
CS 673 Software Engineering (F22)
Department of Computer Science

Metropolitan College
Boston University

Instructor Information

Name: Yuting Zhang
Office: 1010 Commonwealth Ave., Room 322
Email: danazh at bu dot edu
URL: http://people.bu.edu/danazh

Office Hours:

Monday, Wednesday 4:00-5:00pm or by appointment

Feel free to ask me any questions before or after class. You can always contact me
by email. Please always add “CS673 (or cs673)” in the subject of your email.

Course Information

Lecture Time & Place
Wednesday 6:00-8:45 PM PSYB51

Prerequisites
At least two 500 level or above programming intensive courses. Or the instructor's consent.
(This course is not about programming. However, programming skill is the prerequisite. Students
should be familiar with OO concepts and proficient in at least one high-level programming
language before taking this course. This course is better taken as a capstone course towards the
end of your program study.)

Reference Books:
Preferred SE Textbook:
● Eric Braude, Michael E. Bernstein. Software Engineering: Modern Approaches (2rd

Edition). Waveland Press, Inc. (ISDN:9781478632306)

Other Reference SE Textbooks:
● Robert C. Martin. Agile Software Development, Principles, Patterns, and Practices.

http://www.merrimack.edu/yzhang

● Bernd Bruegge and Allen H. Dutoit. Object-Oriented Software Engineering: Using UML,
Patterns and Java.

● Shari Lawrence Pfleeger, Joanne M. Atlee. Software Engineering: Theory and Practice
● Roger S. Pressman. Software Engineering: A Practitioner’s Approach.
● Hans Van Vliet. Software Engineering: Principles and Practice.
● Ian Sommerville. Software Engineering
● Ian Sommerville. Engineering Software Products: An Introduction to Modern Software

Engineering

Other Classical Books for Software Engineers
● Frederick P. Brooks, Jr. The Mythical Man Month.
● Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy Sierra. Head First Design

Patterns.
● Martin Fowler, Kent Beck, Don Roberts. Refactoring: Improving the Design of Existing

Code.
● Steve McConnell. Code Complete: A Practical Handbook of Software Construction.

● Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.

Other Reading Materials
● Microsoft Security Development Lifecycle: https://www.microsoft.com/en-us/sdl/
● OWASP

○ SAMM project: https://www.owasp.org/index.php/OWASP_SAMM_Project
○ TOP 10: https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
○ Developer Guide:

https://www.owasp.org/index.php/Category:OWASP_Guide_Project
○ Testing Guide:

https://www.owasp.org/index.php/Category:OWASP_Testing_Project

Description (from Catalog)
Overview of techniques and tools to develop high quality software. Topics include software
development life cycle such as Agile and DevOps, requirements analysis, software design,
programming techniques, refactoring, testing, as well as software management issues. An
overview of secure software development processes and techniques will also be introduced. This
course also features a semester-long group project where students will design and develop a real
world software system in groups using Agile methodology and various SE tools, including UML
tools, project management tools, programming frameworks, unit and system testing tools ,
integration tools and version control tools.

https://www.microsoft.com/en-us/sdl/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Guide_Project
https://www.owasp.org/index.php/Category:OWASP_Guide_Project
https://www.owasp.org/index.php/Category:OWASP_Testing_Project

Learning Outcomes

At the end of the semester, students are expected to

1. Describe and compare major software process models and activities in the software
process.

2. Explain the agile methodology and techniques, and apply these in a real-world
team-based project to develop a high-quality software system on time.

3. Be aware of some security risks in the software project and techniques to enhance the
software security.

4. Use various SE tools proficiently including the UML tool, the project management tool,
programming tools, testing tools, the version control tool, etc.

5. Communicate effectively with team members and customers.
6. Present clearly the software project in both the oral and written form.

Learning Outcomes Assessment
● Class participation
● Reading and study
● 3 Labs

○ Lab1: Set up Git (LO2, LO4)
○ Lab2: Requirement Analysis (LO2, LO4)
○ Lab3: Refactoring and TDD (LO2, LO4)

● Semester-long project: (All LOs)
● 3 Quizzes (LO1, LO2, LO3, LO4)
● The Final Exam (LO1, LO2, LO3, LO4)

This course is featured with a semester-long team-based project. Each team should have
about 4-6 students. Every member of the team is expected to contribute a roughly equal
share to the project.

Course Policies
Grading Policy
The grade that a student receives in this class will be based on the class participation, in-class
exercises or quizzes, the project and the final exam. The grade is broken down as below. All
percentages are approximate and the instructor reserves the right to make necessary changes.

● 5% on class participation
● 9% on lab assignments (3 small labs)
● 6% on quizzes (3 quizzes)
● 50% on the semester-long project

● 30% on the final exam

Letter grade/numerical grade conversion is shown below:
A (95-100) A- (90-94)

B+ (85-89) B (80-84) B- (79-77)

C+ (74-76) C (70-73) C- (65-70)

D (60-65) F (0 – 59)

Assignment Submission

All labs should be submitted directly on blackboard. The project assignments are mostly done on
the github and the google drive. A summary should be submitted on blackboard.

Assignment Late Policy

Each assignment has a deadline. For all individual assignments, the late assignments will be
penalized within three days with a penalty. No assignments will be accepted three days after the
deadline.

All project deadlines are firm. A deadline miss means zero for the grade of that phase.

It is the students' responsibility to keep secure backups of all assignments.

Academic Integrity

Academic conduct in general and MET College rule in particular require that all references and
uses of the work of others must be clearly cited. All instances of plagiarism must be reported to
the College for action. For the full text of the academic conduct code, please check
http://www.bu.edu/met/for-students/met-policies-procedures-resources/academic-conduct-code/.

Course Outline

This course is organized into six modules of about 2 or 3 lectures each.

Module 1
Topics:

1. Introduction to Software Engineering & Software Process: SE is difficult, SE Concepts
and Terminology, SE Ethics, Software Process including Waterfall, Spiral Model, Unified
Process, and Agile.

2. Agile Methodology & Software Project Management: Manifesto, Agile Principles,
eXtreme Programming, Scrum, AUP, DevOps, DevSecOps, Software Quality, Software
Configuration Management, Risk Management

Reading: Online Lecture Notes, Braude (Part I, II and III), or related chapters in other textbooks.
Additional papers provided
Assignments: Lab1, Project Assignments

http://www.bu.edu/met/for-students/met-policies-procedures-resources/academic-conduct-code/
http://www.bu.edu/met/for-students/met-policies-procedures-resources/academic-conduct-code/

Module 2
Topics:

1. Requirement Analysis and Management using User Stories: Gather requirements, User
Stories, The INVEST Principle, Acceptance Tests, User Story Management, Product
Backlog, Velocity and Story Points, Epics and themes, Scope Creep, Technical Debt,
User Story Management Tool

2. From Requirements to Design - UML class diagrams and state transition diagrams: UI
Mockups, State Transition Diagrams, Entity-Boundary-Control, Class Diagrams

Reading: Online Lecture Notes, Braude, Part IV, or related chapters in other textbooks
Assignments: Lab2, Project Assignments, Quiz 1

Module 3
Topics:

1. High Level Design: Design Goals, Software Architecture, MVC, Layered and Tiered
Architecture, SOA, Microservices, REST

2. Design Principles and Design Patterns: Class diagrams, OO Reuse, Design Principles,
MVC Compound Design Patterns

Reading: Online Lecture Notes, Braude, Part V, or related chapters in other textbooks
Assignments: Project Assignments

Module 4
Topics:

1. Implementation: Programming languages and Frameworks, Coding Standards, Code
Smells, Refactoring Techniques

2. Testing: Regression Testing, Type of Testing, Testing Plan, Test Cases, Test Code, TDD
and BDD

Reading: Online Lecture Notes, Braude, Part I, II and III, or related chapters in other textbooks
Assignments: Lab 3, Project Assignments, Quiz 2

Module 5
Topics:

1. More UML Tools in Requirement Analysis and Design: Use Case Model, Class
Diagrams, State Machine Diagrams, State Pattern, Sequence Diagrams

2. Testing Techniques: Whitebox Testing, Testing Coverage, Blackbox Testing, Domain
Testing, Integration Testing

Reading: Online Lecture Notes, Braude, Part I, II and III, or related chapters in other textbooks
Assignments: Project Assignments

https://docs.google.com/document/d/1lDYtWJkFTqOr1DyzZXy6Hiua43nOjD0MzadlYqxzhDQ/edit#heading=h.7q29x7sfr8xf

Module 6
Topics:

1. Secure Software Development Process: CIA and IAAA, Software Security, Seven
Touchpoints, Microsoft SDL, OWASP SAMM

2. Software Security Practices: Security requirements, Architecture Risk Analysis,
Microsoft STRIDE, Code Review, Secure Coding Standards, Security Testing, SAST,
DAST, IAST, RSP, Top Vulnerability Lists

Reading: Online Lecture Notes, Braude, Part I, II and III, or related chapters in other textbooks
Assignments: Project Assignments , Quiz 3

Project Assignments:
The project assignments are mostly done through google drive and github. To help both students
and the instructor keep track of the assignments, we also create a checkpoint for each assignment
on the blackboard. Make sure to submit checkpoints on the blackboard.

There are two types of project assignments:
1. Individual assignments: each student should complete his/her own assignment through

google drive and blackboard.
a. Weekly report: fill a row in your own sheet each week in the group weekly report

on google doc. After you are done, submit the check question assignment on the
blackboard.

b. Midterm and Final self and peer review: fill the review survey form on google
form.

2. Group assignments: each group only needs to submit one copy of the whole group work
on github and blackboard. Students will work on the group documents collaboratively on
google doc. At each iteration release, the group leader or the configuration leader or some
designated member will archive the documents on the github, together with the source
code to create a release. After it is done, the group leader (or the designated member)
should submit the checkpoints on the blackboard.

a. Iteration 0 Release including
i. Readme.md

ii. Doc/ProjX_SPPP
iii. Doc/ProjX_meetingminutes
iv. Doc/ProjX_progressreport
v. Doc/ProjX_presentation_iter0

b. Iteration 1 Release including

i. README.md (updated)
ii. Doc/ProjX_SPPP (updated)

iii. Doc/ProjX_meetingminutes (updated)
iv. Doc/ProjX_progressreport (updated)
v. Doc/ProjX_SDD

vi. Doc/ProjX_Presentation_iter1
vii. Code/… : runnable source

c. Iteration 2 Release including
i. README.md (updated)

ii. Doc/ProjX_SPPP (updated)
iii. Doc/ProjX_meetingminutes (updated)
iv. Doc/ProjX_progressreport (updated)
v. Doc/Proj1_SDD (updated)

vi. Doc/ProjX_STD
vii. Doc/ProjX_Presentation_iter2

viii. Code/… : runnable source

d. Iteration 3 Release (from the master branch) including
i. README.md (updated)

ii. Doc/ProjX_SPPP (updated)
iii. Doc/ProjX_meetingminutes (updated)
iv. Doc/ProjX_progressreport (updated)
v. Doc/ProjX_userstories (updated)

vi. Doc/Proj1_SDD (updated)
vii. Doc/ProjX_STD (updated)

viii. Doc/ProjX_Deployment (if applied)
ix. Doc/Proj1_Presentation_final
x. Code/… : runnable source code

Course Schedule
(This is a tentative schedule. It is subject to change based on the class progress and students’
feedback)
Both the lecture and the project use iterative approaches. The lecture includes two iterations. The
project includes an initial planning and then three mini-project iterations.

Week #
Date

Module # Topics Course Assignments Project Assignments

Week 1
09/07

Module 1 Topic 1 Lab1 Iteration 0 Starts

Week 2
09/14

Module1 Topic 2

Week 3
09/21

Module 2 Topic 1 Lab 2 Iteration 0 Presentation
Iteration 1 Starts

Week 4
09/28

Module 2 Topic 2 Quiz 1

Week 5
10/05

Module 3 Topic 1

Week 6
10/12

Module 3 Topic 2

Week 7
10/19

Module 4 Topic 1 Iteration 1 Presentation
Iteration 2 Starts

Week 8
10/26

Module 4 Topic 2 Lab3

Week 9
11/02

Module 5 Topic 1 Quiz 2

Week 10
11/09

Module 5 Topic 2 Iteration 2 Presentation
Iteration 3 Starts

Week 11
11/16

Module 6 Topic 1

Week 12
11/23

Thanksgiving Break (No Class)

Week 13
11/30

Module 6 Topic 2 Quiz 3

Week 14
12/07

Final Project
Representation

Final Presentation

Week 15
12/14

Study Period (No Class)

Week 16
12/21

Final Exam

