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Abstract  

We give a modification of the Palatini Lagrangian for the free gravitational field that yields 
the vanishing of the torsion as a result of the field equations and requires only the assump- 
tion of the symmetry of the metric. We transcribe this Lagrangian into the tetrad formalism 
and show how the tetrad form of the Einstein field equations follows from it. Some remarks 
on possible generalization to a theory with nonvanishing torsion in the presence of matter 
conclude the paper. 

w Introduction 

The derivation of a set of  field equations from a Lagrangian is often very 
helpful in discussing the symmetry properties of the equations, conservation 

laws, invariance properties of the field, and so on. It is useful to have as many 
properties as possible follow from the variational principle, without the need to 
impose additional constraints on the variations themselves when deriving the 
field equations. 

As is well known (see, for example [9], p. 107), in the Palatini variational 
principle for the Einstein field equations, the metric and the ~iff'me connection 
are treated as independent variables in the variation. With the assumption that 

1 An earlier version of the results of this paper are found in [6]. 
2 On leave from the Department of Physics, Boston University, Boston, Massachusetts. 

1075 
0001-7701/78/1200-1075505.00/0 �9 1979 Plenum Publishing Corporation 



1076 PAPAPETROU AND STACHEL 

both are symmetric, the Einstein field equations as well as the definition of the 
affine connection as the metrical one, given by the Christoffel symbols, follow 
from these variations. As is equally well known, without the assumption of the 
symmetry of the affinity, the correct equations for this definition do not follow 
from the Palatini variational principle. 

The usual way out of this difficulty is to impose the condition of symmetry 
on the coordinate components of the affine connection. When a tetrad formalism 
is used, however, the symmetry of the affine connection is not reflected in a 
similar symmetry of the anholonomic (tetrad) components of  the affine con- 
nection. This difficulty has been sidestepped in the past by implicitly imposing 
the condition that the affinity be metric (though not symmetric), when taking 
variations. (See for example [10] or [5]. This point will be discussed in more 
detail in the concluding section.) This is certainly unsatisfactory, since it violates 
the spirit of  the Palatini approach, which assumes no a priori relation between 
metric and affinity. 

In addition, in the tetrad formalism used in [10] and [5] a mixed form of 
the affine connection is employed, with one coordinate and two tetrad indices. 
This is also necessary when the theory is rewritten in terms of tensor-valued 
exterior forms (see [11]). But the tetrad analogues of the coordinate compo- 
nents of  the affinity are the anholonomic components of the connection (a.c.c.); 
and the affine geometry of a manifold can be completely described in terms of a 
set of tetrad vector fields and these anholonomic components. As for the metri- 
cal properties, we need only use the tetrad and the metric tensor in the tangent 
space, or tetrad metric as we shall call it for short, to describe these. Therefore, 
it should be possible to write a variational principle for the Einstein equations 
entirely in terms of the tetrad metric, the a.c.c., and the tetrad vectors, without 
ever introducing coordinate components of the affine connection. 

In this paper we shall show that both these problems can be solved. First we 
shall prove that there is a modified Lagrangian with the following remarkable 
property. When we apply the Palatini variational technique to it, we obtain the 
correct affinity and the Einstein free gravitational field equations with only the 
assumption that the metric is symmetric. Then we shall show that the tetrad 
transcription of the Lagrangian yields, when we apply the Palatini variational 
technique to it, the tetrad transcription of the Einstein equations as well as the 
correct relation between the tetrad metric, the tetrad vectors, and the a.c.c. 

As a preliminary to this second part we shall review the tetradial formalism 
in Section 3. In a concluding section, we shall make some remarks about the 
generalization of our Lagrangian to the case when matter is present. 

w The Lagrangian 

We consider a four-dimensional manifold, with coordinates x u (# = O, 1, 
2, 3), on which there is defined a metric tensor field gxu and an affine connec- 
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tion Fur- For the moment we shall not assume the symmetry of either field. The 
usual Lagrangian may now be formed: 

s = ga~Rxu (2.1) 

where ~xu = x/~gXU and 

K (2.2) Rx u=px~,~ ~ -Pnu,xK +pKpF~u_FxppKuK 0 

Variation of this Lagrangian in the general nonsymmetric case has been dis- 
cussed in detail in connection with the Einstein-Straus unified field theory (see 
[1 ]; [9], p. 108). The results of this discussion are as follows. The variation with 

X �9 
respect to Puxu yields an equation that does not completely determine the Puv in 
terms of the gxu. Indeed the vector 

i ,  = 1 ta ~- (Fxu - ruux) = r [x , l  (2.3) 

(which is indeed a vector, since it is the trace of the torsion tensor P~uXl) is com- 
pletely undetermined by this equation, which on the other hand does impose the 
following condition on gag: 

(gxu _ gtax), u = 0 (2.4) 

If we assume the gxu to be symmetric, the last equation is satisfied, but the 
Puau still remain arbitrary to the extent of an arbitrary choice o f I '  x. On the  
other hand, variation of (2.1) with respect to gxu yields 

Rxu = 0 (2.5) 

without, of course, implying the symmetry of Rxu in the general case. 
Now let us trace the terms in the Lagrangian that are causing the difficulty. 

Since the problem comes from the antisymmetric part of the affine connection, it 
seems reasonable to separate out the terms in (2.2) that arise from the existence 
of this antisymmetric part. The first and third terms will automatically be sym- 
metrized in/a and X when Rxu is contracted with ~xu (assumed symmetric 
from now on, except in Section 3) in the Lagrangian (2.1); so we need merely to 
symmetrize the remaining index pair in the third term and all the index pairs in 
the second and fourth terms and see what additional terms arise. In this way, we 
find that 

2o = gxu [P(xu),~ - P~Ku),x ~ p ~ p =xu,-,~ ~,o " + P ( , . , o ) r (~ .u )  - P ( x o ) r ' ( , . . ) ]  - ,~ , [ x o ]  - [ , , , . 1  

p + g'X~u[-P~ul,x + P(xu) I"[,qol ] (2.6) 
Note that the Lagrangian has been decomposed into three terms, each of  which 
is itself a tensor density. The first term is just the Einstein-Palatini Lagrangian 
for the symmetrized affine connection, which is itself an affme connection, of 
course. The second term is algebraic quadratic in the torsion tensor; and as we 
shall see, its variation with respect to the torsion tensor implies the vanishing of 
the latter. The third term is the one that is causing the problem; therefore its 
elimination will eliminate the difficulty. 
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Noting that the last term is just ~xv contracted with the covariant derivative 
of Fv, we see that if we subtract ~ 'vFv  ;x from s we get a new Lagrangian 

_ _ K p K  K p ~ O s =ff~" IRa, rx;,] _~x, [r(x,).x - (~,).x + F(Kp)F(xu) - P(xp)P(~ . ) ]  

~X~r,~ i-,o (2.7) 
- ~ *[Xpl . tI~:u]  

Thus, we have a Lagrangian completely separated into two terms, depending on 
the symmetric and antisymmetric parts of the affme connection respectively. 
The first term is just the usual Palatini Lagrangian for the symmetrized affine 
connection. With the assumption that the metric is symmetric, it will yield the 
usual relation between the metric and the symmetric part of the affine connec- 
tion. The second term is an algebraic quadratic in the antisymmetric part of the 
affine connection and will yieN the vanishing of that antisymmetric part upon 
variation. 

It is clear that we may vary the symmetric and antisymmetric parts of the 
affme connection separately. After throwing away a total divergence, in the 
usual way, we get 

P 

8 ~ ,d4x  = {[-g~'lall K + gl ,g IlpUx + g  ilp~iK)] 8I'(?qa ) 

- 2gp"r}o~] 8r[a.~ + ~g~"(R~. - r(a;.))) d 'x  (2.8) 

where II denotes the covariant derivation with respect to the symmetrized affine 
connection. Variation of the antisymmetric part thus yields 

F " r ( ~ l  - g~ = 0 (2.9) 

Multiplying this equation by gxx'g~'  = gxx'gu,', where 

~ x . f  xv = 8~ (2.10) 

(i.e., gxo = g x , / v r ~ ) ,  we find 

u (2.11) g~ 'PIvx ' l  - T~,'v x' = Tx'vu' 

Thus, the tensor Tu,vX, is symmetric in g', X' but antisymmetric in v, X'; conse- 
quently it must vanish. This means that the torsion tensor vanishes and the 
affine connection is symmetric. 

P~vxl = 0 (2.12) 

Variation of the symmetric part of the connection gives 

_ g x .  + ~ ( y p x p s .  ~ ~us + g  t i p S , )  = 0 ( 2 . 1 3 )  

By the standard Palatini method, this reduces to the usual connection between 
the symmetric metric and the symmetrized affine connection. 
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Variation with respect to the contravariant metric tensor density ~xu yields 
the field equations 

p g D R(xu) - r(x;u) = Rxu [P(o~)] - P[Xpl P[~ul = 0 (2.14) 

where Rxu [F~oa )] means the Ricci tensor formed from the symmetrized affine 
connection. Since the torsion tensor vanishes, this reduces to the usual Einstein 
equations. 

w Tetrad Formalism 

In this section we shall review the tetrad formalism (see [7]) to show clearly 
what parts of  the formalism require no more than a bare manifold, which parts 
need an affmely connected manifold, and which parts require a metric on the 
manifold. 

We consider again a four-dimensional manifold and introduce four linearly 
independent contravariant vector fields zUm (rn = 0, 1,2,  3). This contravariant 

m defined by basis induces at each point of  the manifold a dual covariant basis z u 

" " z ~ z ~  = ~  (3.1) Zgrn Z u = 6rn , 

In a bare manifold we can define the curl ofztu and the Lie bracket [Zm, Zn] 
ofzUm and ZnV; and we can form scalars by projection onto the basis 

1 I I # v 
(Zv,ta = ~'~lmn = - ~"Zlm ( 3 . 2 a )  - Z # , v )  Z m  Zn 

_ # v # v 1 
[Zm,  Zn ]v Zlv _ (Z n Zm,la - Z r n Z n , l ~ ) Z v  = 2 ~2tmn ( 3 . 2 b )  

I f  ~2tmn vanishes, each of the covariant basis vectors has vanishing curl; conse- 
quently four scalar fields exist whose gradients form the covariant basis. Hence 
the name anholonomic object. 

Now we assume the manifold to be affinely connected. The basic property 
of  an affine connection Fury is that given any vector field A x we can construct its 
absolute or covariant derivative 

AX;u =AX,. + F~.A" (3.3) 

Using any one of  the tetrad vectors z{ and projecting the resulting tensor on the 
tetrad, we get the following set of  scalars: 

x u v z~ l X v (3.4) 1 -- X P z l = ( z n ~ , v + r v l ~ Z n ) Z m  - Z 2 t ; v Z .  Zrn 'Ymn - Z n ; v Z m  = 

There are 64 scalars 7tmn, which we shall call the a.c.c. If the affine connec- 
tion is metric and symmetric, they reduce to the Ricci rotation coefficients. I f  
we use a holonomic basis, then the 7~n are numerically equal to F~v, in coordi- 
nates adapted to that basis. 
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Taking the antisymmetric part of  (3.4), and with the help of  (3.2), we find 

7Iron] = SLn - ~Z~n (3.5) 

where Stmn is the projection of  the torsion tensor onto the tetrad 

Siren= X t u v (3.6) Fluv] ZxZm Zn 

Equation (3.5) shows that the symmetry of  the affine connection by no means 
shows up as a symmetry of  its anholonomic components. We need to find the 
breakup of  the a.c.c, corresponding to the one used in Section 2, but we have 
just seen that it does not correspond to a breakup of  the latter into symmetric 
and antisymmetric parts because of  the anholonomic object. We can easily find 
the desired breakup, however, by inserting the breakup of  the affine connection 
into (3.4): 

k ~ v 
7mnl = [Zkn,v + (I~(hv,) + F[ v# ] )  Zn ] Zm Z l  = 'YmnS l + S m  ( 3 . 7 )  

where 

~. ~ v l . k  _v _ l  ~ t n  = (Z~n,v + F(vu) Zn) = (3.8) ZmZk ~nllv~rn~A 
�9 s I Thus, even though not symmetric, 7ran are the a.c.c, corresponding to the sym- 

metrized affine connection. 3 Even though it involves a slight abuse o f  language, 
Sl we shall refer to the 7rnn as the symmetrized a.c.c, to distinguish it from l 7(ran), 

which we shall call the symmetric part of  the a.c.c. 
Using (3.5) and the fact that the 7tmn are the sum of  their symmetric and 

antisymmetric parts, it is easy to show that 

~ / n  = 7(m,)l - ~2~n (3.9) 

Now we shall introduce the metric into our manifold. For the moment  we 
consider an arbitrary metric guy. With the given tetrad zUm we can form the 
tetrad components of  the metric: 

_ la v ,rlmn I~v m ~lmn-g~vZmZn,  =g Z u znv (3.10) 

with 

r/t m r/in = 8 n (3.11) 

We shall call ~trn the tetrad metric of  the manifold. 

aThey were first introduced by Schouten and Struik in 1935, as far as we can tell. See [8], 
p. 84. sl It should be emphasized that the 7ran transform like the anholonomic components of 
an affme connection under anholonomic coordinate transformations, and the S/ran 
transform like the anholonomic components of a tensor under these transformations. On 
the other hand, neither 7[rnn) nor 7[mnl have such transformation properties and thus 
cannot be considered as the ffnholodomfc components of an aff'me connection or a tensor, 
respectively. This is the basic reason that the decomposition (3.7) is so important. Equa- 
tion (3.9) shows that this breakup can be defined entirely in terms of the tetradial 
quantities. 
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In applications one often makes some special choice of the zUm, leading to a 
simple form of r~rnn; e.g., an orthonormal tetrad, in which case the numerical 
values of ~rnn are equal to the components of the usual Minkowski metric. But 
in general the 7?rn n can be arbitrary functions of  the coordinates. 

There exists a class of affine connections characterized by the condition 

gxu;v = O, (3.12) 

which preserve the scalar product of  any pair of vectors, with respect to the 
metric, under parallel transport. Ifgxu is symmetric, (3.12) alone does not lead 
to a symmetric connection. The torsion tensor will vanish provided that the re- 
lation between metric and affine connection has been derived from a variational 
principle of the type discussed in Section 2. 

When the condition (3.12) is valid, there is a simple relation between the 
tetrad metric and the a.c.c. Defining the directional derivation of a scalar field 
with respect to the tetrad vectors by the relation 

~b,/= q~,xz/x (3.13) 

we find 

Him ,n = fllqVqrn + ~qrn "Yql (3.14) 

nmq l lm + lq~ + ~1 qrn "[nq = 0 (3.14a) f l , n  

I f  the metric is symmetric, we can write (3.14) 

r?lrn,n - "Ylnm - 7mnl  = 0 (3.14b) 

where we have defined 

")'lnm = ~lq "Yqm (3.15) 

Equation (3.14b) shows a well-known special property of the a.c.c.: when r/it n = 
const, then 71mn is antisymmetric in l, n. 

w The Lagrangian s Expressed in Tetrad Variables 

Since s as given in (2.7), is in terms of components with respect to a co- 
ordinate basis, our first task is to express it in terms of the three sets of  tetrad 
variables z [ ,  ~,ntm, a n d  ~lm. To simplify this calculation, we can take advantage 
of the fact that the first term in the Lagrangian is just the Ricci tensor for the 

x 
symmetrized affinity P(uv) contracted with the contravariant metric tensor 
density; while the second term is just the covariant derivative of  the vector I" u 
similarly contracted. By expressing the contravariant metric tensor density in 
terms of the tetrad variables, we can thus reduce the problem to finding the 
tetrad components of tensors. 
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The contravariant tensor gXU is expressed in terms of ~tm and z~ by the 
inverse of  equation (3.7a): 

gXU = ~lm zlX zp m (4.1) 

We still need the determinant g = det gxu, which is derived from the inverse of 
(3.7), 

and has the value 

Therefore 

where 

t m (4.1a) gxt~ = 7"llm Z k  Zl~ 

g = rlZ 2 ; r /=  det ?llm, Z "= det z~ (4.2) 

g X #  = ll~lm Zlk Zing Z (4.3) 

~tm = r~tm ~ (4.4) 

In the following we shall use as a third set of tetrad variables the ~lrn instead of 
rl lm. We notice that gxu depends only on ~lm and z~ [the zUm are functions of 
z~ according to (3.1)]. Thus, 

z = oo)1 o 
- P[XplPl~ul } 

(Rim k r = - StrSkm ) (4.5) 
s n  where Rim [%s] stands for the tetrad components of the Ricci tensor for the 

symmetrized a.c.c. The tetrad components of the Riemann tensor are well 
known (see [7], p. 172, for example), and by contraction those for the Ricci 
tensor follow at once. 

k k , k r k r r k 
R i m  = 7 l m , k  - 7 k m , l  -~ 7krT l rn  - "YlrTkm + 2 ~ Ic lTrm (4.6) 

Thus, 

s  sk sk . sk sr sk s r  ~,~r sk ~ ~~ tm~k~r  (4.7) 
( 7 l m , k  - 7 k m , l  "I" 7 k r T l m  - 7 ir"[km + ZXl'kl"Yrm] - s *31r*bkm 

Again there is a clean separation in the Lagrangian between a term that is just 
the tetrad transcription of the Palatini Lagrangian for the symmetrized a.c.c, and 
a second term that is an algebraic quadratic in the torsion components. We can 
vary (4.7) directly in terms of the three sets of tetrad variables; but if we express 
the variations of the components of the metric and the affine connection in 
(2.8) in terms of the variations of  our tetrad variables, we shall get the same 
answer. 

Variation of (4.3) gives us the relation between variations of the tetrad vari- 
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ables and the variation offf xu. Similarly by noting that 

rK#K k t~ l m m K 
(4.8) = 3"imZlr ZNZI~ - Zl~ Zm,2~ 

we can find the relation between variation of the tetrad variables and variation 
of r~,u. 

w Variation o / t h e  Rotation Coefficients and Tetrad Metric 

We first vary the a.c.c., keeping the tetrad metric and tetrad vectors fixed. 
�9 h: k Equation (4.8) shows that the variation induced In I'~, u by variation of 3`tin is 

just the tensorial projection of the latter variation: 

6F;~. ~ k K t m (5.1) 
= 03` lmZkZkZ  # 

We now break up the variation of the 7/~ into variations of the ~fm and the Sl~. 
Since the tetrad vectors are fixed, the anholonomic object does not vary; and 
(3.5) and (3.9) show that the variation of the torsion tensor and the symme- 
trized a.c.c, now coincide respectively with the variation of the antisymmetric 
and symmetric parts of  the a.c.c. Thus, each may be varied independently. 

The variation of the torsion components then leads to the vanishing of the 
torsion by a proof exactly analogous to that in Section 2 for the torsion tensor. 

Now we consider the variation of the symmetrized a.c.c. Looking back at 
(2.8) then shows that the coefficient of 6~ tn  is just the tetrad components of 
the coefficient of 6 I'~xu). So, the first set of field equations is 

~: m 1 r ~k# zkz. zx[-g [I~ +I(~pxjlp6u K +~UPllp6XK) ] =0 (5.2) 

The standard Palatini method of solving the tensorial version of (5.2) still works: 
we take the trace of(5.2),  which shows that 

z 2 ~~ p = 0 (5.3) 

Thus, (5.2) reduces to 

z k z~ "x~ II ~ = 0 (5.4) 

Taking two tetrad vectors into the covariant derivative and noting that 

X l 
Zll ~ = Zzl  zx ,  ~ (5 5)  

we find that this reduces to 

~mn,1 q~mnsPllp + ~ m p ~ ;  , ~ n p s m  
- * rl 3'to = 0 ( 5 . 6 )  

Multiplying (5.6) by ~mn, w e  find 

s p = l ~  ~qp 
3"Ip ~ qp ,l 
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Introducing this into (5.6) we get 

~ m p s n  + ~ n p , s m  = ~mn  (5.7) l i p  tl l i p  - 7  ,1 + 1 ~ m n ~  ,~pq II IIpq ~l ,1 

From the definition (4.4) o f~  lm ,.we find 

--ran 1 ~ m n =  (5.8) ?7 ,1 -  ~'tl IIpq ~Pq,l = N/C~ ~ mn ,l 

Therefore equation (5.7) reduces to 
~ m p s n  ~ n p s m  

l l p  + 77 l l p  = _ N / ~  mn, l (5.9) 

which is identical with (3.14a) written for the symmetrized a.c.c. By lowering 
the indices m, n in (5.9), we get equation (3.14b), written for the symmetrized 

�9 s l  
a.c.c. We have thus proved that (5.2) yields the correct value of "Ymn. 

sl To find the complete expression for 'Ymn we write, besides (3.14b) for the 
symmetrized a.c.c., the two equations derived from it by the cyclic permutation 
l ~ m ~ n -> l. Combining these three equations, we find 

2~ tnm = ~Tlm,n + ~ln,m - ~rnn, l + 2~2mnl + 2 ~nrn l  + 2 ~'2lm n (5.10) 

And when we raise the index 1 
s l lp 

27nm =77 ('flmp, n + ~np,m - "Qmn,p + 2rlmq~qnp + 2rlnq~qmp) + 2~tmn (5.11) 

The first fiveterms give the symmetric part of 2"~nlrn and the last term its anti- 
symmetric part. 

Variation of the tetrad metric directly yields 
sk k r 

- S l r S k m  Rlm [3'rp] = 0 (5.12) 

Since the tetrad components of the torsion tensor vanish, this reduces to the 
tetrad components of the Einstein equations. 

w Variation o f  the Tetrad Vectors 

One can see without difficulty that the equation obtained by variation of the 
tetrad vectors z~ cannot be independent of the equations that we derived in 
Section 5 from the variations of the a.c.c. 7/ran and the tetrad metric ~lm. 

kt~ k Indeed, in the tensor description the Lagrangian depends only on ff and Fur; 
and consequently with the two equations derived from the variations 5g and 
8P~x v are sufficient for minimizing the action integral�9 We saw in Section 5 that 
in the tetrad description the equations obtained from the variations ~ ~trn and 
~3flmn are equivalent to those obtained from ~ and ~P~x v. Consequently the 
two equations obtained from the variations ~ ~lm and 8"rtmn are sufficient for 
extremalizing the action integral, and so the equation obtained from the varia- 
tion 8z~ has to be satisfied automatically. 

The exact relation between the left-hand sides of these three equations can 
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be determined without difficulty. The equation obtained by variation of z q is 
readily shown to be 

6s 
6z q 0 (6.1) 

with 
X X 6z 6z [ 6z 6z 

- x 3z~ ~ - : x  + - -  8zg 6ru  6g x" 
l 6~lrn The equations derived from the variations 67rnn and are 

6s 6s 
6V,mn- 0, =o 

3~xu 

where 

(6.2) 

(6.3) 

5s 5s OPuv 5s h m n 
1 -- k l = ~ Zl glz gv 

6"t'mn 6 P p v  ~'Yrnn 6 F ~ v  

6s 6s ~ x u  6s x u 
6 ~ l m  -- 6~XU O~ lrn = 6~X--"-- ~ Z z  l g m 

The inverses of the last equations are 

6s 6s t u v 6s 6s 1 
h - 1 ZXZ m Z . ,  6f iX# = 6 ~ l m  " Z -- zlzr~ (6.5) 

6~lzv 6 ~ m n  

(6.4) 

Introducing (6.5) in (6.2), we obtain the identity connecting the left-hand sides 
of the three tetrad equations (6.1) and (6.3). 

The relation (6.2) shows that one can alternatively start by satisfying (6.1) 
and the first equation of (6.3), in which case the second of (6.3) will also be 
satisfied. This is of no practical interest, however, since (6.1) is more compli- 
cated, at least for the Lagrangian (2.7) used in this work. 

w Conclusion 

It may be useful to compare our Lagrangian with that of  Hehl et al. [2] used 
in their development of the Einstein-Cartan theory. In that case as well, in the 
absence of matter the torsion tensor vanishes. However, in their treatment the 
metric and the affine connection are not independent fields. In the Hehl et al. 
Lagrangian, the metric and affine connection are varied subject to the condition 
that the affme connection be metric, so that independent variation of  both is not 
possible; rather, variation is subject to the constraint that gxuw = 0. The basic 
difference between the two approaches is thus that for our Lagrangian the sym- 
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metrized affine connection is metric as a result of the field equations; while in 
the Hehl et al. approach the full affine connection is assumed to be metric 
before any field equations are derived. 

I f  we add to our gravitational field Lagrangian (2.7) a matter Lagrangian 
A s FIuvI ,D ) depending on the symmetric metric tensor, the torsion 

tensor, and some other dynamical variables D A , then the resulting field equations 
will still keep the symmetrized affine connection metric, while the torsion tensor 
will be determined by 8s Thus, the resulting theory will differ from 
that of Hehl et al. We shall investigate this theory in a later paper. 

In particular, it should be noted that our Lagrangian is not unique. As 
Trautman has indicated [11], the basic reason for the defect we have noted in 
Lagrangian (2.1) in the case of a nonsymmetric connection is that the Lagrangian 
is invariant under projective transformations of the connection; and conversely, 
the basic reason for the success of our new Lagrangian (2.7) is that we have 
broken this projective invariance. We could accomplish the same purpose, for 

�9 ~ h ~  ~ ~ . #  c~ ~ . . 
example, by adding terms of the formg PxP,  or g PIXfllPtaul with arbx- 
trary coefficients to the Lagrangian (2.7). Perhaps study of the theory with non- 
vanishing torsion will yield some criterion for choosing a unique Lagrangian. 
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addition of the square of the trace of the covariant derivative of  the metric. 
They are primarily interested in the case of nonvanishing sources for the fields, 
but their suggested Lagrangian would also lead to the vanishing of the antisym- 
metric part of  the torsion in the absence of sources. In the presence of sources, 
their Lagrangian would lead to a different theory than ours, of course. 

4In the tetradial formulation, the matter Lagrangian would depend on the tetrad metric and 
the tetrad components of the torsion tensor, of course�9 The resulting field equations will 
keep the symmetrized rotation coefficients metric, while the tetrad components of the 
torsion tensor will be determined by ~ s 
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