ansatz is adequate to handle the gravitational analogue of magnetic 
polarization M, but cannot treat the gravitational analogue of the electric polariza­
tion P. We have argued above that no gravitational analogue of the electric dipole 
moment should exist (see Section 33.3). However, we certainly expect a gravita­
tional analogue of the electric quadrupole moment. In the electromagnetic case, 
the divergence of the electric quadrupole moment tensor contributes to the elec­
tric polarization vector [21]. We suspect that, in the gravitational case, something 
like the covariant derivative of the quadrupole moment tensor should be related to 
the nonmetricity tensor, the nonvanishing covariant derivative of the metric [22] 
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Indeed, the nonmetricity tensor allows generalization of the right-hand side ofEq. 
(12) above to include a tensor symmetric in its lower indices. I plan to investigate 
the possibility further. Like Adamowicz I believe that the macroscopic approach 
to the Einstein-Cartan theory "may be used effectively for solving certain cosmo­
logical or astrophysical problems," [23] and the extension of the analogy to matter 
with intrinsic or induced quadrupole moments would considerably extend its range 
of applicability, in particular to problems involving interactions of gravitational 
radiation with matter. 

On the formal side, this paper (at least its gravitational part) has utilized ex­
clusively the tensor calculus. However, it is well known that the Einstein-Cartan 
theory can be rewritten more perspicaciously in Cartan's language of differential 
forms [24], and Hehl and collaborators have used this language for its generaliza­
tion [25]. The results obtained here, as well as possible generalizations, should be 
rewritten in terms of differential forms. 
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