Data Structures and Algorithms CS526 A1, Spring 2024

- **Course Format**: On Campus
- Time and Location: Tuesday 6:00 8:45 PM, FLR 123
- **Instructor**: Jae Young Lee
- Office: Room 303, 1010 Commonwealth Ave.
- Phone: 617-358-5165, E-mail: jaeylee@bu.edu
- Office Hours:
 - \circ 3 4 PM Tuesday and Thursday, and by appointment
 - o Students can meet me in person (in my office) or via zoom
 - No office hours during the final exam period
- Course Description

This course covers and relates fundamental components of programs. Students use various data structures to solve computational problems and implement data structures using a high-level programming language. Algorithms are created, decomposed, and expressed as pseudocode. The running time of various algorithms and their computational complexity are analyzed.

• Course Objectives

Upon successful completion of this course, students will be able to:

- 1. Describe and illustrate fundamental data structures.
- 2. Use fundamental data structures to support the implementation of algorithms.
- 3. Given a problem definition, develop an algorithm to solve the problem.
- 4. Write an algorithm using a pseudocode.
- 5. Illustrate the execution of a pseudocode of an algorithm using a sample input.
- 6. Analyze the performance of an algorithm.
- 7. Implement a given algorithm using a high-level programming language.
- 8. Solve computational problems using algorithms.
- Prerequisites:
 - MET CS300 and either MET CS520 or MET CS521, or instructor consent.
 - Must have knowledge of or experience in at least one high-level programming language, such as Java, C++, C#, Python, etc.
- Text: One of the following two depending on which language you will use:
 - Michael T. Goodrich, Roberto Tamassia, and Michael T. Goldwasser, "Data Structures and Algorithms in Java," Wiley, 6th Edition, January 2014.
 - Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser, "Data Structures and Algorithms in Python," Wiley, March 2013.

- Courseware: Blackboard
- Grading:
 - Midterm: 25%, Final: 35%
 - Homework: 40%
- Letter Grade:

 $90 \le G < 94$: A- $94 \le G$: A, $60 \le G \le 70$: D G < 60: F

Note: Course grades will not be automatically rounded up. For example, a course grade of 93.9 will receive a letter grade A-, not A.

- Assignment: There will be 11 homework assignments (the number of assignments is subject to change according to the actual progress of the class).
- Academic Integrity Policy
 - Cheating and plagiarism will not be tolerated in any Metropolitan College course. They will result in no credit for the assignment or examination and may lead to disciplinary actions.
 - Please take the time to review the Student Academic Conduct Code: http://www.bu.edu/met/metropolitan college people/student/resources/co nduct/code.html.
 - This should not be understood as a discouragement for discussing the material or your particular approach to a problem with other students in the class. On the contrary - you should share your thoughts, questions and solutions. Naturally, if you choose to work in a group, you will be expected to come up with more than one and highly original solutions rather than the same mistakes.
- Attendance and Absence: Attendance is not required but strongly encouraged. If a student misses a class, it is his/her responsibility to study the material discussed during the missed class.

• Late Policy

- All assignments are due at the beginning of the class on the due date.
- If you submit an assignment late, a penalty of 10% per day will be imposed.
- If a student obtains a permission from the instructor or the TA in advance, a late penalty may be waived.
- Make-up Exam
 - A make-up examination for the midterm can be arranged only when a student has an emergency (e.g., a medical emergency or an urgent family

matter). Students may need to provide the instructor with an appropriate document (such as a letter from a physician).

• There will be **no make-up exam for the final exam**. If a student cannot take the final exam on the designated day, she/he will receive an incomplete grade.

• Tentative Schedule

- The schedule is subject to change according to the actual progress of the class.
- Students are strongly encouraged to read book chapters assigned for each lecture before coming to the class.

Week	Date	Lecture	Book Chapter	Homework
			(Java / Python)	
1	1/23	Algorithm analysis	4 / 3	HW1
2	1/30	Recursion	5 / 4	HW2
3	2/6	Linked list	3 / 7	HW3
4	2/13	Stacks, Queues, and Deques	6 / 6	HW4
5	2/20	Trees	8 / 8	HW5
6	2/27	Priority queues	9 / 9	HW6
7	3/5	Midterm		
8	3/12	No class (Spring Recess)		
9	3/19	Maps and Hash tables	10 / 10	HW7
10	3/26	Search trees	11 / 11	HW8
11	4/2	Sorting and Selection	12 / 12	HW9
12	4/9	Dynamic programming,	13 / 13	HW10
		Greedy method		
13	4/16	Graph algorithms	14 / 14	HW11
14	4/23	P and NP	Note	
15	4/30	Other topics		
	TBD	Final Exam		

• Email communication:

- When it is necessary to communicate to you, I will send an email to your BU email account. So, you need to check your BU email regularly, at least once a day.
- When you send an email to me, include "CS526 A1" in the subject of your email.