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Abstract

We investigate whether a policy that bases college admission on rel-

ative performance can modify the degree of racial or ethnic segregation

in high schools by inducing students to relocate to schools with weaker

competition. Theoretically, such school arbitrage will neutralize the ad-

missions policy at the college level. It will result in partial desegregation

of the high schools if flows are sufficiently unbiased. These predictions

are supported by empirical evidence on the effects of the Texas Top Ten

Percent Law, indicating that a policy intended to support diversity at

the college level actually helped achieve it in the high schools.
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1 Introduction

Could a policy designed to maintain racial diversity in a state’s universities

help to integrate its high schools instead? Based on a theoretical and empirical
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analysis of the effects of such a law implemented in the state of Texas, we show

that it can.

In recent years, several U.S. states, including three of the largest (California,

Texas, and Florida) have passed “top-N percent” laws, guaranteeing university

admission to every high school student who graduates in the top N percent of

his or her class.1 Following court decisions in the 1990s, the use of affirmative

action policies to maintain racial or ethnic balance in higher education was

discontinued. The top-N percent laws (or top-n laws for short) were adopted

in response: since high schools were highly racially segregated, the expectation

was to draw a representative sample of the statewide high school population,

guaranteeing diversity on campus. Despite their breadth – in 2009, 81% of

first year students enrolling at the University of Texas at Austin were admit-

ted under its top-10-percent plan (UT OISPA, 2010) – the new policies did

not replicate the level of campus diversity seen under the abandoned affirma-

tive action system: representation of minority students on University of Texas

flagship campuses, which had dropped by one third after removing affirmative

action, was still down by a quarter four years into the new policy.2

A possible explanation for this seeming policy ineffectiveness is an arbitrage

incentive it creates: under the law, students who fall just short of the admission

requirement of being in the top 10% of their current high school class could

move to a lower quality school, where they are more likely to meet the criterion.

Indeed, this arbitrage opportunity was not lost on economists after the policy

was enacted (Cullen et al., 2013; Cortes and Friedson, 2014); and, as their

evidence indicates, neither was it missed by at least a few Texans. If the

moving students are disproportionately non-minority, then their movement will

undermine the policy’s ability to integrate the university.

We begin our analysis by taking this observation a step further with the

Top-N Percent Neutrality Theorem: if the private cost of moving across high

schools is sufficiently low, then in equilibrium, the set of admitted students in

university with and without a top-n policy is identical. This result can help

explain why the hoped-for diversity in the university was not achieved.

Our paper’s focus is on a corollary effect that appears to have gone un-

1California started admitting the top four, Florida the top twenty, and Texas the top ten

percent performing students of every high school.
2These calculations of over- and under-presentation of backgrounds in University of Texas

at Austin and Texas A&M with respect to the previous year’s high school population use

data from Kain et al. (2005) and Texas Education Authority.
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noticed in the policy debate, and concerns how top-n laws may affect high

schools. In general, the movement of arbitrageurs across schools has the po-

tential to blend the ethnic composition of all high schools. As we show theo-

retically, there are cases in which this blending must reduce the overall level

of segregation, as conventionally measured. Indeed, our Unbiased Mixing The-

orem states that any movement across schools that is ethnically unbiased, in

the sense that arbitrageurs are both ethnically representative of their original

schools and effectively ignore ethnic composition in targeting schools, will re-

duce the mutual information index and several other commonly-used measures

of ethnic segregation. We then go on to establish sufficient conditions under

which the top-n policy leads to ethnically unbiased relocations. It follows from

our two results that these conditions are sufficient for the policy to increase

high school integration while leaving university enrollment unchanged.

Of course such conditions may not pertain in practice. Using a rich data

set constructed using a combination of multiple administrative and Census

data from Texas, we find that there was indeed a drop in high school racial

segregation in the years immediately following the introduction of the policy

there. Thus a policy instrument that may appear to have yielded disappointing

results with respect to integrating universities, may nonetheless be a powerful

tool for achieving integration in high schools. More generally, our results show

that integration at lower educational tiers can be achieved by rewarding relative

performance without the need to force integration or to condition on race.

Texas’s top-n policies condition only on class rank in the final year of high

school. Therefore students who value attending their initial school will delay

a school change as long as possible. Hence, any effects of the policy will be

more pronounced for later grade levels. Using enrollment data for all Texas

high schools, we compute a number of segregation measures, and find evidence

of a reduction in the state-wide segregation at the 11th and 12th grade levels,

when students are applying to college, as compared to 9th grade. We also

find that the number of transfer students doubled and students who were not

economically disadvantaged were more inclined to move to worse performing

schools after the policy was introduced. This effect was stronger for higher

grades, as predicted by theory.

Figure 1 provides a first glance at the evidence. It shows a time series of

high school segregation – measured by the mutual information index – for 9th
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and 12th grades of all Texas high schools from 1990 to 2007.3 The mutual

information index measures segregation by indicating how well information

about a student’s high school predicts that student’s ethnicity. Consistent

with our reasoning above, a substantial drop in segregation coincides with the

introduction of the policy in 1998 for 12th grade but not for 9th grade.4 Trends

in residential segregation do not explain the pattern in Figure 1, see Figure 4

in the Appendix.
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Figure 1: Time series of the mutual information index for 9th and 12th grades.

This observation is corroborated at the high school level using a difference-

in-differences estimation strategy on an index of local segregation. In line with

the theory, we test for a significant change in the difference between the degree

of segregation in 12th and 9th grades after 1998. This is indeed the case across

several specifications, controlling for school-grade unobserved heterogeneity.

Next, we examine whether the policy change affected the behavior of high school

segregation over time within a cohort. Indeed we find that the difference in

within-county segregation between 12th and 9th grades of the same cohort has

decreased significantly after the introduction of the policy. This suggests that

moves between schools have led to the decrease in segregation. We also show

that this phenomenon does not seem to be associated with the establishment

of charter schools in Texas around the same period. Finally, using individual-

level data we document a change in the pattern of school moves taking place

3One school is excluded from the analysis due to an atypical large number of students

with Native American origins in 1998.
4See appendix for further graphs corresponding to 10th and 11th grades. Using alternate

measures of segregation, such as the Theil index, yield similar pictures. The policy was

announced in 1996, signed into law in early 1997, and took effect with 1998-99 school year.
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during 11th and 12th grades. After the introduction of the policy, students

became more likely to move to schools with less college-bound students, lower

SAT average, lower TAAS pass rate, and less Asian and White students. In fact

these effects are stronger for students who were not economically disadvantaged

and arguably are more likely to benefit from strategic school choice.

In the next section of the paper, we present the Top-N Percent Neutrality

Theorem and lay out a simple model of school choice that generates testable

predictions about flows across schools and their effects on segregation. Then,

in Section 3, we confront the data. Finally we offer some remarks about the

possibility of broadening top-n laws in order to increase high school integration.

All tables and figures omitted from the text can be found in the Appendix.

2 Theoretical Framework

2.1 The Basic Model

The economy is populated by a unit-measure continuum of students, each char-

acterized by an educational achievement a ∈ [0, a].5 Each student is initially

enrolled in one of a finite set of high schools s ∈ {1, ..., S}. School s has mea-

sure qs of students, with
∑S

s=1 qs = 1 and is characterized by its distribution

of achievements Fs(a), which has support [0, ā]. The aggregate distribution is

F (a) =
∑S

s=1 qsFs(a).

Prior to admission to college, each student may relocate by selecting a school

s′ different from her initial school s at a cost c(s, s′) ≥ 0. It will simplify

matters somewhat to suppose that from any initial school, the relocation costs

among all target schools are unique: for instance, for each s, c(s, s′) 6= c(s, s′′)

whenever s′ 6= s′′. Relocation decisions are made simultaneously after the

admission policy is announced, and we consider Nash equilibria in relocation

choice. Schools have no say in the location decisions; as is the situation in most

public schools in the US, any student becomes eligible to attend a high school

simply by moving into its geographic catchment.6

5We abstract here from peer effects within schools that could bear on achievement. Thus

a is best interpreted as capturing parental or community investment in students in early

childhood or primary and middle school.
6In practice, students sometimes can gain admission to local schools at even lower cost,

e.g. by claiming to live with a relative in the catchment or having a parent rent a small

dwelling there.
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Upon graduation, students can either go to the university U or pursue an

alternative option, denoted u. A policy maker controls admission to the U ,

which has fixed capacity k < 1. U is more desirable than u for all students in

the population – students for whom u is preferred to U will not be competing

for spots in the U under any policy, and so can be ignored for the purposes

of this analysis. Specifically, for a student of achievement a, the return to

attending the U is U(a), which strictly exceeds u(a), the return to attending

u. The notation signifies that returns may vary across education levels, as may

the interpretation of the opportunity cost u(a) of attending the U : for some

levels it might mean the value of attending another university than U , while

for others it might be the value of immediate entry into the labor market. A

student of type a who moves from s to s′ and enters the U (resp. u) receives

payoff U(a)− c(s, s′) (resp. u(a)− c(s, s′)).
We will be comparing an initial admission policy selecting the top achievers

in the state, (hence a “school-blind” policy), against a top-n law that admits

the top N percent in each high school; if there is a residual capacity, the rest

of the places in the U are covered by the school-blind policy.

Under a school-blind policy, the university U admits all students with the

highest endowments, up to capacity. Since all students admitted strictly prefer

the U , they will attend, and the marginal student achievement a∗ satisfies

F (a∗) = 1− k. (1)

Since location is irrelevant to attending the U under the school-blind policy, no

one has any incentive to relocate (and if there is any cost to moving, a strict

incentive not to).

Now consider a top-n policy. In this case, every student in the top n per-

centile of his high school class is admitted to the U , and the residual capacity

k−n is allocated on to the highest-achieving students in the state who have not

already been admitted. Because students may decide to move across schools

as a result of the policy, there will be new distributions F̂s(a) in each school.

Formally, the policy induces a relocation game in which students simul-

taneously choose moving strategies, i.e., maps σ(a, s, s′) ∈ [0, 1] indicating the

probability that a student of achievement a moves from initial school s to school

s′; thus,
∑

s′ σ(a, s, s′) = 1. An equilibrium is a profile σ of moving strategies

(σ(a, s, s′) ∈ {0, 1}) such that for almost all a and associated s, σ(a, s, ·) is a
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best response to σ.7

Our neutrality theorem states that as long as the cost of moving to any

school is less than the benefit U(a)−u(a) of attending the U , the set of admitted

students is the same as when the policy was not in place.

The logic behind why equilibria with and without the top-n policy must

have the same U enrollments is very simple. Suppose an equilibrium of the

relocation game induced by the top-n policy has a set of admitted students

that differs from that of the school-blind policy. Then somewhere in the state,

there is a “winner” aw < a∗ who is admitted, as well as a “loser” a` > a∗ who

is rejected (more precisely, there is a positive measure of winning achievement

levels, and because of the capacity constraint, an equal measure of losing levels).

Now, aw must be admitted as a member of the top n of his school and a` and

aw must be in different schools, else a` would also have been admitted under

the top-n rule. But now, a` can secure admission to the U , and strictly gains

from doing so, simply by relocating from his school to aw’s school. Thus we

are not looking at an equilibrium.

In the appendix we show an equilibrium always exists and is characterized

by a set of cutoffs, one for each school, weakly exceeding a∗ and such that each

student below his initial school’s cutoff and above a∗ moves to another school,

while all others remain.

Notice that the only types that might engage in arbitrage are the potential

losers (a ≥ a∗) from the top-n policy. Thus only their costs need to be compared

with the benefit of attending the U in order to reach the neutrality conclusion.

Proposition 1. (The Top-N Percent Neutrality Theorem). If c(s, s′) < U(a)−
u(a) for all students with a ≥ a∗, university enrollments under the top-n and

school-blind admission policies are identical.

Thus, with low moving costs, the top-n law will have no impact on enroll-

ment in the University. As a result, there can be no change in the ethnic,

socio-economic, gender, or racial composition of the student body there.

However, all of this movement is not neutral with respect to the composition

of the high schools.8 In particular, movement of students induced by the top-n

7Since a student is admitted with probability 1 or 0 from his destination school and there

is never indifference between schools because moving costs are distinct, it suffices to consider

pure strategy equilibria.
8 Necessary and sufficient condition for some movement of students to occur is that there

is a school s such that 1− Fs(a
∗) < n. Then, absent any movement, the top-n policy would
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law may reduce segregation by ethnic group or socio-economic status.

Let g ∈ G be a student’s ethnic or socioeconomic group, where G is some

finite set. Denote by pgs ∈ ps = (p1
s, ..., p

|G|
s ) the population share of group g in

school s and by pg ∈ p = (p1, ..., p|G|) g’s share in the aggregate population. To

measure the degree of segregation we use an index of the form:

I(p, {ps}) ≡ A1(p)− A2(p)
∑
s

qsH(ps),

where A1(p) and A2(p) 6= 0 are functions of the aggregate distribution of groups

p, H(ps) is a concave function of the distribution of groups at school s, and

qs the measure of students in school s, with
∑

s qs = 1. A leading example is

when H(ps) =
∑

g p
g
s log(1/pgs) is the entropy of ps, A1(p) = H(p) the entropy

of p, and A2(p) ≡ 1, in which case I(p, {ps}) is the mutual information index.

If H(·) is the entropy, A1(p) = 1, A2(p) = 1/H(p), then I(p, {ps}) is Theil’s

information index (Theil, 1972; Theil and Finizza, 1971). Other segregation

indexes that are consistent with our formulation are the variance ratio index

(James and Taeuber, 1985) or the Bell-Robinson Index (Kremer and Maskin,

1996).

To illustrate the effect of relocation, consider the case of two groups and

three schools, which have initial proportions p1
1 = 1, p1

2 = 1/2, and p1
3 = 0 of

the first group and equal masses of students, q1 = q2 = q3 = 1/3. Suppose that

the policy induces a random sample of students with mass m > 0 from school

1 to move to school 2. This movement makes school 2 more segregated, as the

proportion of the first group there moves away from the population average 1/2.

Schools 1 and 3 do not become less segregated either since the proportions of the

first group remains 1 in school 1 and 0 in school 3. Nevertheless the segregation

index I(p) will decrease! This is because, after students have moved, the

population weight of the fully segregated school 1 decreases and the weight

of the now marginally segregated school 2 increases. The aggregate effect is

to decrease segregation, as concavity of H(ps) ensures that the increase in

population weight of the less segregated school 2 overcompensates the increase

in segregation in school 2.

To show this denote equilibrium quantities by hats. Then the new segrega-

tion index is

Î = A1(p)− A2(p) [(q1 −m)H(p1) + (q2 +m)H(p̂2) + q3H(p3).)]

allow some students in s with a < a∗ to enter the U , which contradicts neutrality.
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Because students move only from one school to another, not into or out of the

system as whole, A1(p) and A2(p) remain unchanged, so

Î − I ∝ mH(p1)− (q2 +m)H(p̂2) + q2H(p2). (2)

Since we can write p̂2 = m
m+q2

p1 + q2

m+q2
p2, concavity of H and p1 6= p2, imply

that

H(p̂2) >
m

m+ q2

H(p1) +
q2

m+ q2

H(p2).

Substituting this inequality into the right hand side of (2), we have Î − I < 0.

Indeed, this establishes that whenever two schools have different proportions

of the two groups, the segregation index will decrease after a move of a random

sample students from one school to another, because more students will be in

less segregated schools after the move.

The result and the mechanism at work in the example can be generalized

(see appendix) to any number of schools or groups, so long as the system

as a whole remains closed (no student exits and no new student enters) and

movement is (group) unbiased: the initial group distribution ps in school s is

equal to the group distribution among those who exit school s and among those

who target school s′ from school s.

Proposition 2. (The Unbiased Mixing Theorem). Suppose the school system

is closed, that schools initially have different proportions of groups, and that

movement of students is group unbiased. Then the segregation index I falls

following movement.

Putting additional structure on the achievement distributions and moving

costs allows one to characterize the relocation equilibrium and the associated

flows of students more precisely. Assume that schools are ordered by quality:

if s < s′, Fs(a) strictly first order stochastically dominates Fs′(a). That is,

for any a ∈ (0, a), Fs(a) < Fs′(a). The moving costs c(s, s′) strictly increases

in the “distance” between schools, captured by the absolute difference in their

indices |s − s′|.9 In addition to geographic distance, this preference might

reflect horizontal differentiation of schools, or, perhaps more importantly, fixed

school characteristics that are correlated with quality, such as teacher or facility

9Even though distance measured in this way admits the possibility that c(s, s′) = c(s, s′′),

where s′ > s > s′′, it turns out with this construction, target schools always have index

higher than s, so that costs remain unique among targets.
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quality or reputation. Finally, assume that at least one school s satisfies the

movement condition in Footnote 8, i.e. that 1− Fs(a
∗) < n, so that there will

be movement in equilibrium.

Under these conditions, we can show (see appendix) that there exists a

unique equilibrium outcome that is characterized by two properties.

Proposition 3. Suppose that Fs(a) strictly first order stochastically dominates

Fs′(a) if s < s′, and that the cost of moving from s to s′ 6= s is an increasing

function of the distance |s− s′|. In the unique equilibrium outcome,

(i) There is a sequence of cutoffs {âs, s = 1, . . . , S}, with âs weakly decreasing

in s, and â1 > a∗ = âS. Only students with ability greater than âs are

admitted from school s.

(ii) In school s ≤ S − 1, students with ability in [âs′ , âs′−1) move to school

s′ ≥ s+ 1; students in [âs, a] and [0, a∗) do not move.

That is, students who would not get into the U from their original school

will move to the closest school that will enable them to obtain a place at the U .

Since schools are stochastically ordered, movement is always to ex-ante lower

quality schools, and to the best (nearest) school that will allow a to be among

the top n.

If n < k, then some students are admitted at large. The proof shows that

they are all drawn from the highest-quality (lowest index) schools, which share

a common threshold âL that exceeds the threshold for all other schools. There

is no movement into those schools. In the trivial case that n is very small (i.e.,

1− Fs(a
∗) ≥ n for all s), the policy has no bite, all schools have some at-large

admission with âL = a∗, and there is no movement at all.

Figure 2 gives a graphical illustration of these flows in the case n = k. Stu-

dents from school 1 with achievement closely below the cutoff â1 (with mass x1,2

in the figure) will move to neighboring school 2, while their counterparts with

achievements closely above a∗ (with mass x1,3) need to move further to school

3 in order to ensure admission to the U . School 2 students with achievements

between a∗ and school 2’s cutoff (with mass x2,3) move to school 3. Notice also

that “cascades” may be part of the equilibrium allocation: school 2 students

with achievements closely below â2 are crowded out by the competition of in-

coming, high achieving students from school 1 (m2), inducing them to move to

school 3.
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The flows described in this case will tend to equalize average achievement

across schools: this is an easy consequence of our characterization if the mean

achievement in school 1 (and therefore all other schools) is below a∗. Mean

achievement falls in schools that are net exporters (schools with the initially

highest distributions), and rises in schools that are net importers (initially

lowest). However, further assumptions need to be maintained if these flows are

to result in decreased ethnic segregation as portrayed in Proposition 2.

a∗ = â3 â2 â1
school 1

school 2

school 3

x1,2x1,3

x2,3

m2 = x1,2

m3 = x1,3 + x2,3

Figure 2: Post-policy flows with three schools

Suppose that ethnic composition independent of a: it is the same for all a

within a school, but it differs across schools. This situation could arise from a

process similar to the one in which public schools are chosen in the US and some

other nations: parents choose communities and the schools therein on the basis

of their own achievement, aspirations for their children, or other attributes

correlated with their children’s achievement. Denote these attributes α and

suppose they take S values 1, . . . , S with the frequencies qs in the population.

Different ethnic groups g have different distributions pg (pgs 6= pg
′

s for at least

some s) over the attributes, and qs =
∑

g p
g
s.

A student’s achievement is the realization of a random variable with distri-

bution F(a|α), a continuous distribution with support [0, a] that is stochasti-

cally decreasing in α. If parents sort perfectly into communities by the attribute

α, then their children’s school achievement distributions will be Fs(a) = F(a|s),
and the Fs(a) will be stochastically decreasing in s. Moreover, the fraction of

group g in school s will be pgs, and the achievement distribution will be the

same Fs(a) for each for each group in school s. Any sample of students exit-

ing school s will have the same distribution of groups, as will any subsample

entering another school s′. Thus, in this case the unbiasedness conditions of
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Proposition 2 are satisfied by the flows depicted in Proposition 3, and it follows

that the top-n policy not only equalizes mean achievements across schools but

also reduces segregation.

To get some appreciation of the role played by independence for unbiased-

ness, consider the following example. Suppose that of the schools in Figure

2, Schools 1 and 2 are initially slightly integrated: they are populated by red

students, except for those in the interval [a∗, â2], who are all blue. School 3 is

entirely blue.10 Once the policy is implemented, students in [â2, â1), who are

all red, move from school 1 to school 2. Students in [a∗, â2), who are all blue,

move out of schools 1 and 2 into school 3. Thus after the policy, schools 1 and

2 are entirely red, while school 3 remains entirely blue: the outcome is now

perfect segregation, and integration has therefore decreased.

This example violates unbiasedness because the ethnic mix among movers

depends on the achievement level. In particular, the movers from school 1 are

ethnically diverse, more so than the school as a whole; the movers from school

2 are entirely blue but come from a largely red school. In neither case are

the emigrants ethnically representative of the school. Moreover, the targeting

is also biased: red movers target the overwhelmingly red school 2, while blue

movers target the entirely blue school 3. Notice this biased targeting occurs

even though there is no e preference for ethnic groups motivating movement.

This case is rather extreme in the degree of bias. For more moderate de-

partures from unbiasedness, Proposition 2 suggests that top−n policies will

decrease segregation Ultimately, whether they do or not is an empirical ques-

tion.

2.2 First Steps toward Bringing the Theory to the Data

A plausible hypothesis is that the distribution of ex-ante achievement referred

to in the discussion following Proposition 3 is stochastically increasing in socio-

economic status or higher for some ethnic groups than others. Texas high-

schools display some signs of student sorting, as shown in Figure 3: the per-

centage of minority students enrolled at a high school correlates positively with

the percentage of economically disadvantaged students and negatively with the

10The initial situation might arise if blue parents take advantage of a metropolitan-area

busing program that sends inner-city blues to largely red suburban schools.
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high school pass rate in TAAS.11 That is, a school’s ethnic composition is a

good predictor of socio-economic status and test score results. Out results

would then suggest that the policy would induce student flows from better (i.e.

majority) to worse (i.e. minority) schools, and that these flows tend to consist

proportionally of majority students, which in turn would reduce segregation.
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Figure 3: Share of minority and economically disadvantaged students (left) and

share of minority and TAAS pass rate (right). Source: AEIS data.

If the top-n policy does not require a minimum stay at a school in order to

be eligible, students have the opportunity to choose not only whether to move

between schools but also when to move. If we suppose that the moving cost can

be decomposed into a fixed component (e.g. the cost of moving house) and a

flow component (e.g. peer effects, reduced quality of teachers at the new school,

reduced contact with one’s original network of friends) that accrues with the

time spent in the new school, a student who has a purely strategic motive to

move in order to secure access to college, will prefer to make the move at a

later stage. Hence, students who move for strategic reasons will do so mainly in

later grades, suggesting that the effect on segregation should be small in early

grades and more pronounced in later grades.

The theoretical implication of late relocation is a useful guide for empirical

work. While Cullen et al. (2013) present evidence for strategic rematch between

8th and 10th grades under a top-n policy, it is not clear whether this effect is

large enough to change substantially the degree of high school segregation in

Texas. Our model suggests that strategic rematch is more likely to occur later,

between 9th and 12th grades, as high ability students would prefer to enjoy

11The figures use data for 1997, but the picture looks very similar for other school years.

A similar exercise using percentage of minority and average or median SAT score shows a

negative correlation.
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peer effects in segregated schools for as long as possible, and also that there

may be significant aggregate consequences for high school composition.

2.3 Predictions

The results in the previous section show that if schools are segregated with

respect to socioeconomic background such as race or SES, a top-n policy may

induce some desegregation in background, if socioeconomic background corre-

lates positively with education levels. This is because the policy can change

individuals’ ranking of different schools, making it profitable to move to a school

that would not have been chosen without the policy.

There are three results from the theoretical analysis that we will be able to

test in our empirical analysis.

(1) Arbitrage by students leads to lower segregation index in aggregate. Hence

the information index should decrease following the policy.

(2) Students who arbitrage “move down”: they move from schools with higher

average educational achievement to schools with lower average educational

achievement.

(3) Arbitrage should be more pronounced for students in the later grades.

3 A Closer Look at the Data

Figure 1 in the introduction suggests there was a persistent decrease in segre-

gation from 1998 onwards in 12th grade, but not in 9th grade, which coincides

with the start of the Texas Top Ten Percent policy. In this section we shall

investigate whether this is verified using school-level data and whether that is

consistent with strategic rematch using individual data.

3.1 Data and Descriptive Statistics

We use three databases for the school years 1994-1995 to 2000-2001 obtained

from the Texas Education Agency (TEA).

The first database contains school-level enrollment data. We use data on

student counts per grade and per race/ethnicity (classified into five groups:
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White, African American, Hispanic, Asian, and Native American).12 The data

are provided at the school (campus) level for all ethnic groups with more than

five students enrolled in school.13 We use this data to compute the segregation

measures that will be explained below.

The second one is the Academic Excellence Indicator System (AEIS).14 This

database provides information on several performance indicators at the school

level, e.g. average and median SAT and ACT scores, the share of students

taking ACT or SAT, of students above criterion, and of students completing

advanced courses.15 Additionally, this database provides information on the

Texas Assessment of Academic Skills (TAAS), a standardized test taken in

10th grade used in Texas between 1991 and 2002, and several indicators such

as dropouts, school composition, and attendance.

The third database contains individual-level data for students enrolled in

8th and 12th grades in a public school.16 For each student, we observe the

grade and school they are enrolled in, whether they are a transfer student,17

and their ethnic group and economic disadvantaged status. Each record is

assigned a unique student ID, allowing us to track students as they change

12We merge the school-level enrollment data with the Public Elementary/Secondary School

Universe Survey Data from the Common Core of Data (CCD) dataset of the National Center

for Education Statistics (NCES), accessible at http://nces.ed.gov/ccd/pubschuniv.asp. It

contains information such as school location and school type. By merging the TEA enrollment

counts and the CCD, using campus number (TEA) and state assigned school ID (NCES) as

unique identifiers, we have information on all schools that were active in Texas.
13If less than five students belong to an ethnic group in a given grade, the TEA masks

the data in compliance with the Family Educational Rights and Privacy Act (FERPA) of

1974. We use three different strategies to deal with masking: the first and the second replace

masked values by 0 and 2, respectively, and the third one replaces the masked value by a

random integer between 1 and 5. The results we report use the first strategy, but results

remain largely unchanged for the other strategies.
14The data can be accessed at http://ritter.tea.state.tx.us/perfreport/aeis/.
15The data are based on students graduating in the spring of a given year. For instance,

the data for 1998-99 provides information on students graduating in the spring 1998.
16Like the other databases these data are subject to masking based on FERPA regulations.
17Transfer students are students whose district of residence is different from their district

of enrollment, or whose campus of residence is different from their campus of enrollment.

Transfers are authorized by the school subject to regulations (Civil Action 5281, available

at http://ritter.tea.state.tx.us/pmi/ca5281/5281.html), giving schools some discretion. For

instance, transfer requests may be denied if “they will change the majority or minority

percentage of the school population by more than one percent (1%), in either the home or

the receiving district or the home or the receiving school.” (Civil Action 5281, A.3.b)
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schools, as long as they remain in the Texas education system. We restrict the

sample to students who switched schools at least once. These last two databases

enable us to identify patterns of students’ movements between schools.

Segregation Measures

To measure the degree of segregation empirically we use the mutual information

index and some of its components (for a discussion of this measure, see Reardon

and Firebaugh, 2002; Frankel and Volij, 2011; Mora and Ruiz-Castillo, 2009).

The basic component of the mutual information index is the local segregation

index. It compares the composition of a school s to the composition of a larger

unit x (e.g., state, region, county, MSA, or school district):18

Mx
s =

G∑
g=1

pgs log

(
pgs
pgx

)
, (3)

where pgs and pgx denote the share of students of an ethnic group g = 1, ..., G

in school s and in the benchmark unit x (e.g., state, region, county, MSA,

or school district), respectively. In our regressions the benchmark unit is the

region.

We also use two aggregate measures of segregation that are constructed

from the local segregation index. The first, presented in the introduction, is

the mutual information index. It can be calculated as:

M =
S∑

s=1

psM
Texas
s , (4)

where MTexas
s is the local segregation index comparing school to state compo-

sition and can be obtained by using (3), and ps is the share of Texan students

who attend school s.

The second aggregate measure of segregation is calculated within the county.19

The within-county segregation index, W c, can be calculated as:

W c =
∑
s∈C

pscM
c
s , (5)

18Note that these measures are calculated for a given grade in a given year. We omit the

subscripts here in order to simplify notation.
19We use the county, not the school district, as the relevant unit, since within-school district

segregation is zero by definition in school districts containing only one school.
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where psc is the share of students attending school s in county c, and M c
s is

given by (3) using the county as a benchmark unit. Note that the mutual

information index defined in (4) is the within-Texas segregation index.

Table 1 provides summary statistics for the main variables used in the re-

gressions. While the mean of the local segregation index (using the region as a

benchmark) has increased between the periods 1994-1996 and 1998-2000, the

increase seems to be less pronounced for 12th than for 9th grade. This is con-

sistent with a decrease in the difference of within-county segregation between

9th and 12th grades. The data also show that charter schools were established

in the post-treatment period (1998-2000). While only 0.8% of counties had a

charter school in the pre-treatment years, that proportion increased to 9.5%

after 1998. However, the average proportion of students attending a charter

school is still very small (0.2%), but see below for a discussion of the role of

charter schools. The summary statistics of individual level data show a mixed

picture. After the Top Ten Percent Law, moving students were more likely to

move to schools with less college bound students and lower SAT average, but

less likely to move to schools with lower TAAS pass rates and less Asian and

White students.

3.2 Empirical Strategy and Regression Results

We now verify whether the differential change in segregation observed in the

aggregate for the whole of Texas is observed as well at the school and county

level, i.e., whether segregation of individual schools and counties has changed

differentially. Under the Texas Top Ten Percent rule admission was granted

based on the class rank at the end of 11th grade, middle of 12th grade, or end of

12th grade. Only some schools imposed restrictions on a minimum attendance

period in order to qualify for the Top Ten Percent rule. Therefore, strategic

rematch may well be expected to take place as late as between 11th and 12th

grades for some schools, and we shall be interested in the possible rematch

occurring between 9th and 12th grades. Using 9th grade as the reference point

implies losing any strategic rematch that may have occurred earlier in students’

careers, which will tend to bias the estimates of the policy effects downwards.
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Local Segregation Index

We use a differences-in-differences approach and start with 9th grade as the

control group and 12th grade as the treatment group. Below we also introduce

10th and 11th grades to check for effects of the policy on these grades.

The dependent variable of interest in our difference-in-difference approach is

the local segregation index M r
yst (defined in (3)) for grade level y in school s at

time t, where the benchmark unit is the region r to which the school belongs.20

We consider school years 1994-1995 to 1996-1997 to be pre-treatment, while

1998-1999 to 2000-2001 correspond to post-treatment periods.21 Since the pol-

icy was signed in 1997 and implemented in 1998, school year 1997-1998 may

be partially affected by the reform and is therefore excluded from the analysis.

For grade levels y = {9; 12} we estimate the model:

M r
yst = β1 (G12ys × TOPt) + δδδ′T + uys + εyst, (6)

where G12ys = 1 if y = 12, TOPt = 1 if t ≥ 1997, T is a vector of year

dummies (or region-year dummies), uys is a school-grade fixed effect, and εyst

is the error term. The school-grade fixed effect allows for time invariant school

heterogeneity that may vary by grade. The vector of year dummies, T, controls

for the overall trend in segregation of all schools in Texas. Some specifications

also allow these trends to be region-specific to control for changes in the student

population in a given region that may be caused by immigration, for example.

The coefficient of interest in this regression is β1 and it indicates the relative

change in the local segregation index in the grade and school years affected by

the Top Ten Percent Law.

The estimation results are presented in Table 2. Columns (1) and (2) show

a significant decrease in school segregation for 12th grade as compared to 9th

grade coinciding with the Top Ten Percent Law. The relative reduction in 12th

grade corresponds to about 3% of a standard deviation in the local segregation

index. Interestingly, additional regression results (available from the authors)

indicate that this effect is not driven by schools located in larger school dis-

tricts or in MSAs. Thus, the effect we find seems not to operate through greater

20We adopt the Texas Educational Agency’s classification, which divides Texas into 20

regions. Each of these regions contains an Educational Service Center (ESC) and provides

support to the school districts under their responsibility.
21The results are very similar when using different masking strategies (i.e., replacing

masked observations by 2 or a random integer between 1 and 5). If we add or exclude

one school year on the pre- and post-treatment, the results also remain the same.
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school choice in the neighborhood, but rather through strategic choice of stu-

dents who move house and school district, possibly for exogenous reasons such

as a parental job change. We will return to this issue below.

Finally, we include data on 10th and 11th grades to detect in which grade

the decrease in segregation took place. For y = {9, 10, 11, 12}, we estimate:

M r
yst =β1(G12ys×TOPt) + β2(G11ys×TOPt) + β3(G10ys×TOPt)

+ δδδ′T + uys + εyst, (7)

The results are presented in columns (3) and (4). In both specifications, we

cannot reject that the magnitudes of the coefficient estimates are identical.

However, the estimates for the 10th grade are not statistically significant at

conventional levels. That is, while some of the decrease in segregation may have

already happened by 10th grade, a significant change occurs only beginning

with 11th grade. There seems to be little action between 11th and 12th grade

in terms of a change in segregation.

A possible concern with the results presented in Table 2 is that they may

reflect pre-existing trends in the local segregation indices. As a placebo, we

run equations (6) and (7) for school years 1990-1991 to 1996-1997, excluding

1993-1994. Table 3 presents the results. The coefficient estimates are positive

and not statistically significant. This indicates that our results for the Top Ten

Percent Law in Table 2 are not driven by pre-existing trends in the data.

Within-County Segregation

Another potential concern is that the observed relative decrease in segregation

after 1998 could be due to a cohort effect. In principle, there could be some

idiosyncrasies in later or earlier cohorts that generate the observed decrease

in segregation. A closer look at Figures 1 and 5 indicates a slight decrease in

segregation in 9th to 11th grades in the years 1995 to 1998.

In order to investigate this issue we focus on the within county measure

of segregation to analyze whether there was a decrease in segregation in 12th

grade relative to 9th grade of the same cohort (i.e., three years before). That

is, we compute the within-county segregation coefficient W c for each county

c, using (5). Using the within-county segregation measure instead of the local

segregation index allows us to capture some of the movement of students across

schools between these grades, a relatively common phenomenon in the Texas
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high school system.22

We estimate the following model, controlling for county (time-invariant)

heterogeneity:

W c
12t −W c

09(t−3) = βTOPt + δt+ uc + εct, (8)

where W cyt is the within-county segregation index at county c, grade y, at

time t, TOPt = 1 starting in 1997, t is a linear time trend, uc is a county fixed

effect, and εct is the error term. Table 4 presents the results, again for school

years 1994-1995 to 2000-2001 excluding 1997-1998. The coefficient associated

with the Top Ten Percent policy, β, is negative and significant. The magnitude

of the coefficient estimate increases when controlling for a linear time trend.

The Top Ten Percent policy is associated with a reduction in the within-county

segregation index in 12th grade compared to 9th grade of the same cohort of

10.4% of one standard deviation.23

Strategic Movement of Students

The evidence presented so far suggests a decrease in high school segregation

in 12th grade relative to that in 9th grade both within the same year and the

same cohort, coinciding with the introduction of the Top Ten Percent Law.

Our theoretical model in Section 2 would imply that this decrease was induced

by strategic movement of students across schools.

Changing schools is a relatively common phenomenon in Texas, however.

The fluctuation of students between high schools in Texas is high, at more than

10% of the student population per year before and after the policy change. Al-

most 50% of Texan students will change schools between the 8th and 12th

grades, the great majority of them because the following school grade is not

offered in their school (92% of moves). Indeed, the strategic movement of stu-

dents necessary to bring about the decrease in segregation could have been

simply part of the natural fluctuation (a simulation shows that strategic move-

ment of about 1.5% of the student population would easily suffice to generate

the effect). That is, students who have to move schools for an exogenous reason

could have simply done so strategically.

22Focusing on within school district segregation instead yields similar results. The draw-

back of using districts is that many districts contain only one school and the within-district

segregation measure would be by definition one, as mentioned above.
23Shortening the time span and losing observations decreases the significance level, but the

coefficient remains negative. Using different unmasking strategies yields very similar results.
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Another indicator for strategic movements may be the use of transfers:

transfer students are students whose district of residence is not the same as

the school district they attend. Indeed, as shown in Figure 6, the number of

transfer students has more than doubled since 1998, which is in line with our

expectations, even when one discounts charter school students.24

To examine the hypothesis that at least some students who changed schools

did so strategically, be it by applying for a transfer or in the course of natural

fluctuation, we will use student level individual data. That is, our hypothesis

is that students who change schools will prefer schools where they are more

likely to be in the top ten percent of their class. We are interested in whether

the introduction of the Top Ten Percent policy was associated with a change

in the characteristics of target schools of moving students, and whether the

change differed between lower and higher grades. Moreover, according to the

predictions of our theoretical model, strategic movements are to be expected

specifically by students who “move down”, from schools with higher educational

endowment to schools with lower average educational endowment. Therefore

we examine possible differences in the policy effects on poor and non-poor

students, measured by whether they qualify for a free school meal. Finally,

in the model students move strategically if the benefits of moving outweigh

its cost. Therefore we would expect that strategic movements are particularly

pertinent among moves within the same school district, and less so among

moves across school districts. To test this prediction we split the sample of

student moves into those occuring within and those across districts. We would

expect that treatment effects are greater for within district moves.

Our approach differs from the one by Cullen et al. (2013) who use stu-

dents’ available choice sets (i.e., the presence of suitable schools in the vicinity)

for identification of a student’s likelihood to move, because our identification

strategy relies instead on the differential effect of the policy for different grades,

different students and different moving cost, conditional on a student moving

schools. Moreover, as mentioned above, the decrease in segregation does not

appear to be related to more school choice, as the effect is not stronger for

schools located in larger school districts or in MSAs.

Specifically, we examine whether after the introduction of the policy movers

24Students attending a charter schools are usually considered to be transfer students. The

role of introducing charter schools in explaining the decrease in segregation appears rather

limited, see the robustness checks below.
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in 11th and 12th grades were more likely to move to schools with less college

bound students, lower SAT average, lower TAAS pass rate, and less major-

ity students (i.e., Asians and Whites) than their school of origin compared

to 9th and 10th grade movers. These variables are plausible indicators of a

move to an academically worse school. We therefore estimate equations with

a dependent variable Yit that takes the value 1 if this is indeed the case (e.g.,

school of destination has less college-bound students than school of origin) and

0 otherwise:

Yit = β1 (G12i × TOPt) + β2 (G11i × TOPt) + γγγ′Gi + ρρρ′Xi + δδδ′T + εit, (9)

where Gi is a vector of grade dummies, Xi is a vector of individual and school

controls including ethnic group, economic disadvantage status, a dummy for

grade not offered, and a constant; the other variables are defined as above.

After running the regressions for the full sample, we estimate (9) separately

for economically disadvantaged students and non-economically disadvantaged

students (excluding economic disadvantage status as a control variable), and

we also split the sample between within and across district moves.25

Our hypothesis is that economically disadvantaged (i.e. poor) students have

less incentive to strategically match into academically worse schools, both be-

cause they tend to be less likely to be among the top ten percent in a new school

and because they may have less to gain from attending college, consistent with

the theory presented above.

The results are presented in Tables 5 to 8. Table 5 shows that the probability

of moving to a school with less college bound students than the previous school

increases for movers in the 11th and 12th grades by 2.8 and 6.4 percentage

points, respectively. This is amplified under the Top Ten Percent rule, by

2.5 and 3.1 percentage points for 11th and 12th grades, respectively. This

corresponds to an increase of 4.7% and 5.9%, respectively. Note that this effect

is driven mainly by non-poor students and by moves within districts. The

coefficient estimates for economically disadvantaged students and moves across

districts are positive, but not statistically significant. That is, under the Top

Ten Percent rule relatively well-off students in higher grades were significantly

25Numbers of observations differ across regressions depending on the dependent variable

used, as not all variables are available for every school. For example, if students move from

a school without 12th grade, the information on the share of college bound students is not

available for that school, so that data for these students will be missing.
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more likely to move to academically worse schools within the same district,

unlike economically disadvantaged students.

Table 6 shows a similar pattern for SAT averages. Considering the transition

from 11th to 12th grade, the probability of moving to a school with lower SAT

average than the school of origin increases by 3.2 percentage points for non-

economically disadvantaged students. This corresponds to a 7.4% increase,

given that the sample mean of the dependent variable is 0.431. The same effect

is almost zero and not statistically significant for economically disadvantaged

students. The effect is also much stronger for moves that occur within districts.

While well-off students tend to move down in terms of the academic quality

measured by average SAT score after the Top Ten Percent policy has been

introduced, economically disadvantaged student tend to move up, if anything.

A similar picture emerges for TAAS pass rates in Table 7. Both poor and

well-off students are more likely to choose a school with lower TAAS pass

rate than their previous school within the same district after the introduction

of the Top Ten Percent plan. The effect is much weaker for the economically

disadvantaged students, however: their probability increases by 7.0% compared

to a 14.3% increase for non-poor students in 12th grade, for instance.

Finally, students are typically less likely to move to schools with less Asian

and White students in the 11th and 12th grades (i.e., regression coefficient

estimates are negative). After the introduction of the Top Ten Percent Law,

however, the likelihood of moving to a school with less Asian and White stu-

dents increased for both grades. As before, this effect is mainly driven by

non-poor students and by moves within districts. Under the Top Ten Percent

Law non-poor students were 7.9% and 1.8% more likely to move to a school

with less Asians and Whites in 11th and 12th grades, respectively.

Taken together, these results very strongly suggest that students who have

moved schools in 11th and 12th grades were more likely to choose their new

school strategically than students in lower grades after the introduction of the

Top Ten Percent policy. In particular, the data are consistent with students

targeting schools with a lower proportion of college bound students, lower SAT

average, lower TAAS pass rates, and less Asian and White students, and with

the fact that this is particularly pronounced for students who were not eco-

nomically disadvantaged, who arguably tend to benefit more from university

education and profit more from switching schools under the Top Ten Percent

rule. Moreover, these strategic moves tend to occur within the school districts,
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as predicted by our theoretical model.

Robustness Check: Charter Schools

The results presented above indicate a decrease in within-county segregation

that took place after the Top Ten Percent policy was introduced in 1998. An ob-

vious concern is that other changes affecting the segregation at lower and higher

grades differentially may have occurred at the same time. The only other major

policy that could potentially have had a similar aggregate effect and occurred

contemporaneously was the introduction of charter schools. Indeed, the first

charter schools were starting in 1996, but the first wave of expansion began in

1998, coinciding with the introduction of the Top Ten Percent Law. Charter

schools accept students from multiple school districts, and thus their prolif-

eration could contribute to a decrease in segregation, mechanically through

redistricting or by allowing students a possibility to strategically relocate.26

To test for a possible effect of charter schools on segregation we use two

different indicators for charter school prevalence. CHAc is a dummy variable

equal to 1 if there is a charter school in a county c in a given year. The

variable %STUDCHc is the percentage of students in a county c attending a

charter school, which accounts for the intensity in charter school prevalence.

We interact both variables with the indicator of the Top Ten Percent reform. A

significant coefficient estimate in any of these interaction terms would indicate

that charter schools were contributing to the within-county desegregation effect

associated with the Top Ten Percent reform.

Table 9 presents the results of the within-county segregation regression.

The coefficients for the Top Ten Percent policy are negative and significant

as before. Moreover, the existence of charter schools does not seem to reduce

within-county segregation, as the coefficient estimates are statistically indis-

tinguishable from zero at conventional levels, both when one considers the

presence of charter schools in a county and when one uses the percentage of

students enrolled in charter schools.27

26In Texas there are two types of charter schools. The great majority of charter schools are

open-enrollment. These are new schools that were assigned their own, new school district.

Before 1998 there were only 12 open-enrollment charter schools, but during the years 1996 to

2007 there were 328 open-enrollment charter schools active at some time. The second type

are charter campus high schools, which were created only in 2006, numbering 16 in 2007.
27The reduced number of charter schools generates large standard errors associated with

the estimates, but it also makes it unlikely that charter schools are responsible for the ob-
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Robustness Check: Residential Segregation

Another potential concern is that the decrease in high school segregation might

simply reflect residential desegregation, given that students usually attend

schools in their district of residence. Using population data, we compute mu-

tual information indices for the total population and for the group aged 15-19.

The indices are calculated by comparing the composition of the population in a

given county with the composition of the population of the state. For compar-

ison we also plot the mutual information index for 9th to 12th grades with the

county as the unit of observation. Figure 4 shows that, if anything, residential

segregation has increased over the period 1990 to 199928 and cannot explain

the decrease in segregation among the student population over the period.

4 Conclusion

Theory as well as evidence show that a policy intended to achieve integration

at the college level may actually have achieved it in high schools. By basing

admission on relative performance at high school, the Texas Top Ten Percent

policy can induce students with high continuation value from attending college

to match into low quality schools, thereby eliminating competition. When

educational attainment at earlier stages correlate with ethnicity, top-n percent

laws will achieve some integration in ethnic backgrounds in high schools. If

students value high quality peers, strategic movement will be delayed as long

as possible, however. Using enrollment data for all Texas high schools this is

precisely what we find: after the policy was introduced segregation decreases,

more so for higher grades.

A numerical simulation taking into account the actual school composition

shows that in order to generate a drop of around 0.6 in the coefficient of segrega-

tion for the whole of Texas, it would suffice that at least around 1,500 students

moved schools strategically (of about 20,000 students switching school each

year in each grade). On the other hand, from 1998 onwards the number of res-

idence preserving transfer students in grades 8-12 increased by an additional

3,000 students per year, see Figure 6. At least part of this movement could

have led to successful crowding out of minority students in admission to the UT

served decrease in segregation.
28Starting in 2000, individuals were able to choose more than one race/ethnicity. Therefore,

we had to limit the analysis to the period 1990-1999.
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flagship campuses at Austin and Dallas, as well as A & M: comparing actual

admission numbers in 1999 and 2000 to expected admission numbers supposing

that the minority share under the Top Ten Percent Law would equal the one

under affirmative action up to 1996 produces a shortfall of around 650 minority

students per year (although this ignores both demographic trends, increasing

the number of minority students in the population over time amplifying the

effect, and possible high school composition effects, since top deciles of high

quality high school tend to consist over proportionally of majority students,

mitigating the effect of the Top Ten Percent policy). These numbers appear

consistent since (i) some of the moving students are from minorities and (ii)

the mere opportunity to increase one’s probability to access a flagship campus

may suffice to induce a move of schools, so that each successful strategic move

resulting in crowding a minority student may be accompanied be several un-

successful ones. For at the time a decision to move has to be made, it is likely

that there is still some uncertainty about one’s final performance that will be

used to determine admission. Then one might contemplate a move of schools

even if one is below the threshold for eligibility in both schools, as there is a

chance to get over the bar, and a better chance in a worse school. By the same

token, even someone fairly high up in the achievement distribution might move

as insurance.

That is, top-N percent policies may be more effective for achieving broader

social goals than was previously understood. This is relevant in particular as

current court decisions (for instance, the Supreme Court ruling on Fisher vs.

University of Texas in 2013) emphasize the use of markers other than race as

a base for affirmative action. While in our case desegregation in high schools

was limited to higher grades and our measured effect on segregation levels is

small, our results suggest that a properly designed top-n policy could be used

to achieve desegregation both in earlier and later stages. How incentives for

students to acquire education at high school and in college can be affected

optimally by such policies is an interesting question for future research.

The optimal design of a policy is beyond the scope of this paper, but we

can provide some insights from our analysis. By the neutrality theorem, if the

cost of moving is lower than the incremental value of being admitted at the

university, the only effective way to increase diversity at the university level is to

increase the capacity k of the university. This will have two effects; first it will

decrease a∗ and second it will reduce movement of students, hence integration
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in high schools. There is therefore a substitution between integration at the

college level and integration at the high school level when the regulator adjusts

the capacity of the university for the same top-N percent policy.

If n increases, keeping the capacity k fixed, there is more movement of

students among schools. Hence if the goal is also to increase diversity in high

schools, n and k should covary positively; in fact n = k will maximize movement

at the school level. However the benefit of reduced segregation at the school

level should probably be contrasted with the increased moving costs borne by

students who arbitrage against the top-n policy, suggestion that n < k may be

optimal.
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Appendix 1: Proofs

Proof of Proposition 1

In the text we have established that any equilibrium must satisfy neutrality. To

ensure this is not a vacuous result, the following provides a proof of existence.

First, we establish that all equilibria are characterised by cutoff values âs in

each school s that determine which students move out. Using this structure we

then establish existence of an equilibrium satisfying neutrality.

Lemma 1. Any equilibrium has cutoff values âs, one for each school s such

that:

(i) a student in school s is admitted to the U if a ≥ âs.

(ii) Define a = mins{âs}. Then, σ(a, s, s) = 1 if a < a, or a ≥ âs.

(iii)
∑

s′ 6=s σ(a, s, s′) = 1 if a ∈ [a, âs).

Proof. (i) For a given strategy profile σ, there are new distributions F̂s(a)

and new masses q̂s of students. Given these, if a student with a in school

s is admitted to the U (either through the top-n policy or through at-large

admission) then a student with a′ > a in school s is admitted to the U as well.

Define by âs the minimal ability such that a student in school s is admitted to

the U .

(ii) By construction a student a < a cannot be admitted in any school s′,

hence σ(a, s, s) = 1 is a strict best response for such students, because moving

is costly. A student from school s with a ≥ âs can be admitted in her initial

school; hence σ(a, s, s) = 1 is a strict best response for such a student since

moving is costly.

(iii) Students from school s in a ∈ [a, âs) are not admitted if they stay and

get admitted in another school if they move; since the cost of moving is smaller

than the benefit of being admitted, they should move to another school with a

cutoff less that their ability; hence
∑

s′ 6=s σ(a, s, s′) = 1.
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Under neutrality only students with a ≥ a∗ are admitted to the U . This

implies that a = a∗. Since any equilibrium satisfies neutrality, cutoffs lie in the

interval [a∗, a].

Lemma 1 states that any equilibrium entails a set of thresholds {â1, . . . , âS}.
In each school, the set of students who attend the U are natives with attainment

above the threshold plus any “immigrants”; other students may leave. By

Lemma 1 and neutrality all students below a∗ remain in their initial school.

Denote by âNs the lowest achievement admitted in equilibrium via the top-n

rule: 1−F̂s(â
N
s ) = n. In case n < k, some students are admitted at large. Let âLs

be the lowest such student from school s. In equilibrium, we must have âLs = âLs′

for any two schools s, s′ admitting students at large; if instead âLs < âLs′ < âNs′ ,

there are students in s who are admitted at large, while higher attainment

students originally in s′ (those in (âLs , â
L
s′) could also have been admitted at large

simply by staying put). Thus we write âL for the common at large threshold,

and âs = min{âNs , âL}. Note that
∑

s q̂sF̂s(â
N
s ) =

∑
s qsFs(â

N
s ) = 1 − n and∑

s qsFs(a
∗) = 1− k.

Immigrants to s consist of those who, given the threshold in their own

school s′, find s to be the cheapest school to move to with a threshold below

their attainment. Thus the measure of students who migrate from s′ to s

is qs′(Fs′(âs′) − Fs′(âs)) if âs′ > âs and s = arg min{s′′|âs′>âs′′} c(s
′, s′′) (since

c(s′′, s) 6= c(s′′s′) for all s, s′ the minimum is unique). Define Ms
s′(â) = qs′ if

âs′ > âs and s = arg min{s′′|âs′>âs′′} c(s
′, s′′), and 0 otherwise.

The threshold to be admitted in equilibrium through the top-n rule, âNs ,

has to satisfy:

qs(1− Fs(â
N
s )) +

∑
s′

Ms
s′(â)(Fs′(min{âNs′ , âL})− Fs′(â

N
s ))

= nqs(1− Fs(â
N
s )) + n

∑
s′

[Ms
s′(â)(Fs′(min{âNs′ , âL})− Fs′(â

N
s ))]

+ nqs max{Fs(â
N
s )− Fs(â

L), 0}+ nqsFs(a
∗).

That is, in each school s the natives above the top-n threshold plus the immi-

grants (who only move in if they are admitted through the top-n rule) constitute

N percent of the equilibrium population, which consists of natives and immi-

grants admitted through the top-n rule, natives admitted at large and natives

who are not admitted to the U . The last two terms on the right hand side

denote those admitted at large, if any, and those who are not admitted at all.
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Letting ωs ≡ n
1−nqsFs(a

∗) and â = (âN1 , . . . , â
N
S , â

L) we can rewrite this

condition as the requirement that the “excess demand” in school s be zero:

zs(â) ≡ qs(1− Fs(â
N
s )) +

∑
s′

[Ms
s′(â)(Fs′(min{âNs′ , âL})− Fs′(â

N
s ))]

− n

1− n
qs max{Fs(â

N
s )− Fs(â

L), 0} − ωs = 0.

The common threshold for at-large admission âL has to satisfy the capacity

constraint; thus

zS+1(â) ≡
∑
s

qs max{Fs(â
N
s )− Fs(â

L), 0} − (k − n) = 0.

Let a = (a1, . . . , aS+1) ∈ [a∗, a]S+1. Note that continuity of the c.d.f’s {Fs}
implies z(a) = (z1(a), . . . , zS+1(a)) is continuous. Define a map B : [a∗, a]S+1 →
[a∗, a]S+1 by

Bs(a) = max[min(zs(a) + as, a), a∗] for s = 1, . . . , S and

BS+1(a) = max[min(zS+1(a) + aS+1, a), a∗].

B(·) is continuous and therefore by Brouwer’s theorem has a fixed point â =

(âN1 , . . . , â
N
S , â

L) ∈ [a∗, a]S+1. We claim that â is an equilibrium for our model,

i.e., that z(â) = 0.

Start with zS+1(â). First, âL 6= a for k > n; if instead âL = a, we would

have BS+1(â) = max{a − (k − n), a∗} < a, a contradiction. But for k = n,

zS+1(â) = 0 when âL = a.

Second, if âL ∈ (a∗, a), then zS+1(â) + âL ∈ (a∗, a) as well; assuming oth-

erwise leads to a contradiction: if zS+1(â) + âL ≥ a then BS+1(â) = a 6= aL.

Similarly, supposing that zS+1(â) + a∗ ≤ a∗ would imply BS+1(â) = a∗ 6= aL.

Therefore zS+1(â) = 0, as desired.

Third, if âL = a∗, then zS+1(â) = 0, because max{Fs(â
N
s ) − Fs(a

∗), 0} =

Fs(â
N
s ) − Fs(â

∗), so
∑

s qs(Fs(â
N
s ) − Fs(â

∗)) = k − n by definition (since∑
s qsFs(a

∗) = 1− k and 1− n =
∑

s q̂sF̂s(â
N
s ) =

∑
s qsFs(â

N
s )).

Hence, for any fixed point â we have that zS+1(â) = 0.

Turning to zs(â
N), note first that âNs 6= a for any s; if instead âNs = a, we

would have Bs(â) = max{a− n
1−nqs(1−Fs(â

L))− ωs, a
∗} < a, a contradiction.

Second, if âNs ∈ (a∗, a), then, to the case of âL above, Bs(â) = zs(â) + âNs ,

which implies zs(â) = 0.

Third, if âNs = a∗, then zs(â)+a∗ < a, else Bs(â) = a > a∗, a contradiction.

Thus if zs(â) + a∗ ≥ a∗, then Bs(â) = zs(â) + a∗ = a∗, so zs(â) = 0, as desired.

31



The final possibility is that zs(â) + a∗ < a∗, but this implies zs(â) < 0, which

we now show leads to a contradiction.

We have shown zs(â) ≤ 0 for all s = 1, . . . , S; if zs(â) < 0 for some s,

which can only happen if âs = a∗, then
∑

s≤S zs(â) < 0. Denote by Ms =∑
s′ [Ms

s′(â)(Fs′(min{âNs′ , âL}) − Fs′(a
∗))] the mass of immigrants into s. The

mass of “emigrants” Xs′ from s′ is qs′(Fs′(min{âNs′ , âL}) − Fs′(a
∗)) (recall we

are supposing âNs = a∗). Since the system is closed,
∑

sMs =
∑

sXs. Then

0 >
∑
s≤S

zs(â) =
∑
s≤S

[qs(1− Fs(â
N
s )) +Ms −

n

1− n
qs
(
max{Fs(â

N
s )− Fs(â

L), 0}+ Fs(a
∗)
)
]

=
∑
s≤S

[qs(1− Fs(â
N
s )) +Xs −

n

1− n
qs
(
max{Fs(â

N
s )− Fs(â

L), 0}+ Fs(a
∗)
)
]

=
∑
s≤S

[qs(1− Fs(â
N
s )) + qs(Fs(min{âNs , âL})− Fs(a

∗))

− n

1− n
qs max{Fs(â

N
s )− Fs(â

L), 0} − n

1− n
qsFs(a

∗)]

=
∑
s≤S

qs

[
1− 1

1− n
Fs(a

∗)

]
−

∑
s:âNs ≥âL

qs
Fs(â

N
s )− Fs(â

L)

1− n

Since zS+1(â) can be written as
∑

s:âNs ≥âL
qs[Fs(â

N
s ) − Fs(â

L)] − (k − n), and

we have established that zS+1(â) = 0, using
∑

s qsFs(a
∗) = 1− k, the last line

vanishes, and we obtain 0 >
∑

s≤S zs(â) = 0, a contradiction. We conclude

that zs(â) = 0.

Proof of Proposition 2

Let us denote by xs,s′ the mass of students from school s who move to school

s′, ms,s′ the mass of students entering school s from school s′; xs the mass of

students leaving school s; ms the mass of students entering school s. Note the

importance of our assumption that moving decisions depends only on ability:

it implies that the ratios of the masses of students from different groups in

school s′ entering school s from school s′ are equal to the ratios of their initial

proportions in school s′. That is, the proportion of group g among students

moving to s from s′ is pgs′ and among students who stay at s by pgs.

The flows must balance, that is

ms =
∑
s′

xs′,s and
∑
s

xs =
∑
s

ms. (10)
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In equilibrium, accounting for the equilibrium movement of students, we have

new proportions of groups within school s:

p̂gs =
(qs − xs)pgs +

∑
s′ ms,s′p

g
s′

qs − xs +ms

. (11)

where qs − xs + ms is the equilibrium mass of students in school s. The new

segregation index is

Î = A1(p)− A2(p)
∑
s

(qs − xs +ms)H(p̂s).

Hence the change in segregation indexes Î − I is proportional to∑
s

(qsH(ps)− (qs − xs +ms)H(p̂s))

The new proportion of students of background g can be written as,

p̂gs =
qs − xs

qs − xs +ms

pgs +
∑
s′

ms,s′

qs − xs +ms

pgs′ ,

concavity of H(p) and the fact that the weights are independent of g imply

that

H(p̂s) ≥
qs − xs

qs − xs +ms

H(ps) +
∑
s′

ms,s′

qs − xs +ms

H(ps′).

where the inequality is strict if ms 6= 0 since ps 6= ps′ . Hence, we have

Î − I <
∑
s

(
xsH(ps)−

∑
s′

ms,s′H(ps′)

)
=
∑
s

xsH(ps)−
∑
s

∑
s′

ms,s′H(ps′)

=
∑
s

xsH(ps)−
∑
s′

(∑
s

ms,s′

)
H(ps′)

= 0

where the strict inequality is due to the assumption that a positive mass of

students move (hence ms 6= 0 for some s), and that ps 6= ps′ for all schools s, s′.

The last equality follows (10). Hence we have Î − I < 0 as claimed.
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Proof of Proposition 3

As shown in the proof of Proposition 1, equilibrium is characterized by a set

of thresholds {âN1 , . . . , âNS , âL}. Students in school s with a ≥ âNs are admitted

through the top-n policy; if n < k there will be students admitted at large with

achievement a ∈ [âL, âNs ). Hence, the cutoff for admission to the U in school s

is âs = min{âL, âNs } and cutoffs are at most equal to âL.

Note that all schools s with cutoff âs = âL cannot have students moving

in: any student who would be admitted to the U through s would also have

been admitted in their initial school and, because of the moving cost, would

have strictly preferred to stay there. The population of students admitted

from such a school is therefore qs(1−Fs(â
L)), and its equilibrium population is

qs(1− Fs(â
L)) + qsFs(a

∗), since all students in [a∗, âL] have incentives to move

elsewhere.

For schools that have students admitted at large, with âNs ≥ âL, it must be

that
qs(1− Fs(â

L)

qs(1− Fs(âL) + qsFs(a∗)
≥ n,

i.e., a student at the at-large threshold must be outside the top N percent.

Denote the set of schools that admit students at large by L; given âL a

school s ∈ L if 1 − Fs(â
L) ≥ n

1−nFs(a
∗). Note that s ∈ L implies that s′ ∈ L

if s′ < s, since by hypothesis 1− Fs′(â
L) > 1− Fs(â

L) ≥ n
1−nFs(a

∗). Therefore

there is an index s̄ such that s ∈ L if s ≤ s̄, and all s ≤ s̄ have âs = âL.

The complementary set T of schools s > s̄ have thresholds âs = âNs < âL

and admit students only through the top-n policy. Denote by [1] the school in

T that has the highest equilibrium threshold, and assume it is not school s̄+ 1.

The only students who would like to move to school [1] are students a ≥ â[1],

but below the cutoff in their own school; the only candidates are students from

schools in L. However, since [1] > s̄ + 1, students in schools in L with ability

in [â[1], â
L) prefer to move to school s̄+ 1, since this also ensures admission but

does so at lower cost. Hence, [1] receives no new students, while school s̄ + 1

may have new students; denote them by ms̄+1. Then

1− Fs̄+1(âs̄+1) +ms̄+1

1− Fs̄+1(âs̄+1) +ms̄+1 + Fs̄+1(a∗)
=

1− F[1](â[1])

1− F[1](â[1]) + F[1](a∗)
= n

Cross multiply and cancel terms to get to get

F[1](a
∗)(1− Fs̄+1(âs̄+1)) + F[1](a

∗)ms̄+1 = Fs̄+1(a∗)(1− F[1](â[1]))
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or

1− Fs̄+1(âs̄+1) +ms̄+1

1− F[1](â[1])
=
Fs̄+1(a∗)

F[1](a∗)

The right hand side is less than 1 by FOSD. The left side weakly exceeds
1−Fs̄+1(âs̄+1)

1−F[1](a[1])
, since ms̄+1 ≥ 0. Thus, 1−Fs̄+1(âs̄+1)

1−F[1](a[1])
< 1, implying

Fs̄+1(âs̄+1) > F[1](â[1])

But â[1] > âs̄+1 implies

Fs̄+1(â[1]) > Fs̄+1(âs̄+1) > F[1](â[1]),

which contradicts FOSD.

The above argument can be repeated for schools greater than s̄ + 1: sup-

posing that school [2] ∈ T is not school s̄ + 2 leads to a similar contradiction,

and so on through school S.

Monotonicity in âs and students’ preference for moving to the closest school

proves (ii).

For uniqueness, start with aL and derive then cutoffs âs for s > s̄ construc-

tively. From the proof of Proposition 1 we know that the equilibrium cutoff aL

satisfies ∑
s∈L

qs(Fs(â
N
s )− Fs(â

L)) = k − n. (12)

The thresholds for admission through the top-n rule in schools s ∈ L are:

qs(1− Fs(â
N
s )

qs(1− Fs(âL) + qsFs(a∗)
= n.

Therefore Fs(â
N
s ) = 1− n(1− Fs(â

L)− Fs(a
∗)) and (12) becomes∑

L

qs((1− n)(1− Fs(â
L)− nFs(a

∗)) = k − n, (13)

The LHS is decreasing in âL because both the set L = {s : 1 − Fs(â
L) ≥

n
1−nFs(a

∗)} is non-increasing and the summands are positive and decreasing in

âL. For âL = â∗, the LHS is strictly greater than k−n since there is at least one

school s with 1−Fs(a
∗) < n. On the other hand, at âL = a the set L is empty

so the LHS is zero. Hence, there is a unique âL solving (13) whenever n < k (if

n = k there is a continuum of solutions [âN1 , a], where 1−F1(âN1 ) = n
1−nF1(a∗);
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set âL = âN1 in this case). Given the solution âL, the set L is defined (possibly

comprising only school 1), and âs = âL for s ∈ L.

For s ∈ T , admission is through the top-n rule so that cutoffs are defined

by:
qs(1− Fs(âs)) +ms

qs(1− Fs(âs)) +ms + qsFs(a∗)
= n.

which is equivalent to

1− Fs(âs) +
ms

qs
=

n

1− n
Fs(a

∗). (14)

Proceeding recursively, given âs−1, note that ms =
∑

s′≤s−1 qs′ [Fs′(âs−1) −
Fs′(âs)] from part (ii), and (14) can therefore be written

1−
∑
s′≤s

qs′

qs
Fs′(âs) +

∑
s′≤s−1

qs′

qs
Fs′(âs−1) =

n

1− n
Fs(a

∗).

Since the LHS is strictly decreasing in âs, the solution âs is unique given âs−1,

which establishes uniqueness of the sequence {âs}.
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Appendix 2: Tables and Figures
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Source: U.S. Census Bureau and Texas Education Agency.

Figure 4: Residential versus School System Segregation
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Figure 5: Time series of the mutual information index for 10th and 11th grades
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Figure 6: Share of students in 8th to 12th grades with a district of enrollment

different from district of residence, 1993-2007. The dashed line corresponds to

the total number, while the solid corresponds to all students except for those

attending charter schools. Source: TEA.
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Table 1: Descriptive Statistics

Before (1994-1996) After (1998-2000)

Mean Std. N Mean Std. N

Dev. Dev.

A. School Level Data

A.1. Local segregation index with respect to region

9th grade 0.134 0.132 4,563 0.150 0.151 5,000

10th grade 0.134 0.142 4,253 0.149 0.160 4,633

11th grade 0.128 0.139 4,103 0.140 0.153 4,411

12th grade 0.127 0.138 4,086 0.136 0.150 4,335

9th to 12th grades 0.131 0.138 17,005 0.144 0.154 18,379

9th and 12th grades 0.130 0.135 8,649 0.144 0.151 9,335

B. County Level Data

B.1. Within-county segregation index

12th - 9th grade 0.000 0.012 756 -0.001 0.016 756

B.2. Charter schools

Presence 0.008 0.089 756 0.095 0.294 756

Percentage of students 0.000 0.000 756 0.002 0.011 756

C. Individual Level Data

C.1. Probabiliy of moving to a school with ... than school of origin

less college bound students 0.514 0.500 72,749 0.546 0.498 78,289

lower SAT average 0.377 0.485 64,714 0.491 0.500 67,097

lower TAAS pass rate 0.417 0.493 97,968 0.357 0.479 112,381

less Asian and White students 0.592 0.492 679,962 0.585 0.493 784,266

Notes: All the differences between the before and after means are statistically significant at

the 1% level, apart from the within-county segregation index that is statistically significant at

the 5% level.
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Table 2: Fixed effect estimation, 9th to 12th grades, school years

from 1994 to 2000 (excl. 1997)

Dep. Var.: M r
ys: Local segregation index with respect to region

(1) (2) (3) (4)

G12× TOP -0.004* -0.004* -0.004* -0.004*

(0.002) (0.002) (0.002) (0.002)

G11× TOP -0.004* -0.004*

(0.002) (0.002)

G10× TOP -0.003 -0.003

(0.002) (0.002)

Constant 0.135*** 0.135*** 0.136*** 0.136***

(0.001) (0.001) (0.001) (0.001)

Fixed effects:

School-grade yes yes yes yes

region-year no yes no yes

Year yes no yes no

Mean of Dep. Var. 0.137 0.137 0.138 0.138

Observations 17,984 17,984 35,384 35,384

School-grade 3,722 3,722 7,274 7,274

r-squared (within) 0.002 0.011 0.001 0.008

Notes: * significant at 10%, ** significant at 5%, *** significant at 1%.

robust standard errors in parentheses. The masked observations were

converted to zero. The variable Gy × TOP = 1 if y = {10, 11, 12} and

t ≥ 1997 and 0 otherwise.
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Table 3: Placebo analysis: Fixed effect estimation, 9th to 12th

grades, school years from 1990 to 1996 (excl. 1993)

Dep. Var.: M r
ys: Local segregation index with respect to region

(1) (2) (3) (4)

G12× T93 0.002 0.002 0.002 0.002

(0.002) (0.002) (0.002) (0.002)

G11× T93 0.001 0.001

(0.002) (0.002)

G10× T93 0.001 0.001

(0.002) (0.002)

Constant 0.125*** 0.126*** 0.127*** 0.127***

(0.001) (0.001) (0.001) (0.001)

Fixed effects:

School-grade yes yes yes yes

region-year no yes no yes

Year yes no yes no

Mean of Dep. Var. 0.127 0.127 0.128 0.128

Observations 16,435 16,435 32,441 32,441

School-grade 3,301 3,301 6,454 6,454

r-squared (within) 0.001 0.012 0.000 0.008

Notes: * significant at 10%, ** significant at 5%, *** significant at 1%.

robust standard errors in parentheses. The masked observations were

converted to zero. The variable Gy × T93 = 1 if y = {10, 11, 12} and

t ≥ 1993 and 0 otherwise.
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Table 4: Fixed effect estimation, 12th-9th grade, school

years from 1994 to 2000

Dep. Var.: Within-county segregation

W c
12t −W c

9(t−3)

(1) (2)

TOP -0.001** -0.004**

(0.001) (0.002)

Constant 0.000 -1.020

(0.000) (0.778)

County fixed effect yes yes

Linear time trend no yes

Mean of Dep. Var. -0.001 -0.001

Observations 1,512 1,512

r-squared (within) 0.004 0.006

Number of school districts 252 252

Notes: * significant at 10%, ** significant at 5%, *** signifi-

cant at 1%. Standard errors in parentheses. The masked obser-

vations were converted to zero, but results are similar using the

other unmasking strategies. The variable TOP = 1 if t ≥ 1997

and 0 otherwise.
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Table 9: Fixed effect estimation, 12th-9th grade, school years 1994

to 2000

Dep. var.: Within-county segregation W c
t12 −W c

(t−3)9

(1) (2) (3)

TOP -0.004** -0.004** -0.004**

(0.002) (0.002) (0.002)

CHA -0.000

(0.006)

TOP ∗ CHA 0.002

(0.006)

%STUDCH -0.126

(1.342)

TOP ∗%STUDCH 0.234

(1.339)

Constant -1.020 -0.982 -0.889

(0.773) (0.780) (0.778)

County fixed effect yes yes yes

Linear time trend yes yes yes

Mean of Dep. Var. -0.001 -0.001 -0.001

Observations 1,512 1,512 1,512

r-squared (within) 0.034 0.034 0.038

Counties 252 252 252

Notes: * significant at 10%, ** significant at 5%, *** significant at 1%.

robust standard errors in parentheses. The masked observations were con-

verted to zero, but results are similar using the other unmasking strategies.

The variable TOP = 1 if t ≥ 1997 and 0 otherwise. CHA is a dummy vari-

able equal to 1 if there is a charter school in the county and 0 otherwise.

The variable %STUDCH is the percentage of students in a county attend-

ing a charter school.
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