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1. Introduction

This paper describes a theory of automation and its implications for the labor income share in
the long run. Our framework is considerably more general than existing models, and generates
a number of distinctive predictions. It allows for multiple goods and occupations with varying
degrees of substitutability between humans and robots, incorporates human capital accumula-
tion that allows workers to shift occupations in response to automation, and imposes minimal
restrictions on the elasticity of substitution between capital and labor or on household prefer-
ences.1 We show that declines in labor share associated with automation can be a consequence
of progressive capital-deepening resulting from capital accumulation alone (rather than tech-
nical progress or rising markups), in line with the evidence in Karabarbounis and Neiman
(2014). This can happen despite arbitrarily inelastic capital-labor substitution in individual
sectors. Moreover, under some conditions, the share of labor in national income converges to
zero in the long run. We describe these conditions, and explain how the limiting share of labor
can be positive when any one of them is violated. However, we observe that wages can grow
unboundedly at the same time that labor share converges to zero.

The baseline model deliberately abstracts from technical progress; we later show how the
main results extend when we incorporate endogenously directed technical change. The model
exhibits the following phenomena:

(a) Endogenous accumulation of both physical and human capital, but with the relative deep-
ening of physical capital;

(b) Ongoing decline in the prices of capital goods relative to human wages, driven by the
deepening in (a);

(c) Progressive automation driven by the relative price decline in (b).

Features (a) and (b) are the implications of a fundamental asymmetry between physical and
human capital. While individual claims to physical capital in any sector can be replicated and
scaled indefinitely, the same is not true for ownership of labor. Humans cannot be bought
and sold the same way machines are. Instead, human capital accumulation takes the form of
acquiring embodied skills for a specific occupation or sector, a capacity always contained in
one physical self. Our model imposes diminishing returns to acquisition of efficiency units

1Apart from constant returns to scale, no substantive restrictions are placed on technology, not even convex-
ity. Production functions can vary across sectors. Human labor could be sector-specific, or migrate across sectors
via education or training. Households can accumulate financial wealth can purchase education to move across
occupations, and they are permitted to be heterogenous in their tastes, discount factors and initial endowments.
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of skill within any occupation, and minimal restrictions on skill acquisition needed to switch
occupations. Consequently, as emphasized by a large literature on occupational choice, the
returns to human capital acquisition of the latter kind are determined endogenously, where the
pattern of household demand across goods produced by different sectors matters.

In this setting, we provide a set of sufficient conditions for the share of labor to converge
to zero in the long run. These conditions for this novel result include (i) a self-replication
property in the production technology for “robots" or automation devices, to be described in
detail, (ii) the existence of a positive measure of households with low discount rates, which
ensures the economy has a net savings rate bounded away from zero, and (iii) asymptotic
homotheticity of household demand, which is shown to limit the capacity of workers to react
to automation in some sectors by switching to other sectors.

To explain this result, it is necessary to provide additional details of the model. It features a
countable infinity of final goods, and three intermediate goods: machine capital, robots and
education (or more accurately, services produced by each of these intermediate goods). In
any (final or intermediate good) sector, production takes place with machine capital and one
or more tasks performed by a combination of human labor and robot services. Therefore
every output price is determined by the price of capital and a price index of robot and human
services. We assume that it is technologically feasible to fully automate each task in each
sector — and that includes the sector producing robot services.

That said, the technological feasibility of automation does not necessarily imply its economic
viability in the sense of being undertaken by profit maximizing firms. The self-replication
condition we impose is stronger, in that it implies the economic viability of automation within
the robot sector, when the relative price of non-robot machine capital is sufficiently low. How-
ever, it is a condition placed entirely on technological primitives. If it holds, then robot prices
are pinned down by machine capital prices (Section 3.2), and robot prices must decline rela-
tive to human wages. The technical feasibility of automation everywhere else then guarantees
that sectors and occupations elsewhere must eventually succumb to ongoing automation. But
that process must perforce be gradual if there exist occupations where humans are sufficiently
productive relative to robots: at any date, no matter how distant, there could be sectors that are
yet to be automated.

To avoid the ever-present threat of automation, workers can keep moving to (currently) human-
friendly sectors. However, if preferences are asymptotically homothetic, there is just not
enough demand to sustain a persistent scaling of human capital, and the labor income share
of labor vanishes. Section 3.8 argues that other conditions on preferences also serve to deliver
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a similar result. Among them is “preference neutrality," in the sense that preferences do not
particularly favor human-friendly sectors — nor do they necessarily disfavor them.

And yet, automation is a double-edged sword. It might cause the labor income share to asymp-
totically vanish, but it could also be an engine of growth with a positive impact on absolute
human wages. By bounding the unit cost of machine production, automation (along with
patience) sets the stage for sustained accumulation and growth. Proposition 2 provides con-
ditions for some human wages to grow without bound: the existence of essential sectors and
occupations in which humans have sufficiently high marginal productivity relative to robots
even as they are close to full displacement. If additionally the costs of occupation-switching
are bounded, all human wages grow without bound. Automation can raise all boats — though
possibly not all at the same rate, with wage incomes growing slower than capital incomes.

Reversing our conditions helps identify various pathways for the share of labor to remain pos-
itive in the long run. These results can potentially structure future empirical investigations of
the implications of automation for long run inequality. Possible pathways include (a) a failure
of the self-replication condition in the robot sector, (b) the impossibility of automation in some
sectors, (c) the possibility of sustained human capital acquisition without switching occupa-
tions, and (d) the failure of asymptotic homotheticity in preferences. These are discussed in
Sections 3.5–3.8.

Finally, there is the question of technical progress. The preceding results are not based on
technical progress at all: automation is driven by endogenous changes in prices of capital
goods relative to human wages. Certainly, the labor share could remain positive if technical
progress — endogenous or not — is biased in favor of humans. We would need to assume
those asymmetries, though. Their existence would be an empirical question. Acemoglu and
Restrepo (2018) is a leading example of this approach, which many others have also followed.
Section 4 extends our model to permit directed technical progress in machine, human and
robot productivities, but we explicitly assume no technological bias, either in favor of humans
or against them. Such a model could also be reinterpreted (with a hedonic reinterpretation of
the commodity space) as one in which new goods are created. In such a symmetric setting,
with technical progress equally sensitive to the prices of machines, robots and humans, we
show that our long run distributional implications continue to be robust. Progressive capital
deepening ensures that the derived demand for innovations in capital productivity cannot be
surpassed by those for innovations in human productivity.

While our motivation is primarily conceptual, our theory provides a potential explanation
for the recent decline in labor shares documented by Karabarbounis and Neiman (2014). As



5

elaborated in Section 5, such a theory can be distinguished from alternative explanations based
on capital-augmenting technical progress, human capital accumulation, rising markups and
market concentration or declining bargaining power of labor unions. Its relevance is indicated
by the evidence provided by Karabarbounis and Neiman (2014), that a substantial fraction of
the decline in labor share worldwide is explained by declining capital goods prices, even after
controlling for capital-augmenting technical progress, markup rates and the skill composition
of the labor force. Their theoretical explanation for this result is based on elastic capital-labor
substitution, an assumption which runs contrary to evidence provided in industry panel studies
of Chirinko and Mallick (2014). Our model shows that declining labor share can result from
capital deepening even in the presence of inelastic capital-labor substitution in most sectors.

Finally, we do not address the question of inequality in the personal distribution of incomes.
This is not to say that a combined model that accounts for both functional and personal re-
sponses cannot be written down. Nor do we argue that a growing functional divergence be-
tween capital and labor incomes must imply growing inequality in personal incomes. Indeed,
questions of financial education or universal basic income can be discussed in this context.
Our goal here is simply to focus on functional issues. Suitable applications and extensions can
explore these additional questions, as discussed in the concluding section.

Section 2 presents the baseline model. The main results are in Section 3, with related lines
of discussion. Section 4 studies technical progress. Section 5 discusses the connections to
existing literature in detail, while Section 6 concludes. Proofs are collected in an Appendix.

2. Baseline Model with No Technical Progress

2.1. Production. There is a countable collection I of consumption goods, indexed by i. In
addition, there are three intermediate good sectors producing education, robot services, and
machine capital. The index j serves as generic notation for any of these sectors. Everything is
producible, with the exception of raw human labor. That endowment is fixed (or normalized if
population is growing), but human capital evolves as individuals make educational investment
decisions, thereby moving across occupations.

The output of sector j is produced by combining machine capital with a set of tasks performed
by a combination of robot and human services. Let kj denote machine capital and λj = {λo}
a finite vector of task quantities (indexed by o ∈ Oj). These combine to produce output yj
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according to a production function:

(1) yj = fj(kj,λj)

where fj is increasing, smooth, and linearly homogeneous, with unbounded steepness at zero
in each input, and fj(k,λ) = 0 when any input is 0.2 No curvature restrictions are imposed.

The quantity λo of task o ∈ Oj performed in turn depends on robot and human services
employed in that task, according to:

(2) λo = λo(ho, ro),

where ho is human input, ro is robot services, and λo is increasing, smooth and linearly homo-
geneous with λo(0, 0) = 0 (again, no assumption on curvature). Moreover, we assume that it
is possible for each task to be performed entirely by robots: λo(0, r) > 0 for some r > 0. Of
course this assumed technological feasibility of full automation does not imply its economic
viability. For instance, if λo(h, r) = νr + µh + rαh1−α for for ν > 0, µ > 0, and α ∈ (0, 1),
then humans would be perennially employed in every task, no matter what factor prices are. In
Section 3.7, we discuss how our results are modified if full automation is not technologically
feasible.

We assume for expositional ease that physical capital and robot services are perfectly homo-
geneous and can move freely across tasks and sectors. By contrast this may not be the case for
humans. An occupation refers to provision of labor by humans in a specific task o ∈ Oj in a
specific sector j. Hence occupations are both sector and task-specific, and the terms ‘task’ and
‘occupation’ can be used interchangeably. The capacity of an individual to provide such labor
may require a suitable skill which can be acquired via education. This represents the relevant
human capital possessed by that individual. Individuals will be born with some innate distri-
bution of human capital, represented by occupations that they can work in without any formal
education, and they can decide to augment the set of occupations they are eligible to work in
by acquiring necessary education. This is explained further below.

2.2. Prices. Within any date, machine capital services serve as numeraire: the rental price
of k is set to 1. The collection w = {wo} for o ∈ ∪jOj is the wage system. Output prices
are (p, pr, pe, pk) for final goods, robot services, education, and capital. By constant returns
to scale and the assumption of a competitive economy, all prices will equal unit costs of

2The necessity of all inputs bounds substitution elasticities near the “axes," but not elsewhere. Unbounded
steepness in all inputs is only invoked in Proposition 2. Elsewhere, all we need is unbounded steepness in
machine capital and at least one of the tasks.
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production for any sector with strictly positive output:

(3) pj ≤ cj(1, qj), with equality if yj > 0,

where 1 is the return to machine capital, qj is the price vector of occupations in sector j, and
cj is the unit cost function, dual to the function fj .3 The prices of occupations, in turn, come
from a second collection of unit cost functions {co} for each occupation in that sector:

(4) qo = co(wo, pr).

2.3. Factor Demands and Automation. In each sector, machine capital and task levels are
chosen to maximize profits, satisfying familiar first-order necessary conditions when an input
is positive. The mapping from prices to human and robot demand then flows through the
aggregators λj . Consider the sub-problem where for each occupation o in that sector, the
human-robot input mix is chosen to minimize the unit cost of producing the aggregator λo.
By the linear homogeneity of λo, these depend only on the ratio ζo ≡ wo/pr. The automation
index ao tracks the vulnerability of occupation o to the robot threat, and is given by

ao(ζ) ≡ min
(ro,ho)

{
ro

hoζ + ro
∣∣(ro, ho) minimizes unit cost under relative price ζ = ζo

}
,

taking values between 0 and 1. We can extend this definition to the sector as a whole. For any
wage vectorw and robot price pr, the above unit cost problems generate an input vector qj for
the aggregators in that sector. With these, solve the unit cost problem for the output of sector
j. We can then define the automation index of sector j by

aj(w, pr) ≡ min
∑
o∈Oj

qoλo∑
o′∈Oj q

o′λo′
ao (wo/pr) ,

where the minimum is taken over all aggregator vectors λj that solve the unit cost problem.

2.4. Accumulation. The aggregate stock of capital K(t) evolves according to

(5) K(t+ 1) = (1− δ)K(t) + yk(t),

where δ ∈ [0, 1] is a constant, sector-independent depreciation rate for physical capital.4 Only
machine capital is formally durable, but durable robots are included by embedding them in

3Our results easily extend to monopolistic competition with CES preferences, which generates a constant
profit markup in all sectors. Profits would appear in that setting, so national income would be the sum of returns
to capital, to workers and profits. Our distributional results would continue to apply.

4The model can be extended to incorporate sector specificity of capital services and depreciation rates.
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physical capital in the robot sector, where they produce services under the robot production
function fr (along with other occupational inputs such as maintenance).

The stock of raw human labor is given (or normalized if population grows exogenously).
But human capital can change endogenously with education. There is some initial allocation
of humans across occupations. There could be a “null occupation" where individuals without
initial skill can be placed, or can freely “drop out" to. An individual can move from occupation
o to occupation o′ (both in ∪jOj) at an educational cost of e(o, o′) times pe, the endogenous
unit cost of education. Human capital might depreciate; i.e., eoo might be positive for some
or all o. We place no restriction on the education needed to switch occupations, so the model
captures both inflexible occupational specificity, or complete flexibility (with zero switching
costs) at the other extreme, and everything in between. Observe too that humans can move
both within and across sectors, and in general, skill premia will be endogenously determined.

2.5. Preferences. There is a continuum of infinitely lived individuals, indexed by ι, divided
into a finite set of types, indexed by m. Each type m has a one-period increasing, contin-
uous,5 strictly concave utility indicator um on vectors of final goods, and a discount factor
βm ∈ (0, 1). Infinite lives can be converted in the usual way into a sequence of generations,
overlapping or otherwise, bound together by altruism. For any pre-determined current expen-
diture z on final goods and price vector p, her chosen bundle maximizes um(x), subject to
px ≤ z. That generates a demand function xm(p, z). Denote by vm(z,p) the corresponding
indirect utility function. We assume um is such that for every p, the indirect function vm is
increasing, concave and differentiable, with unbounded steepness in z at zero.

At the start of any date, an individual has some financial wealth (representing her existing
claims on capital or debt), and one unit of human labor along with a starting occupation. At
date 0, her financial assets are nonnegative, and she can also work in a subsistence activity at
any date to earn some small, exogenous, strictly positive income w. We ignore the subsistence
activity as it will get swamped in a growing economy: it is an expedient device to ensure a
positive lower bound to human wages in all occupations.

At each date, individuals inelastically supply labor, make occupational choices (possibly with
educational requirements), and implement consumption and savings decisions at endogenous
prices, all within an infinite-horizon setting with perfect foresight. Given a dated price-wage

5The continuity of preferences or demand, here and everywhere else, will be taken relative to the pointwise
or product topology on sequences of goods or price vectors.
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system for goods, capital, and occupations, an individual of type m with initial (date-0) en-
dowments of financial wealth F (0) ≥ 0 and human capital (in occupation o(−1)) maximizes6

(6)
∞∑
t=0

βtmvm(z(t),p(t)),

by choosing a path of financial wealths F (t) and occupations o(t) at educational cost

(7) E(t) ≡ e(o(t− 1), o(t)),

along with current expenditure z(t), subject to the date t budget constraint:

(8) F (t) + wo(t)(t) = z(t) + pe(t)E(t) +
F (t+ 1)

γ(t)
,

and the no-Ponzi condition lim inft F (t) ≥ 0. To accommodate imperfect capital markets, we
impose F (t) ≥ Bm for all t, a borrowing limit that can be set arbitrarily high. Note that γ(t)

is the “return factor" on financial wealth at date t, and that:

(9) γ(t) =
1 + (1− δ)pk(t+ 1)

pk(t)
.

To understand (9), note that one unit of wealth can purchase claims to 1
pk(t)

units of physical
capital at t. Each such unit generates a rental income of 1, then depreciates to yield (1 − δ)
units of physical capital worth (1− δ)pk(t+ 1) at the next date.

A sufficient condition for this problem to be well-defined is that all utility functions are
bounded. But well-known weaker conditions can be imposed; for instance, when utility func-
tions have a well-defined tail elasticity. We also suppose that um is asymptotically homothetic:

(10) lim
z→∞

xm(p, z)

z
= dm(p) for some function dm

for every p� 0, where: (i) dm is continuous on any bounded sequence of price vectors with
strictly positive pointwise limit, and (ii) if there is a sequence {pn} with some pni converging
to zero, then lim infn dmi(p

n) > 0 for at least one such i.

2.6. Equilibrium. Given initial K(0) and an allocation of financial claims {Fι(0)}, and ini-
tial human capital {oι(−1)} (varying across or within types), an equilibrium is a sequence
of wages {w(t)}, prices {p(t), pr(t), pe(t), pk(t)} and quantities {Fι(t), zι(t), Eι(t), jι(t),
kj(t), rj(t), hj(t), yj(t)}, all non-negative and finite, such that:

6We allow for heterogenous endowments and behavior withinm, but drop the index ι here for ease in writing.
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A. Individuals maximize utility as described in (6)–(9), with Fι(0) = pk(0)kι(0) for all ι, and
firms maximize per-period profits at every date, with (3) holding.

B. The final goods markets clear: at every date, and for every final good i:

(11)
∑
m

∫
ι∈m

xi(zι(t),p(t)) = yi(t),

C. The robot market clears; for each t:

(12) yr(t) =
∑
i

ri(t) + rr(t) + re(t) + rk(t).

D. The labor market clears; for each t and each occupation o in sector j:

(13) ho(t) = Measure of ι such that oι(t) = o, with wo(t) ≥ w whenever ho(t) > 0.

E. The capital market clears; for each t, K(t) evolves as in (5), with:

(14) K(t) =
∑
i

ki(t) + kr(t) + ke(t) + kk(t),

and the undepreciated capital stock plus rental income on it is willingly absorbed:

(15) [1 + (1− δ)pk(t)]K(t) =
∑
m

∫
ι∈m

Fι(t),

F. Finally, the education market clears; that is, for every t:

(16) ye(t) =
∑
m

∫
ι∈m

Eι(t), where {Eι(t)} satisfies (7).

Per-capita national income (gross) is given by the expenditure on all final goods, plus invest-
ment in new capital goods and education:

(17) Y (t) =
∑
i

pi(t)yi(t) + pe(t)ye(t) + pk(t)yk(t).

In this paper, we do not go into the technicalities of equilibrium existence.

3. Long Run Growth, Automation and the Declining Labor Share

3.1. An Illustrative Example. There is a single occupation in each sector, so we use j to index

these. There is one final good with production function y1 = k
1/2
1 λ

1/2
1 , a capital goods sector
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with yk = k
1/2
k λ

1/2
k , and a robot sector that has a CES production function with elasticity 1/2:

yr =

[
1

2
k−1
r +

1

2
λ−1
r

]−1

.

Humans and robots are substitutable at a constant rate ν everywhere: λj = hj + νrj for all
j. Humans move freely across sectors, so there is no education and just a single wage w.
Then the occupational price q is w if there is no automation, and ν−1pr if there is (partial or
full) automation. In the final good and machine sectors, the unit cost function is c1(1, q) =

ck(1, q) =
√
q, while in the robot sector it is cr(1, q) = 1

2

[
1 +
√
q
]2. Everyone has the same

one-period utility u(x) = ln(x), with discount factor β ∈ (0, 1).

To track equilibrium paths, notice that at any date, robot prices must satisfy

(18) pr(t) ≤ cr(1, qr(t)) =
1

2

[
1 +

√
q(t)

]2

.

with equality if the robot sector is active.

Case 1: ν ≤ 1/2. Then automation cannot ever occur. For if it did at any date t, then
q(t) = ν−1pr(t). Substituting this into (18) which now holds with equality, we see that

pr(t) =
1

2

[
1 +

√
ν−1pr(t)

]2

>
1

2
ν−1pr(t),

which contradicts ν ≤ 1/2. So at every date the robot sector shuts down. The economy
effectively consists of a single consumption and capital good with aggregate Cobb-Douglas
production and a 50% share of labor in national income at every date.

Case 2: ν > 1/2. Then, if the economy exhibits sustained growth of per-capita income
— as it will if some household types are patient enough — all sectors j that grow must be
“asymptotically automated": aj(t) = aj(w(t), pr(t)) → 1 as t → ∞. For suppose not; then
aj(τ) must be bounded in at least one growing sector j along a subsequence {τ} of dates.
Since the total amount of human labor in the economy is bounded, so must be the overall
occupational input in that sector. Then sustained growth implies that machine capital used in
j — and hence the ratio of machine capital to occupational inputs — grows without bound,
implying w(τ) → ∞. In the absence of full automation, unit occupational labor cost qj(τ)

will equal w(τ), and also converge to∞. By (18),

pr(τ) ≤ 1

2

[
1 +

√
q(τ)

]2

=
1

2

[
1 +

√
w(τ)

]2

,
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so that along the same subsequence,

ν−1pr(τ)

w(τ)
≤ 1

2ν

[
1√
w(τ)

+ 1

]2

→ 1

2ν
< 1 as t→∞,

but that would imply qj(τ) ≤ ν−1pr(τ) < w(τ) for large τ , a contradiction.

Intuitively, the absence of automation implies an ever-growing scarcity of labor which causes
the human wage to grow (without bound, this qualification implicitly presumed from now on).
But that triggers automation for a large human wage. If ν > 1/2, it is possible to dispense with
humans altogether, and still produce robots at a finite unit cost (using machines and robots).

Specifically, there exists p∗r < ∞ satisfying p∗r = 1
2

[
1 +

√
ν−1p∗r

]2

, if and only if ν > 1/2.
Then p∗r is an upper bound to the price of robots, making automation inevitable in all growing
sectors. That bounds the human wage above, and therefore the income earned by human
workers. It follows that the income share of human labor converges to 0 in the long run.

We now provide a condition which explains the key distinction between the two cases above.

3.2. Self-Replication. Recall the “no-protection" assumption λo(0, r) > 0 for some r > 0.
By linear homogeneity, λo(0, r)/r is independent of r for r > 0; call this ratio νo. In order to
interpret the condition below, temporarily forget that the capital rental rate is the numeraire.
Consider unit cost minimization in the robot sector, when each type o of occupational input in
Or is priced at (νo)−1 per unit, and the capital rental rate is η. Consider the limit unit cost

lim
η→0

cr
(
η, {(νo)−1}

)
.

It turns out that this limit bears on the possible automation of the robot sector itself.

PROPOSITION 1. Suppose the robot sector satisfies the following “self-replication" condition:

(19) lim
η→0

cr
(
η, {(νo)−1}

)
< 1.

Then there is a nonempty compact set P ∗ of strictly positive solutions to the equation

(20) pr = cr
(
1, {(νo)−1pr}

)
,

and in equilibrium, pr(t) ≤ supP ∗ < ∞ for all t: the robot price is bounded relative to the
rental on capital. If at any t, the robot sector is automated, then pr(t) ∈ P ∗.

We prove Proposition 1 graphically. Revert to using capital rental services as the numeraire.
Because νo units of occupational input in o can be produced by a single robot unit, it must be
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pr

cr (1, {(𝜈o) pr})

Self-replication guarantees this final cut

450

P*-1

(a) Self-Replication Holds

pr
450

cr (1, {(𝜈o) pr})
-1

(b) Self-Replication Fails

Figure 1. Replication and the Bound on Robot Price

that qo ≤ (νo)−1pr. This option imposes an upper bound to the price of robot services:

(21) pr = cr (1, {qo}) ≤ cr
(
1, {(νo)−1pr}

)
.

Figure 1 depicts cr(1, {(νo)−1pr}). Because fr has unbounded steepness in machine capital
at zero, cr lies above the 450 line for all strictly positive pr sufficiently close to zero. At the
same time, self-replication (19) plus linear homogeneity guarantees that cr ultimately dips and
stays below the 450 line; see Panel A. Then P ∗ is the set of intersections with the 450 line,
as described by (20). It is nonempty and compact,7 and (21) is equivalent to the assertion
that pr(t) ≤ supP ∗ for all t in any equilibrium. So the price of robot services (relative to
machines) is bounded above if self-replication If the robot sector is automated, then that price
must be one of the solutions in P ∗, a pin which can be viewed as a variant of the Nonsubsti-
tution Theorem (Arrow 1951, Samuelson 1951). Of course, automation may never be full but
only asymptotic, in which case the robot price converges to some element of P ∗.

Conversely if self-replication fails, a non-zero solution to (20) could fail to exist, as shown
in Panel B, and this will necessarily happen if fr is quasi-concave. Then the robot producing
sector can never be automated, and the price of robot prices is unbounded; see Proposition 3.

For now, let’s examine the self-replication condition (19) in the special CES class, again with
just one occupation in the robot sector. We have:

fr(k, λ) =
[
αk

σ−1
σ + (1− α)λ

σ−1
σ

] σ
σ−1

,

7If fr is quasi-concave, then P ∗ is a singleton — there is a unique positive solution to (20).
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with α ∈ (0, 1) and the elasticity of substitution σ ≥ 0. The unit cost function is

cr(η, ν
−1
r ) =

[
αση1−σ + (1− α)σνσ−1

r

]1/(1−σ)
.

So our limit equals zero when σ ≥ 1, which includes the Cobb-Douglas case (“enough" sub-
stitution is available). But it is positive when σ < 1. For instance, if the production function is
“almost" Leontief, labor costs will matter for unit cost no matter how cheap machines are. In
this latter case, (19) does restrict the value of νr. Specifically, self-replication reduces to the
capital-labor substitution elasticity exceeding some lower bound smaller than one:

(22) Either σ ≥ 1, or σ ∈ (0, 1) and νr > (1− α)σ/1−σ.

3.3. Automation and the Declining Labor Share Under Long Run Growth. We now present
our main result: under sufficient consumer patience, the self-replication condition in the robot
sector has strong implications for long run growth, automation and income distribution.

THEOREM 1. Assume the self-replication condition (19) holds, and that for some m,

(23) βm

[
(1− δ) +

1

ck (1, {(νo)−1 supP ∗})

]
> 1.

where o ranges over Ok and P ∗ is defined as in Proposition 1. Then:

(i) Per-capita national income grows: Y (t)→∞.

(ii) Any sector j that grows exhibits asymptotic full automation:

(24) aj(w(t), pr(t))→ 1 as t→∞.

(iii) If preferences are asymptotically homothetic, the national income share of human labor
converges to zero as t→∞, and that of physical capital converges to 1.

We sketch the underlying argument; a formal proof is in the Appendix. Part (i) states that
per capita income grows (without bound) if (23) holds. One can view this as a condition
on patience, or on the degree of intergenerational altruism. It is a condition placed on the
primitives of the model. When the robot production function is quasiconcave, P ∗ is an easy-
to-compute singleton. Otherwise P ∗ is multivalued but still based on primitives. We show that
(23) is sufficient for an m-type to accumulate unbounded wealth.

The first difficulty is to account for moving capital prices. While bounds can be placed on these
prices, there will in general be capital gains (or losses). To sidestep the spikes of accumulation
and decumulation that could might arise from these anticipated gains and losses, we cumulate
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the relevant Euler equations for financial wealth. Recalling the indirect utilities vm and γ(t),
the equilibrium rate of return on financial assets, we have:

(25) v′m(zm(t),p(t)) ≥ βmγ(t)v′m(zm(t+ 1),p(t+ 1)),

with equality holding if financial wealth is actively accumulated. From (9),

γ(t) =
1 + (1− δ)pk(t+ 1)

pk(t)
=

[
pk(t+ 1)

pk(t)

] [
(1− δ) +

1

pk(t+ 1)

]
,

where the second equality decomposes the return into the product of capital gains and the
rental income (augmented by any undepreciated capital) on a unit of wealth. If we compound
the Euler inequality in (25) over dates 0, . . . , t, where t ≥ 2, then we have

v′m(zm(0),p(0)) ≥ βt−1
m

(1− δ)pk(t) + 1

pk(0)

{
t−1∏
τ=1

[
(1− δ) +

1

pk(τ)

]}
v′m(zm(t),p(t)),

which eliminates temporary spikes and dips in capital gains. The key observation is that the
self-replication condition implies a finite upper bound to the price of machines, given the op-
tion to automate their production: pk(τ) ≤ ck(1, {(νo)−1pr(τ)}) ≤ ck(1, {(νo)−1 supP ∗}). In
turn this limits the extent to which the value of capital goods can depreciate, implying a posi-
tive lower bound to the return to capital:

[
(1− δ) + 1

pk(τ)

]
≥
[
(1− δ) + 1

ck(1,{(νo)−1 supP ∗})

]
≡

(1 + r), say. The patience condition (23) then implies βm(1 + r) > 1. Hence:

(26) v′m(zm(0),p(0)) ≥ βm [βm(1 + r)]t−2

ck (1, {(νo)−1 supP ∗})
v′m(zm(t),p(t)).

which implies that v′m(zm(t),p(t)) → 0 as t → ∞. Further bounds on equilibrium prices
{p(t)} (see Appendix) then imply that the consumption of type-m households must grow.
With bounded debt, the same is true a fortiori for overall per-capita consumption and income.

Part (ii) asserts that any sector that grows exhibits asymptotic full automation in the sense of
(24). If a sector grows, at least one of its task levels must grow with it — a consequence of
unbounded steepness with respect to at least one task, and the fact that self-replication holds
(so the price of occupations is bounded relative to capital). But the total available supply of raw
human labor is bounded. Therefore each growing task or occupation o within the sector must
either have human labor equal to zero, or wo/pr →∞. In either case Lemma 3 implies that its
automation index must converge to 1. Because all bounded occupations become insignificant
relative to the growing ones, the result follows.

Part (iii) uses a more subtle argument. It is possible that there is no uniform threshold for
automation — at any human wage, there could always be productive sectors where humans
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continue to be a desirable presence. In fact, humans may well be persistently present in every
occupation, asymptotically automated or not,8 but with asymptotic automation their income
share cannot be preserved. However, non-uniform automation thresholds open the possibility
of “human shelters" that provide opportunities for humans to stay ahead of automation waves.
To do so, they must perennially accumulate human capital and move into occupations where
human employment and wages are less threatened by automation. Indeed, in these relatively
protected sectors, the human wage could be very high. In Proposition 2 below, we provide
conditions under which in any equilibrium with growth, the highest human wage across all
sectors grows unboundedly over time. If humans acquire the skills to enter these yet-to-be-
automated sectors, their wages might conceivably grow in step with per capita income.

At this point, the endogeneity of prices and wages takes center stage. The willing absorption
of humans into sectors requires that there be adequate demand for their outputs. Under the
usual efficiency-units approach, this demand question is eliminated by construction: relative
wages cannot change over sectors that are thus aggregated with brute force. With an endoge-
nous wage structure, this is no longer the case. Part (iii) shows that if demand is asymptotically
homothetic, then the economy runs out of steam in its ability to shelter labor. For the human
wage share to stay positive in the long run, household expenditures shares on yet-to-be au-
tomated sectors must remain sizable. Under asymptotic homotheticity, this cannot happen:
wage incentives do not climb at the required pace. We return to these matters in Section 3.8.

3.4. Long-Run Human Wages. The discussion in Section 3.3 suggests that a vanishing share
of labor income could co-exist with unbounded growth in human wages. When Theorem 1
applies, universal automation ensures that prices of all consumer goods are bounded. Hence
real wages relative to any consumer price index are unbounded if and only if wages (as defined
here) are unbounded. In this section we study conditions for this outcome.

Two forces could make for growing human wages even as their relative share declines. The
first has to do with the rate of robot-substitution for humans in some given occupation. The
second has to do with human movement across occupations as automation becomes more
pervasive. Both are summarized in a single sequence of numbers. Consider a more general
version of our example in Section 2.1 for the production of the input in occupation o:

λo = λo(h, r) = νor + µoh+ go(h, r),

where νo > 0, µo ≥ 0, and go is a standard production function with go(0, r) = go(h, 0) = 0.
Such an occupation could become automated, but if go has unbounded steepness in h at 0, only

8To see why, consider the example of an λj function provided just after equation (2).
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asymptotically so: human labor can never be fully dispensed with at any (finite) wage. More
generally, let θo denote the limiting marginal rate of substitution of humans for robots as the
ratio of human labor to robot services in occupation o converges to zero:

θo ≡ lim
h/r→0

∂λo/∂r

∂λo/∂h
.

This measures the “local relative efficiency" of robots relative to humans in occupation o as
human labor vanishes. In the example, if go has unbounded steepness in h, θo = 0. Otherwise,
θo is determined by the slopes of the two functions λo(0, r) = νor and λo(h, 0) = µoh, and
the limiting marginal rate of substitution from go. Our sequence of interest is {θo}, where o
ranges over all occupations in a subset to be described precisely below.

To highlight these forces, we place additional restrictions on education and preferences. Specif-
ically, we assume that the education function is uniformly bounded: supo,o′ e(o, o

′) < ∞. In
addition to asymptotic homotheticity of preferences, we presume that limiting demand has
full support: for each type m and each price p � 0, dmi(p) > 0 for i ∈ I . Finally, define
O−e ≡ O−Oe to be the set of all occupations except those that pertain to the education sector.

PROPOSITION 2. Suppose that the conditions of Theorem 1 hold, including asymptotic ho-
motheticity of preferences. In addition suppose limiting demand has full support and that the
education function is uniformly bounded onO×O. For every individual ι, letwι(t) = woι(t)(t)

be the human wage she receives at date t.

(a) If info∈O−e θ
o > 0, every human wage is bounded.

(b) If info∈O−e θ
o = 0, every human wage must grow without bound.

Under the additional restriction of full support on preferences and uniformly bounded edu-
cational requirements, Proposition 2 provides a complete characterization of when all human
wages can grow in an unbounded fashion. The limit condition on info∈O−e θ

o captures both
the possibility that the marginal product of human labor can climb in a particular occupation
(even as that occupation progressively succumbs to automation), as well as the possibility that
there is human “protection" available across occupations. When this term is strictly positive,
neither the occupation-specific nor the cross-occupation protection is available, and limiting
human wages are bounded. (While the education sector is exempt from this condition, we
show that it can do nothing to overturn this result.)

On the other hand, when info∈O−e θ
o = 0, there is protection either from occupation-specific

steepness in the marginal product of human labor, or relative cross-occupational proclivities
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to automation. In this second case, wages can grow in some occupations — or over some se-
quence of occupations — and then the boundedness of educational costs allows all individuals
to participate in that growth.9

A bounded education function is used to make our arguments. Significant progress can be
made without it. It is possible to characterize sustained growth in occupational human wages,
rather than personal wages, by dropping the uniform boundedness assumption. We stick to the
present formulation as it is stronger and cleaner. In defense of the boundedness assumption, it
should be noted that while we work with an infinity of final goods sectors, there is no need to
suppose that the corresponding occupations will be dramatically different. For instance, two
managerial roles in very different sectors could be very similar. The following mental picture
may be useful. Think of occupations as belonging to some compact set in an abstract space
C of characteristics, with the education function continuous on C × C. Each sector draws
a finite set of points from this space for its associated set of occupations. This formulation
allows for fine distinctions across sector-specific occupations, as it should, while still retaining
the uniform boundedness of educational in moving from one occupation to another. “Distant"
goods need not be produced by “distant" sets of skills.

As a final remark: part (b) of Proposition 2 illustrates the fact that ubiquitous automation need
not result in stagnation of real wages. On the contrary, automation could be the engine of long-
run growth in wages. Observe that in the absence of robots, the patience condition in Theorem
1 would not hold; it is easy to write down examples where per capita income and wages would
be bounded. Hence automation can boost the living standards of workers, though the growth
in wages would be outstripped by growth in capital incomes when Theorem 1 holds.

3.5. Failure of Self-Replication. A failure of self-replication means that robot prices cannot
be severed from human wages. Human workers are indispensable in the production of robot
services, so the price of the latter climbs with wages as labor scarcity grows. The scope for
automation is then limited. The example in Section 3.1 already makes this clear, but more can
be said. Under broad conditions, self-replication is formally necessary for Theorem 1.

To develop this argument, we place some restrictions on our general environment. Once again,
without any real loss of generality, we assume just one occupation per sector, indexing occu-
pations by their sector index. The first restriction is a general version of the condition that the
production function fj defined on capital and tasks has an elasticity of substitution smaller

9Certainly, including education in part (a) of the proposition would still give us a sufficient condition for
bounded wages. But that condition would not have been necessary. That is, if education is included as one of the
sectors in the condition of part (b), that condition would not be sufficient for unbounded wage growth.
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than 1 in every sector j. For any sector j, and any effective price of task q, consider the set
Ξj(q) of ratios of task service to machine capital ξ = λ/k that minimize unit cost of produc-
tion, and let

Λj(q) ≡ min
ξ∈Ξj(q)

qξ(q)

1 + qξ(q)

be the lowest ratio of the payment to sector j’s task to the total sectoral cost outlay. Tem-
porarily think of the production function fj in this sector as CES with elasticity of substitution
lower than 1. Then we know that Λj(q) is increasing in q, with Λj(0) = 0 and Λj(∞) = 1. In
particular, given any lower bound q− > 0, we have

inf
q≥q−

Λj(q) > 0.

In our more general setting without constant elasticity (or indeed concavity), we impose the
above condition, and uniformly so across sectors:

(27) inf
j

inf
q≥q−

Λj(q) > 0.

Next, we make additional assumptions on the production function for robots. We assume
that it is strictly quasiconcave, in addition to being linearly homogeneous. We assume further
that λr(h, 0) > 0 for some h > 0, so that the occupational aggregate in the robot sector can
be produced by humans alone. This restriction is analogous to the feasibility of automation,
though assuming it or not makes no difference to Theorem 1. Call such a technology regular.

PROPOSITION 3. Suppose that (27) holds and the robot production function is regular. Then,
if the self-replication condition fails, in any equilibrium the share of human labor in national
income is bounded away from zero.

Proposition 3 shows that both the asymmetry of human and physical capital accumulation and
the self-replication condition are needed for our results. Indeed, the latter condition is logically
necessary in a broad class of environments. Without it, robot prices cannot be divorced from
the wages of human labor. As labor becomes more expensive, so do robots, and the forces of
automation are attenuated — sufficiently attenuated, as it turns out, under the conditions of
Proposition 3 so that the share of human labor does not decline in a sustained way over time.

3.6. Within-Occupation Human Capital. We now discuss the asymmetry between the accu-
mulation of physical and human capital in the preceding analysis, and extend the theory to
incorporate the acquisition of intra-occupational skill. First note that the device of several
occupations within a sector can be interpreted to mean that these are different skill levels
within the same job. As long as there is a finite (or even compact) set of such skill levels, the
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theory already accommodates such cases, by redefining different levels of skill as different
occupations. However, that is still in contrast to the unbounded scope for accumulation of
physical capital within any sector. Could our model be extended to similarly accommodate
the unbounded accumulation of skill within a sector?

We already know that the answer cannot be an unqualified yes: there are macroeconomic
models which generate balanced labor income shares once human capital can be accumulated
to an unbounded degree in efficiency units, with no changes in relative prices. So studying
this extension will help identify the precise nature of the asymmetry needed between physical
and human capital accumulation in our model.

For expositional clarity, we revert to the common-sense notion of an occupation, and do not
interpret varying levels of skill as constituting distinct occupations. We extend our model to
allow workers to acquire varying levels of skill within any given occupation, and place no
upper bound on the amount of such skill that can be accumulated. We model skill in the
conventional manner, as a certain number of efficiency units. Let the production function
for task o in some sector be λo(µoho, ro), where µo is the productivity of a human in that
occupation. Wages are paid per unit of productivity, just as in the standard model based on
efficiency units, so the income of a person with productivity µo is woµo, where wo is the
occupation-specific “efficiency unit human wage."

Everything else in the model is kept unchanged, but we now need to specify the technology
of productivity acquisition. To this end, we extend the education function as follows: let
e(µ, µ′, o, o′) denote the units of education needed to move from “starting productivity" µ in
occupation o to “destination productivity" µ′ in sector o′, where o could be equal to o′. In
particular, one can both invest within an occupation and across occupations, generally with
heterogeneous cost implications. Moreover, continued on-the-job education can depend on
baseline levels of productivity already acquired in that sector.

Assume that e is smooth in its first two arguments with partial derivatives e1 (typically nega-
tive) and e2 (typically positive). We place the following substantive restrictions on e:

(H.1) For any o and S > 0, there is M <∞ such that e2(µ, µ, o, o) ≥ S for all µ ≥M .

(H.2) For any o, there is Lo ≥ 0 with e1(µ, µ′, o, o′) ∈ [−Lo, 0] for all (µ, µ′) and o′.

(H.3) For each occupation o′, there is a bound µ̂o
′ such that for every starting o 6= o′ and

productivity µ, e(µ, µ′, o, o′) =∞ for µ′ ≥ µ̂o
′ .
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(H.1) states that within any occupation, the marginal cost of skill acquisition becomes very
high as baseline productivity increases. (H.2) states that while a higher starting productivity
may bring down the cost of achieving any destination productivity in the same or different
occupation, the marginal savings are bounded. (H.3) states if an individual is switching occu-
pations, there is some upper bound to the productivity with which she can immediately start in
the new occupation. Of these three, the one that matters the most is (H.1). This condition does
not automatically seal off unbounded skill accumulation, because the price and wage structure
also matters: the returns to skill may grow fast enough to outpace the rising marginal cost. But
as we shall now see, the self-replication condition prevents such an outcome.

PROPOSITION 4. Suppose that within- and cross-sector human capital are accumulated via an
education function satisfying H.1–H.3. Suppose, moreover, that the self-replication condition
(19) is satisfied, and preferences are asymptotically homothetic. Then, if (23) holds, there is
sustained per-capita income growth, and the income share of labor goes to zero.

The Appendix contains a detailed proof; we describe the main step here. Under self-replication,
each sectoral price is bounded below and above over time by strictly positive, finite numbers,
just as before; see Lemma 2. But wages will not generally be bounded. We separate two cases.

In the first, the unit cost of some task grows; see the formal proof for precise statements re-
garding subsequences, etc. But then, the feasibility of automation allows us to prove that the
share of human labor income in total factor bill for that task must converge to zero; see Lemma
3. The second possibility is that the unit cost of some task is bounded. Then (H.1) chokes off
the incentive to acquire within-occupation productivity, given that the price of education is
bounded below. The gains from such acquisition include direct wage benefits from the asso-
ciated occupation, as well as cost savings on future investments, but these are all bounded, by
our conditions on the education function. At the same time, the cost of incremental productiv-
ity climbs without bound. These observations ensure that when the task unit cost is bounded,
so is productivity per person. With this boundedness result in hand, we can essentially follow
the existing line of proof in Theorem 1 to obtain our previous result.

3.7. Sectors With Full Human Protection. We have assumed so far that full automation is
technically feasible in every sector. What happens in the presence of “protected" occupations
or sectors in which production is impossible without humans: λ(0, r) = 0? Examples might
include “live music" or “hand-made pottery," with a human element in production by the
very nature of the good. Of course, it is still possible that the ratio of human labor to robot
services could become vanishingly small over time. In the live-music example, it might be
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possible to increase the size of the audience without bound for any live concert, and “hand-
made pottery" could be judiciously redefined to include minimal human intervention. The
debate is philosophical and possibly endless, as anyone who’s seen Blade Runner or heard of
the Turing test will know.

For expositional simplicity, assume there is just a single task/occupation in each sector, and so
use j to index occupations as well. Say that sector (or occupation) j is potentially unprotected
if λj(0, r) > 0 for r > 0, as assumed so far, and fully protected if λj(0, r) = 0 for all
r ≥ 0. When preferences are asymptotically homothetic, say that the asymptotic demand
system dm(p) is elastic if for any subsetQ of sectors,

∑
i∈Q p

n
i di(p

n)→ 0 along any sequence
of prices {pn} in which pnQ ≡

∑
i∈Q p

n
i →∞ while prices of all goods not in Q are bounded

above.

PROPOSITION 5. Suppose that all intermediate goods sectors and some final goods sectors
are potentially unprotected, and that the self-replication condition (19) holds. Then:

(i) Under (23), there is sustained per-capita income growth.

(ii) For every potentially unprotected sector on which expenditure grows, there is asymptotic
automation and the output price is bounded.

(iii) For every fully protected sector on which expenditure grows, there is asymptotic automa-
tion and the output price is unbounded.

(iv) Suppose that preferences are asymptotically homothetic, and that the expenditure shares
of all sectors converge to a limit expenditure share vector. Then the limit share of human labor
in national income is bounded above by the asymptotic share of expenditure on fully protected
sectors. Moreover, if the demand system for every type is elastic, then once again the share of
human labor in national income converges to zero.

We omit a formal proof; much of it follows ground already covered. Part (i) follows exactly
the same argument as Theorem 1(i). Part (ii) is a special case of Theorem 1(ii), noting that
the growth of output value is the same as the growth of physical output — prices must be
bounded. Part (iii) is new. There are two cases: either the price of the protected good grows
(without bound), or its physical output does. Under the former, the sectoral unit cost of the
corresponding task must grow — and so too must human wages, given that robot prices are
bounded (by self-replication). Asymptotic automation then follows from Lemma 3 in the
Appendix.
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In the latter case, with output growing, there are two possibilities: (a) The level of tasks also
grows in that sector, but then we have asymptotic automation, given that the stock of raw labor
is bounded. Moreover, since the sector is fully protected, the unit cost of the task must grow,
and so must the price of final output. (b) The volume of tasks in the sector is bounded, but then
capital must grow, implying an ever-increasing cost per task. That in turn can only happen if
the human wage grows, and once again we obtain asymptotic automation. Moreover, the price
of the final output must grow.

Exactly the same argument as in Theorem 1(iii) shows that the labor share of expenditure
on all potentially unprotected sectors converges to zero. Therefore the overall labor share in
national income must be asymptotically bounded above by the asymptotic share of expenditure
on fully protected sectors. Finally, observe that prices in all potentially unprotected sectors
are bounded (Lemma 2(ii)) and all fully protected prices in growing sectors are unbounded.
Moreover, by assumption, all fully protected goods are final goods. Then, with an elastic
demand system, the expenditure share on all fully protected goods must fall to zero, and by
the upper bound just established, so must the share of human labor in national income.

3.8. Non-Homothetic Preferences. Return now to the benchmark case without fully protected
sectors. Asymptotic homotheticity prevents an adequate shift of demand composition (as in-
comes grow) in favor of sectors where humans have a greater advantage relative to robots, that
might be needed for the limiting income share of human labor to be positive. To what extent
can these implications of homotheticity be extended to more general preference profiles?

Suppose that preferences are non-homothetic, and demand persistently shifts over the space
of goods with rising income. If those shifts occur precisely in favor of goods where humans
are harder to displace (e.g., where θi defined in Section 3.4 is large), then it is possible for the
long run labor share to be bounded away from zero.10 Here is a heuristic description of the
forces at play. As in the proof of Theorem 1 (see Appendix), define the share of human labor
income generated in any active sector j at any date t by

Ψj(t) =

∑
o∈Oj w

o(t)ho(t)

pj(t)yj(t)
.

10Comin, Danieli and Mestieri (2019) describe non-homotheticities in demand which raise the share of ser-
vices and lower that of agriculture, and are associated with rising wage polarization. They do not investigate
the implications for the decline in overall labor income share. Karabarbounis and Neiman (2014) argue that this
decline is mainly intrasectoral, and not driven by changing intersectoral composition.
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If `(t) denotes the overall share of human labor in national income, it follows that

`(t) =
∞∑
i=1

Ψi(t)si(t) +

∑
j=e,r,k Ψj(t)pj(t)yj(t)

Y (t)
(28)

at every date t, where si(t) is the aggregate share of final goods expenditures at date t on good
i, and it is understood that the sum is taken only over active sectors. Part (ii) of Theorem 1
speaks to growing automation in any active sector, and indeed we show in the Appendix that
if yj(t) → ∞ in any sector, the corresponding human share Ψj(t) converges to zero. So we
can ignore the last three terms in (28): either Ψj(t)→ 0 or the sectors become insignificant as
a share of (growing) national income. Everything therefore hangs on the question of whether

(29) `(t) '
∞∑
i=1

Ψi(t)si(t)

converges to zero or not. Because Ψi(t) → 0 for every growing sector i, and si(t) → 0 for
every non-growing sector (national income is growing), we have pointwise convergence to
zero for each term in the series above, but not necessarily uniform convergence. The overall
tension is summarized in the possibility that over time, the shares {si(t)} will assign progres-
sively greater weight to the protected sectors, leading to an asymptotically positive infinite
sum even though each term in it converges to zero. Homotheticity eliminates this possibility:
under it, the sequence of share vectors {si(t)} has a limit which is also a share vector. Then
the infinite sum must converge to zero; see Lemma 4. This is why homothetic preferences
cannot allow a positive asymptotic labor share. But it also raises the question of whether some
property different from or weaker than homotheticity will also suffice for the same result.

Certainly, some conditions on demand will be needed, otherwise, the following dynamic pro-
cess could form an equilibrium (accompanying restrictions on primitives can be provided to
generate such an outcome). Suppose that all individuals are identical in type and initial con-
ditions, with “modified Cobb-Douglas" preferences, so that for income y, expenditures at
income y are equally divided over sectors 1, . . . , n(y), where n(y) is some nondecreasing
step function that expands the relevant set of consumption goods as y increases. Suppose,
moreover, that the common discount factor satisfies the patience condition (23). Then any
equilibrium induces an aggregate expenditure share vector uniform over sectors 1, . . . , n∗(t),
for some nondecreasing, unbounded step function n∗(t) = n(y(t)). Suppose that the technol-
ogy is such that Ψi(t) = 0 for i <

⌊√
n∗(t)

⌋
, but Ψi(t) = a ∈ (0, 1) for i ≥

⌊√
n∗(t)

⌋
, and

for some constant a (think of this as 1 minus the share of machine capital in a Cobb-Douglas
production technology). That is, higher-index goods are automated later, while at the same
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time the consumption basket leans towards such goods. Then

`(t) '
∞∑
i=1

Ψi(t)si(t) ≥
a[n∗(t)−

√
n∗(t)]

n∗(t)
= a− a√

n∗(t)
→ a as t→∞.

Notice how expenditures spread out over goods linearly in n∗(t), while automation proceeds
“at the rate of

√
n∗(t)." So the expenditure share effect neutralizes the automation effect.

That said, the example clearly indicates that it takes quite a bit for this particular escape hatch
to be pried open. If the demand share of yet-to-be-automated goods is persistent and per-capita
income is growing, such sectors must also experience growing revenue. As these sectors are
not yet automated, the prices of their outputs will generally rise without bound.11 If as in
Proposition 5(iv), demand is price-elastic, consumer expenditure will shares will progressively
shift away from those sectors. But there is no need to go that far: even if expenditure shares
are generally uncorrelated with automation patterns — rather than negatively correlated as
just discussed — it will become impossible to prevent a vanishing labor share in the economy
as a whole. It is in this sense that “preference neutrality" towards protected and unprotected
sectors implies an overall inability to ward off the decline in human labor share.

Phrased in the light of (29), our results might appear to be a mathematically arcane implication
of the relative speeds of convergence across double infinities (in goods and time), but actually
involves an important economic issue. The potential space of goods is infinite, in the sense
that the future can always bring new commodities into being where humans are (at least tem-
porarily) not displaced by robots. And time is also infinite, resulting in an open-ended horizon
where every sector is exposed to possible automation in the future. The relative speeds of the
two processes determine the asymptotic labor share in the economy.

4. Technical Progress

We extend the theory to incorporate directed technical progress. “Directedness" means that
technical progress is geared to input scarcity. The key assumption we make is that the oppor-
tunities for such progress are symmetric across all inputs and sectors. This is not to deny the
possibility that the very nature of science and technology might generate exogenous biases
in certain directions. But studying the effect of such predetermined biases would not need a
theory. If they were to favor unbridled automation, our earlier results would be a foregone

11The only exception to this will occur if, fortuitously along the very same sequence, the productivity of the
occupational aggregates in final goods production also rises without bound.
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conclusion. If they favored the augmentation of human quality over robots, that would raise
the share of humans in national income instead.

Directed change generally points to a “balanced-growth" view of technical progress; see Ace-
moglu and Restrepo (2018, 2019), with antecedents that include Hicks (1932), Salter (1966),
Galor and Maov (2000), and Acemoglu (1998, 2002), among many others. Acemoglu and
Restrepo (2018) generate balanced growth by assuming that new tasks lie entirely in the hu-
man domain, providing temporary protection from the robot invasion. But the robots are also
hard at work, automating existing tasks and perennially chasing the moving human frontier.
In equilibrium, balance is achieved between these two forces. This approach, while genuinely
insightful, raises many questions. Why can’t new tasks that favor robots also appear on the
frontier? Or (the flip side): why cannot technical progress allow humans to recover their edge
in old tasks? And what if there is technical progress in machine capital?

In this section, we enlarge the range of possible directions of technical progress to incorporate
changes in all inputs, and presume that R&D has symmetric potential in each direction. Actual
progress will be determined by endogenous factor price dynamics. To simplify the exposition,
we assume (a) a finite number of final consumer goods; (b) one task per sector, and (d) linear
substitution between humans and robots within each category. Moreover, we restrict attention
to equilibria with long run per-capita capital accumulation in natural units, without deriving
this from underlying rates of time preference of households, and we suppose that the self-
replication condition holds.12

Under these conditions, Theorem 2 reasserts the finding of a vanishing labor income share.

4.1. Framework. Let πF (t) denote the economy-wide productivity (or efficiency units per
natural unit) of factor F = k, r, h at date t.13 With one occupation per sector, j indexes both
occupation and sector, and the sector j production function at date t can be written as

yj(t) = fj(π
k(t)kj, π

h(t)νjhj + πr(t)rj),

where recall that we’ve assumed linear substitution across humans and robots in each sector.
The same assumptions are made on fj as before, and νj captures the comparative productivity
of humans relative to robots in sector j (this is not subsumed in the common π-terms). Assume

12More precisely, we assume the self-replication condition at the initial date.
13This common productivity can be relaxed to allow sector-specific productivity improvements in each input,

with positive cross-sector spillovers.
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that the self-replication property for the robot sector holds at date 0; that is,

(30) πr(0) > lim
η→0

cr(η, 1).

All our results extend to any competitive equilibrium in which (30) holds at some t along the
equilibrium path, but we avoid an assumption on the endogenous variable πr(t).

4.2. R&D. At each date, R&D in each principal factor F is conducted by a short-lived F -
specific inventor whose activities and returns are external to the economy in question.14 This
inventor may be the winner of a prior technological competition or race among potential in-
ventors for factor F improvements at that date. As will become evident, our results extend to
a setting where there is a single inventor who simultaneously carries out R&D across multiple
factors — the ability to coordinate R&D across different directions makes no difference.

The F -specific inventor can raise the productivity of F by a factor (1 + ρ) across dates t and
t+ 1, at cost κ(ρ). Therefore

(31) πF (t+ 1) = (1 + ρF (t+ 1))πF (t)

where ρF (t+ 1) is the rate of productivity improvement of factor F at t+ 1. It is endogenous
and lies in some compact interval [0, ρ̄] where ρ̄ <∞. The cost function is strictly increasing,
differentiable and convex, with κ(0) = 0 and κ′(ρ) bounded on [0, ρ̄]. Under our already-
discussed symmetry postulate, the same cost function applies to all three inputs.

Each short-lived inventor owns property rights over the improvement, and so earns a license
fee levied on all firms that make use of the improved process at t + 1. The fee is levied per
(natural) unit of the factor employed by the firm at t+ 1. Rights expire at the end of t+ 1 and
is freely available to all producers from t+ 2 onwards.

Each inventor takes factor prices as given, as in the competitive innovation models of Gross-
man and Hart (1979) and Makowski (1980). Denote the price of factor F in sector j at t + 1

by ωFj (t+ 1) and its corresponding employment in j by xFj (t+ 1). The maximum unit license
fee LFj,t+1 at date t+ 1 that the inventor can charge to producers in sector j is then:

(32) LFj (t+ 1) = ωFj,t+1ρ
F (t+ 1)

14We can integrate these inventors into our economy by providing them with a technology that depends on
machine capital and human/robot labor. We avoid that recursive extension here. (One difference: this sector will
not be perfectly competitive, with profits constituting a positive fraction of national income.) The extent to which
humans can be replaced by robots in R&D is then a determinant of the labor income share, as in other sectors.
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Intuitively, the “effective factor price" for licensees must rise by exactly the same rate as the
proprietary productivity advance,15 so the total fee from sector j equals LFj (t+ 1)xFj (t+ 1) =

ρF (t+ 1)EF
j (t+ 1), where EF

j,t+1 ≡ ωFj (t+ 1)xFj (t+ 1) denotes the factor bill for F in sector
j. Consequently, the net return to our inventor equals

ρF (t+ 1)
∑
j

EF
j (t+ 1)− κ(ρF (t+ 1)),

implying that optimal R&D generates an improvement rate satisfying the first order condition

(33)
∑
j

EF
j (t+ 1) = κ

′
(ρF (t+ 1))

The same first-order condition holds even when the same inventor controls R&D in more than
one factor, since the overall payoff is just the aggregate of payoffs from each factor.

4.3. Equilibrium. An equilibrium extends the definition of competitive equilibrium in Section
2.6. Because licensees transfer all surplus to the inventor, current production decisions are the
same as they would have been in the absence of license purchases, but based on the technology
in the public domain at the previous date. We eschew the straightforward details of this defi-
nition. Informally, an equilibrium is a sequence of wages {w(t), wr(t), we(t), wk(t)}, prices
{p(t), pr(t), pe(t), pk(t)}, quantities {Fm(t), zm(t), em(t), jm(t), kj(t), rj(t), hj(t), yj(t)} for
every person and every sector, and productivities {πF (t)} for factor F = k, r, h, such that:

(a) Given the sequence of productivities, the remaining sequence of outcomes constitutes a
competitive equilibrium (i.e., all factor and product markets clear); and

(b) At every date, given equilibrium prices, all productivity changes and fees are the outcome
of optimal R&D activities, as described above.16

4.4. Automation and the Vanishing Labor Share with Technical Progress. We now arrive at
the main result of this section.

THEOREM 2. Assume the self-replication condition (30), and all other conditions stated above
in this section. Then in any equilibrium which exhibits unbounded accumulation of machine
capital, the income share of human labor in the economy must converge to zero as t→∞.

15One efficiency unit of the factor costs ωFj (t+1)/πF (t) for someone without access to the improved process,
and ωFj (t+1)/[(1+ ρF (t+1))πF (t)]for someone with access. The difference in unit cost is [ωFj (t+1)ρF (t+

1)]/[πF (t)(1 + ρF (t + 1)))], so this can be sucked out as a license fee per efficiency unit. Multiplying by the
number of efficiency units πF (t)(1 + ρF (t+ 1)) made possible by the advance, we obtain expression (32).

16In particular, they satisfy the first-order condition (33) with equilibrium factor bills corresponding to market
clearing relative to the production functions based on public domain technology at the previous date.
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Theorem 2 resurrects our earlier prediction, and continues to highlight the effects of asym-
metry across human and physical capital accumulation. The theorem now makes a stronger
assumption on growth, asking that capital be accumulated in equilibrium. It is stronger, be-
cause technical progress induces a downward drift on prices (relative to incomes), which is an
“automatic" — albeit endogenous — source of real income growth. For machine capital to be
willingly accumulated despite this drift, the degree of patience must clear a higher threshold
(a sufficient condition will depend on the maximal rate ρ̄ of technical progress).

The proof of Theorem 2 is intuitive enough to be provided in the main text. First observe that
under market-clearing, aggregate expenditure on capital services Ek(t) equals aggregate sup-
ply of machine capital K(t) in natural units (since machine capital is the numeraire). Hence
K(t) → ∞ implies the factor bill for capital services grows without bound, and therefore
the rate of productivity improvement of capital services attains the upper bound ρ̄ after some
date. Therefore πh(t)

πk(t)
, the productivity of human relative to capital services, is bounded. The

asymmetric growth in endowments in natural units between machine capital and human labor
generates a bias (at least weakly) in technical progress in favor of capital.

Next, the price of robot services relative to capital services in efficiency units is bounded:

LEMMA 1. In any equilibrium, there exists B <∞ such that for all t:

(34)
πk(t)

πr(t)
pr(t) < B

The lemma is a consequence of the self-replication condition, which implies an upper bound
to the equilibrium price of robots at each date, relative to the capital; this is the analogue of
Proposition 1. The bound p∗r(t) satisfies

(35) p∗r(t) = cr

(
1

πk(t)
,
p∗r(t)

πr(t)

)
It is easily checked that πk(t)

πr(t)
p∗r(t) is decreasing in πr(t).17 Since the productivity of robots

can only increase over time, the upper bound is non-increasing across dates. Hence πk(0)
πr(0)

p∗r(0)

is an upper bound on the price of robots in efficiency units at every date.

Combining these two observations, we infer that the wage rate earned by humans must be
bounded in every sector, owing to the threat of automation. In any sector j that employs

17(35) is equivalent to p∗r(t)π
k(t) = cr(1,

p∗r(t)π
k(t)

πr(t) ), so p∗r(t)π
k(t) = ψ(πr(t)) where ψ(y) solves for p in

the equation 1 = cr(
1
p ,

1
y ). Clearly ψ is non-increasing. Therefore πk(t)

πr(t)p
∗
r(t) =

ψ(πr(t))
πr(t) is decreasing in πr(t).
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human labor at any date t, humans must be cost-effective relative to robots:

wj(t)

νjπh(t)
≤ pr(t)

πrj (t)
<

B

πk(t)
,

where the second inequality follows from Lemma 1. It follows that

(36) wj(t) ≤
πh(t)

πk(t)
νjB <∞.

With finitely many sectors, νj is bounded,18 and so, by (36), are human wages. So the national
share of human labor income must converge to 0 in the long run, as K(t)→∞.

Now, while it is true that human wages are bounded, this is only relative to our chosen nu-
meraire, which is the rental rate on machine capital in natural units. Because technical progress
occurs in all sectors, machine capital becomes highly productive over time, which leads to a
progressive decline in the prices of final goods, relative to the same numeraire. While human
wages are bounded above in that numeraire, as just shown, they are also bounded below, and
so by any measure of the cost-of-living — that is, relative to any index number defined on
the basket of final goods — real incomes must diverge to infinity. The fact that the share of
human labor share nevertheless converges to zero reveals again the contrast between absolute
and relative behavior in human incomes, as discussed in earlier sections.

5. Relation to Existing Literature

Our model is distinct from most existing literature on long-run income distribution, in that
it generates a novel set of long-run distributional predictions, and its generality reveals the
fundamental assumptions that respectively drive different predictions. As already noted, our
model allows for multiple goods produced under diverse technologies with no substantive
restrictions on them, not even convexity. Human labor could be sector-specific, or migrate
across sectors via education or training, and in particular, workers can react to the threat of
automation by switching to sectors where humans are harder to displace. In terms of outcomes,
automation and the progressive displacement of humans occur as a consequence of capital
deepening alone, even without any technical progress. Under a set of minimal and transparent
sufficient conditions, the share of labor converges to zero in the long run. Moreover, balanced
growth can occur when any of these conditions fail to apply.

A possible reaction to our exercise is that it is “just" an Ak model. Certainly, our economy
behaves “as if" it has an asymptoticallyAk aggregate production function, which permits long

18With infinitely many sectors and unbounded νj , demand composition will matter as in previous sections.
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run growth as in Rebelo (1990) or Jones and Manuelli (1991). However, our main interest is in
the long run functional distribution between capital and labor, and in this respect it shows how
the deeper disaggregated structure matters. To elaborate, note that an asymptotic Ak model
can co-exist with both a positive or an ever-declining labor share.19 Indeed, as Jones and
Manuelli (1991, fn. 2) argue, any long run labor share between 0 and 1 can be generated with
suitable parametric assumptions on the class of Ak aggregate production functions they study.
Without an underlying theory of the underlying disaggregated economy, how it evolves with
progressive automation, and a consideration of more primitive forces, it is not possible to make
strong predictions regarding the asymptotic human labor share. Do all sectors eventually get
automated, or just a subset? And even if the former is asymptotically true, are there not sectors
that are yet to be automated at any finite date — and might wages in such sectors conceivably
keep pace with capital income? Additionally, what if workers can invest in human capital to
“compete" with robots? Answering these questions requires a more careful examination of
micro-foundations, which constitutes the core of this paper. And as we show, the answer does
not depend on technological assumptions alone: demand composition also matters.

We now discuss the literature on automation and its consequences for income distribution. In
some models (such as Aghion, Jones and Jones (AJJ, 2019)), automation results from techni-
cal progress, rather than a fall in the relative price of capital goods. AJJ extend the task-based
setting of Zeira (1998) where automation (occurring at an exogenous rate) is akin to an in-
creasing capital share in an aggregate production function, resulting in a declining labor share
over time. On the other hand, capital accumulation increases labor share owing to “Baumol’s
cost disease," i.e., inelastic capital-labor substitution. These two effects run counter to one
another. Hence the long run share of labor can be positive in AJJ if the cost-disease effect
outweighs the automation effect. In our setting, automation is endogenous and can occur even
in the absence of technical progress, as a consequence of progressive capital deepening.20 If

19Endogenous growth models such as those in Romer (1986) and Alesina and Rodrik (1993) generate a posi-
tive labor share via private diminishing returns, coupled with nondecreasing society-wide returns via externalities
or infrastructure. A positive human share occurs in Ak models in which human and physical capital keep pace
with each other, as in Lucas (1988) or Mankiw, Romer and Weil (1992). A stable share can also arise from para-
metric restrictions in aggregative models with automation, as in Aghion, Jones and Jones (2019), if automation
and inelastic capital-labor substitution happen to mutually neutralize their opposing effects on the labor share.
On the other hand, an aggregate Ak production function can equally well generate a zero share for labor income,
as in the Harrod-Domar model or its asymptotic variants.

20Indeed, Zeira’s original model featured replacement of labor by capital owing to adoption of labor-saving
technologies when capital prices are low relative to wages, just as in our model. However, the focus of Zeira
(1998) was on the role of economy-wide factor endowments on per capita income (rather than income distribu-
tion) in a cross-country setting, and it did not endogenize the supply of labor-saving technologies.
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the self-replication condition holds, this induced automation effect is powerful enough to drive
the long run labor share to zero, even despite inelastic capital labor substitution in all sectors.

Acemoglu and Restrepo (AR, 2018) also extend Zeira’s approach to study the distributional
implications of automation.21 Their model has one final good, produced by a continuum of
tasks, each of which is produced either by robots or humans. There is a task threshold above
which tasks can only be performed by humans. Technical progress enlarges the set of tasks that
lie above this threshold, and so is effectively restricted to be in favor of humans (in contrast
to AJJ). Below the threshold, robots can substitute for humans depending on relative factor
prices; hence capital accumulation tends to lower labor share in AR (again in contrast to AJJ).
As in AJJ, a long-run positive share emerges, but for opposite reasons.

As in AR, our model generates automation and a declining labor share as a consequence of
capital deepening. However the greater generality of our model reveals the underlying mi-
crofoundations for this result. First, our use of multiple sectors shows how self-replication
in the robot sector spills over to all sectors, an issue that does not arise in an aggregative
setting. Second, we make explicit the role of occupational diversity in sustaining human cap-
ital accumulation. In so doing (and again by invoking a multiplicity of sectors) we show the
fundamental role played by the composition of demand; specifically, the asymptotic homo-
theticity of preferences as individual income climbs. Finally, our formulation of technical
progress allows for capital as well as human productivity improvements, and does so in an
ex ante unbiased fashion. The direction of technical progress is then driven by endogenous
innovation incentives. The extension of our baseline model in Section 4 provides an illustra-
tion of plausible circumstances where technical progress ends up not being directed in favor
of humans.

Benzell et al (2018) present a model with two final consumption goods. “Robots" or “code"
represent a durable capital asset used to produce a material good, while labor is used to pro-
duce a useful service. An increase in the stock of robots causes the relative price of the service
and hence wages to fall, owing to induced changes in demand composition. This paper there-
fore shares some common features with ours: automation is induced by changes in factor
prices and demand composition matters. However in their model, in the long run there is no
growth and the share of labor is positive. These differences owe to their assumption that there
is no scope for robots to displace humans in the production of services, and a different model
of savings (an OLG specification without parental altruism) that prevents any long run growth.

21Hemous and Olsen (2020) extend Acemoglu and Restrepo (2018) to incorporate skilled and unskilled labor,
and focus on the implications of automation for wage inequality, an issue we ignore.
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Caselli and Manning (2019) study the consequences of automation on levels of real wages,
rather than inequality of factor share between labor and capital. They compare steady states
of a model with multiple final/intermediate good and types of labor with respect to an exoge-
nous change in technology that lowers unit costs of all goods at any given vector of factor
prices. They show this implies that real wages of at least one worker type must increase.
Moreover the average real wage increases if the prices of investment goods fall faster than of
consumption goods. A fortiori, these results hold also in our model, which additionally incor-
porates endogenous capital accumulation and technical progress. As shown in Proposition 2,
automation and vanishing labor share can co-exist with real wages that rise without bound.

While our model has focused on predictions of long run labor share, it also provides a potential
explanation of falling labor share which is distinct from other explanations in the existing
literature. Aside from those based on automation and already discussed above, the remaining
literature can be classified into the following two categories:22

(i) An argument based on sustained human capital investment, which causes effective labor
to grow relative to effective capital. In Grossman et al (2020), human capital investments
rise owing to a fall in the interest rate, driven in turn by an exogenous decline in rates of
technical progress. A number of additional assumptions are needed for their result: capital-
skill complementarity, a low intertemporal substitution elasticity in consumption, a closed
economy, and an aggregate capital-labor elasticity of substitution below 1.

(ii) Theories based on globalization, rising markups, rising market concentration, or fall in
labor bargaining power. Arguments include globalization, whereby labor in developed coun-
tries are displaced by competing cheap imports (Autor, Dorn and Hansen 2016), selection into
more profitable, higher-markup firms (Autor et al 2017), or factors such as the rise of the gig
economy or greater product differentiation, leading to a decline in firm competition and the
bargaining power of labor (Neary 2003, Gutiérrez and Philippon 2017, Azar and Vives 2018,
Eggertsson, Robbins, and Wold 2018, and Kaplan and Zoch 2020).

Our approach is distinct both in terms of underlying assumptions and detailed predictions. The
relative growth of human capital and physical capital in efficiency units is inverted relative to
Grossman et al (2020). While our model can be extended to incorporate market power of firms,
our results would continue to apply in the absence of any changes in market power; moreover,

22We exclude explanations based on sustained capital accumulation in an aggregative model with capital-
labor substitution elasticities exceeding one (e.g., Piketty 2014), because these are at odds with evidence from
industry panel studies which show inelastic substitution in most industries (Chirinko and Mallick 2014).
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the evidence presented by Karabarbounis and Neiman (2014) indicates the relevance of our
approach, even if rising markups provide part of the explanation of falling labor share.

6. Concluding Remarks

We study the possibility of long-term automation and decline in the labor share, driven by
capital accumulation rather than biased technical progress or rising markups. Our argument
relies on a fundamental asymmetry across physical and human capital in modern economies.
While physical capital can be scaled up for the same activity and accumulates in natural units,
human capital accumulates via education that alters choice into higher-skilled occupations,
but — from the vantage point of a household or individual — cannot scale up the quantity of
labor for a given occupation to an unlimited degree. Under a self-replication condition on the
technology of the robot-producing sector, and some additional conditions made explicit in the
paper, we show that the share of human labor in national income must dwindle to zero in the
long run.

The self-replication condition plays an important role in the model. Though involving the
technology of the robot sector alone, it turns out to have far reaching implications for long
run growth and functional inequality. There is increasing recognition that the “production of
robots by means of robots" is not merely a hypothetical possibility:

“They are a dream of researchers but perhaps a nightmare for highly skilled computer programmers:
artificially intelligent machines that can build other artificially intelligent machines . . . Jeff Dean,
one of Google’s leading engineers, spotlighted a Google project called AutoML . . . [which] is a
machine-learning algorithm that learns to build other machine-learning algorithms. With it, Google
may soon find a way to create A.I. technology that can partly take the humans out of building the
A.I. systems that many believe are the future of the technology industry." (The New York Times,
November 5, 2017.)

The model therefore suggests that the implications of recent developments in AI for the future
of inequality may well be fundamentally different from anything observed in the past.

On the other hand, our paper also provides a number of different reasons why the labor share
need not vanish asymptotically: if the self-replication does not hold, non-homothetic demand
that progressively favors sectors where humans are harder to displace, the existence of growing
sectors where humans cannot be displaced at all, or technical progress biased in favor of
humans. However, while any of these scenarios is possible, we do not see any reason why
they should be inevitable. Our main purpose has been to identify, as clearly as possible, a set



35

of minimal sufficient conditions for a zero asymptotic labor share. And that at the same time,
automation can help generate growth in the long run, fueling an absolute increase in human
wages even as it causes a relative decline in labor share.

Our emphasis throughout has been on the functional distribution of income. Whether a house-
hold’s income manages to keep step with the rest of the economy — the question of the
personal distribution of income — will depend on whether they invest in financial wealth or
human capital (or neither, or both). This is a question we have not yet addressed, though our
model provides the means to study it, and is something we plan to undertake. It will become
necessary to take closer account of both the heterogeneity of the population in their preference
parameters, as well as to incorporate a detailed description of credit market constraints. Both
these features are currently present in the model, but play no more than a background role.
Finally, we note that despite its generality, the theory presented here is simple and tractable,
which may also allow it to be useful in analyzing effects of fiscal policies such as capital
taxes, education subsidies, universal basic income or other policy interventions to address the
distributional consequences of automation.
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Appendix: Proofs

Proof of Theorem 1. We begin with some preliminary observations.

LEMMA 2. For each j, there is pj > 0 such that in any equilibrium and at any date t,

(37) pj(t) ≥ pj > 0

whenever yj(t) > 0. If in addition, self-replication holds, then

(38) pj(t) ≤ cj
(
1, {(νo)−1 supP ∗}

)
<∞

for all j and at every date t, where P ∗ is defined in Proposition 1 and o ranges over Oj .

Proof. See Supplementary Appendix.

Recall the automation index introduced in the main text (in a generic occupation o, sector
subscript removed):

ao(ζ) ≡ min
(ro,ho)

{
ro

hoζ + ro
∣∣(ro, ho) minimizes unit cost (hoζ + ro)

}
.

LEMMA 3. The automation index ao(ζ)→ 1 as ζ →∞.

Proof. Let ho(ζ) be any selection from the set of unit cost minimizing choices of human labor
at price ratio ζ . We claim that limζ→∞ ζh

o(ζ) = 0. To prove this, pick any sequence where
limζ→∞ ζh

o(ζ) is well-defined (possibly infinite), and a further subsequence (retain notation)
so that the corresponding robot choice ro(ζ) converges to some limit, call it r∗, as ζ → ∞.
Because minimized unit cost cannot exceed that from the feasible method of producing one
unit of λ using νo units of ro alone, we have ho(ζ)→ 0. Because λo is continuous,

λo(ho(ζ), ro(ζ)) = λo(0, r∗) = 1.
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Therefore r∗ is always a feasible choice for unit production, and so

ζho(ζ) + ro(ζ) ≤ r∗,

Because r0(ζ) → r∗, the claim follows. Finally, unit production of λo is maintained through
the sequence, so lim infζ r(ζ) > 0. It follows immediately that ao(ζ)→ 1 as ζ →∞.

Now we prove part (i) of the Theorem. We first show that in an equilibrium and for any
group m that satisfies (23), we have zm(t) → ∞. Consider the indirect utility functions
vm(z(t),p(t)) for individual expenditure z(t) at any date t. In any equilibrium, an individual
in this group has F0 > 0 units of a financial asset at date 0, and thereafter makes educational
and financial asset choices (and consumption choices), under fully anticipated prices, which
includes a sequence of return factors {γ(t)} on financial holdings. She has several necessary
conditions that describe her behavior, but one set of these has to do with her choice of financial
assets. Because her initial income can be strictly positive if she so pleases (there is a positive
subsistence wage), her current expenditure zm(T ) must be strictly positive at some date T , but
then zm(t) > 0 for all t ≥ T , by the unbounded steepness of vm in z at 0. For ease in writing
set T = 0. It follows that the Euler equation on financial assets must hold with a particular
inequality at every date t ≥ 0:

(39) v′m(z(t),p(t)) ≥ βmγ(t)v′m(z(t+ 1),p(t+ 1)).

If (39) fails, she could always transfer resources one period into the future and increase lifetime
utility. (Equality may not hold because human capital could have a higher rate of return than
financial assets, and the individual may not be able to marginally pull back funds from future
to present, because of credit constraints.) Now we compound this Euler inequality just as in
the main text to arrive at (26), reproduced here as:

(40) v′m(zm(0),p(0)) ≥
βt−1
m

[
(1− δ) + 1

ck(1,{(νo)−1 supP ∗})

]t−2

ck (1, {(νo)−1 supP ∗})
v′m(zm(t),p(t)).

It follows from condition (23) that v′m(zm(t),p(t))→ 0 as t→∞. But vm is strictly increas-
ing and concave for every p. Moreover, every active final goods price is bounded above and
below by (38) of Lemma 2.23 Therefore (40) can only hold if zm(t) → ∞ as t → ∞. With a
bounded credit limit on every other individual, we must conclude that per-capita income Y (t)

as defined in (17) must go to infinity.

23If a final good is inactive it has no effect on vm anyway, as it is not consumed.
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For part (ii), we show that any sector j must have its automation index converge to 1 along
any subsequence in which its output grows. To show this, we argue first that inputs from some
occupation o ∈ Oj in that sector must also grow. If this were false for every occupation in Oj ,
then kj(τ)→∞ as τ →∞, and so by the unbounded steepness condition,

(41) qo(τ) = pj(τ)
∂

∂λo
fj(kj(τ),λj(τ))→∞ as τ →∞

for some occupation o ∈ Oj . But we know that

qo(τ) = co(wo(τ), pr(τ)) ≤ (νo)−1pr(τ) ≤ (νo)−1 supP ∗ <∞,

where the first inequality comes from the fact that automation is feasible and the second
from self-replication and Proposition 1. But that contradicts (41). So λo(τ) must grow in
some occupation o ∈ Oj . In any such occupation, ho(τ) ≤ 1, so ro(τ) → ∞. If wo(τ) is
bounded along some subsequence, then the automation index must converge to 1 along that
subsequence. If wo(τ) is unbounded along some subsequence, then — recalling that pr(τ)

is bounded — Lemma 3 applies and the automation index for occupation o also converges
to 1 along that subsequence. Averaging the index over all growing occupations in sector j
completes the proof.

Part (iii). For this part, we need the following

LEMMA 4. Let S be the set of all infinite-dimensional nonnegative vectors s ≡ (s1, s2, . . .),
with components in [0, 1] and

∑∞
j=1 sj = 1. Let s(t) be a sequence in S, and suppose that

there is ŝ ∈ S such that s(t) converges pointwise to ŝ = (ŝj). Let Ψ(t) be a corresponding
convergent sequence with components (Ψ1(t),Ψ2(t), . . .), where Ψj(t) ∈ [0, 1] for every j and
t, with Ψj(t)→ 0 as t→∞ for every j with ŝj > 0. Then limt→∞

∑∞
j=1 Ψj(t)ŝj(t) = 0.

Proof. See Supplementary Appendix.

For any active sector j and date t, define

Ψj(t) =

∑
o∈Oj w

o(t)ho(t)

pj(t)yj(t)
∈ [0, 1],

and set Ψj(t) = 0 if yj(t) = 0. This is well-defined: pj(t) > 0 whenever yj(t) > 0 (Lemma
2). We claim that if yj(t) → ∞ along a subsequence of dates, Ψj(t) → 0. To see this, pick
any limit point of Ψj(t) along the subsequence in question. Choose further subsequences such
that for every occupation o ∈ Oj , wo(t) is either bounded or diverges to infinity; retain the
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original index t. Now, if wo(t) is bounded for some o ∈ Oj , then certainly

wo(t)ho(t)

pj(t)yj(t)
→ 0

as t→∞. (Because pj(t) is bounded below, pj(t)yj(t)→∞.) Otherwise, if wo(t)→∞ for
some o ∈ Oj , ζo(t) = wo(t)/pr(t) → ∞, given that pr(t) is bounded above (Proposition 1).
By linear homogeneity of λo and Lemma 3,

wo(t)ho(t)

pj(t)yj(t)
≤ wo(t)ho(t)

wo(t)ho(t) + pr(t)ro(t)
=

ζo(t)ho(t)

ζo(t)ho(t) + ro(t)
≤ 1− ao(ζo(t))→ 0.

Aggregating these observations over all the occupations proves the claim.

If `(t) denotes the share of human labor in national income, it follows that

`(t) =

∑
o∈Oj w

o(t)ho(t)

Y (t)
=

∑
j Ψj(t)pj(t)yj(t)

Y (t)

=

[∑∞
i=1 Ψi(t)pi(t)yi(t)

Y (t)

]
+

∑
j=e,r,k Ψj(t)pj(t)yj(t)

Y (t)
(42)

at every date t, where it is understood that any sector inactive at any date has an entry of 0 in
the sum above. Write for every final good i active at date t:

(43)
pi(t)yi(t)

Y (t)
=
∑
m

φm(t)smi(t),

where φm(t) ≡ Zm(t)/Y (t) is the ratio of current aggregate expenditure of type m to total
income, and smi(t) is the corresponding expenditure share on good i by type m. Combining
(42) and (43),

(44) `(t) =
∞∑
i=1

Ψi(t)

[∑
m

φm(t)smi(t)

]
+

∑
j=e,r,k Ψj(t)pj(t)yj(t)

Y (t)

for all t. We will show that the right hand side of (44) converges to 0 as t → ∞. To this
end, pick any subsequence of dates (but retain original notation) so that `(t) converges. Ex-
ploiting the fact that the number of sectors is countable, use a diagonal argument to extract
a further subsequence (again retain notation) so that each of the bounded sequences Ψj(t),
φm(t), smi(t), pj(t), and [pj(t)yj(t)]/Y (t) also converge.24 The last finite sum in (44) pertains
only to three sectors: e, r and k. For any of these sectors, call it j, Ψj(t) → 0 along any
subsequence for which j is consequential, and on any other subsequence pj(t)yj(t) must be
bounded, while Ψj(t) ∈ [0, 1]. Putting these observations together with Y (t) → ∞, we must

24In particular, the ratio φm(t) = Zm(t)/Y (t) is also bounded because of finite credit limits.
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conclude that this last finite term in (44) converges to 0. The rest of the argument concerns the
first set of terms in (44).

Let M be the set of all indices for which limt φm(t) > 0 for the subsequence under consid-
eration. If M is empty, we are done, so assume it is nonempty. Then, using the fact that the
interchange of a finite and infinite sum is always valid, we have
∞∑
i=1

Ψi(t)

[∑
m

φm(t)smi(t)

]
=
∑
m

φm(t)

[
∞∑
i=1

Ψi(t)smi(t)

]

=
∑
m∈M

φm(t)

[
∞∑
i=1

Ψi(t)smi(t)

]
+
∑
m6∈M

φm(t)

[
∞∑
i=1

Ψi(t)smi(t)

]
.(45)

Because φm(t) → 0 for all m /∈ M , the second term on the right hand side of this equation
converges to 0. It remains to show that same is true of the first term. It will suffice to show
that for each m ∈M ,

(46)
∞∑
i=1

Ψi(t)smi(t)→ 0

as t → ∞ along our chosen subsequence. Because limt φm(t) > 0 for m ∈ M and Y (t) →
∞, it follows that expenditures diverge to infinity for a positive measure of individuals of each
type m. Let Zm(t) be the aggregate expenditure of type m and xmi(t) the aggregate demand
for good i by this type. By asymptotic homotheticity,

ŝmi ≡ lim
t
smi(t) = lim

t

pi(t)xmi(t)

Zm(t)
= lim

t
pi(t)d

m
i (p(t)),

We claim that each pi(t) is bounded above and below by strictly positive numbers. The upper
bound is given by Lemma 2. For the lower bound, suppose by contradiction that I , the set of
indices such that pj(t) → 0, is nonempty. Then, by assumption (ii) on the function dm, we
have lim inft dmi(p(t)) > 0 for some i ∈ I . But then that sector is active at all large dates,
which means that its price is bounded below (see (37) of Lemma 2), a contradiction. Therefore
the claim is true, and given assumption (i) on dm, it follows that ŝmi forms a “bonafide share
vector" with

∑
i ŝmi = 1. So the conditions in Lemma 4 are satisfied (ignore index m).

Therefore this Lemma implies (46), and the income share of human labor must converge to
zero. Recall (17) to write out income:

Y =
∑
i

piyi + peye + pkyk,
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and express it as the sum of (machine) capital and human income:

Y =
∑
i

piyi + peye + pkyk =
∑
j 6=r

[kj + prrj + wjhj]

=
∑
j 6=r

[kj + wjhj] + pr[yr − rr] =
∑
j 6=r

[kj + wjhj] + [kr + wrhr]

=
∑
j

[kj + wjhj] = K +
∑
j

wjhj.

That means that the income share of capital converges to 1.

Proof of Proposition 2. By Theorem 1, per-capita income must grow without bound. More-
over, by Lemma 2, 0 < inft pj(t) ≤ supt pj(t) < ∞. Therefore by asymptotic homotheticity
and the full support restriction on dm for each m, every final goods sector must grow without
bound. By the unbounded steepness of each sectoral production function in its inputs, the de-
mand for every final goods occupation must also grow, and so each such occupation must be
asymptotically automated. As a consequence, all occupations in the capital and robot sectors
must also experience unbounded growth, and they too must be asymptotically automated.

Part (a). Consider any occupation o ∈ O−e and any subsequence of dates t with ho(t) > 0 for
all such t. Then, by the first-order necessary conditions for optimality,

(47) wo(t) ≤
[
∂λo/∂r

∂λo/∂h
(ho(t), ro(t))

]−1

pr(t) ≤
[
∂λo/∂r

∂λo/∂h
(ho(t), ro(t))

]−1

supP ∗,

where the second inequality uses Proposition 1. Because o is asymptotically automated,

(48)
∂λo/∂r

∂λo/∂h
(ho(t), ro(t))→ θ0 as t→∞.

Combining (47) and (48), we must conclude that

(49) lim sup
t:ho(t)>0

wo(t) ≤ supP ∗

θo
,

so that

(50) sup
o∈O−e

[
lim sup

t:ho(t)>0

wo(t)
]
≤ sup

o∈Q

supP ∗

θo
=

supP ∗

info∈O−e θ
o
<∞.

We now consider the education sector, and claim that lim supo∈Oe,tw
o(t) <∞. For if not, then

wo(t) → ∞ for some subset of occupations o ∈ Oe along some subsequence of dates. Now,
supt pe(t) <∞ by Lemma 2, and moreover, the education function is uniformly bounded. So
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the cost of all education is uniformly bounded. Therefore, given (50), all humans must ulti-
mately be in these educational occupations with unboundedly rising wages, along the afore-
mentioned subsequence of dates. Therefore the total input cost of providing education is
unbounded along the same subsequence, so total revenue from education must also be un-
bounded. Using supt pe(t) <∞ again, the total output of education must grow without bound
along the same subsequence of dates. But now we have a contradiction, for only a bounded
amount of education is produced at any date (the education function is uniformly bounded and
there is a unit measure of humans). So the claim is true, and lim supo∈Oe,tw

o(t) <∞.

With this result in hand, we can finally extend the bound (50) to include all occupations and
dates, not just those for which ho(t) > 0. For if wo(t) were to climb to infinity along some
subsequence of occupations and dates for which ho(t) = 0, then at large t, individuals must
move to these sectors, which contradicts the presumption that ho(t) = 0.

Therefore lim supo∈O,tw
o(t) <∞, which establishes part (a).

Part (b). Recall that all occupations o ∈ O−e grow along with output, and so are asymptotically
automated. Because ro(t) > 0 for all large t, it must be the case that for such t,

wo(t) ≥
[
∂λo/∂r

∂λo/∂h
(ho(t), ro(t))

]−1

pr(t).

Passing to the limit with asymptotic automation, using (48), and invoking Lemma 2 to find a
strictly positive lower bound pr for the robot price, we conclude that

lim inf
t
wo(t) ≥

pr

θo
.

for every occupation o ∈ O−e. It follows that

sup
q∈O−e

lim inf
t
wo(t) ≥

pr

info∈O−e θ
o

=∞,

which implies that there is a sequence of occupations and dates along which the human wage
climbs without bound. To complete the proof, we claim that every human wage wι(t) must
climb to infinity as well. Suppose not, then wι(t) is bounded along a subsequence of t, while
there is some occupation o with wo(t)→∞ along that same subsequence. But the education
function is uniformly bounded, and so is the price of a unit of education pe(t). So at some
large t, person ι can profitably deviate by selecting occupation o for one period, and returning
to her presumed optimal plan from date t+ 1 onwards, a contradiction.

Proof of Proposition 3. By the minimum subsistence bound on wages and (37) of Lemma 2,
there is q− > 0 such that in any equilibrium, q(t) ≥ q− for all t. Recalling the definition of
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Λj(q), we can easily use the linear homogeneity of fj and invoke (27) to see that there is ε > 0

such that the share of task costs in total cost in sector j satisfies:

qj(t)λj(t)

pj(t)yj(t)
= Λj(q(t)) ≥ ε > 0,

for every t and every active sector j. Therefore, if Λ(t) denotes the overall share of task costs
in total production costs at date t, then, because it is simply a convex combination of all the
sector-specific shares,

(51) Λj(t) ≥ ε > 0

as well, for every date t.

Now consider any sequence of dates (retain original index t) along which the overall income
share of human labor converges. Using a diagonal argument, extract a subsequence such that
in every sector j, Λj(t) converges — to a strictly positive limit, by (51), and the overall shares
of human labor cost and robot cost in sectoral task costs converges as well. If the robot cost
share converges to a number strictly smaller than one, then the proof is complete. Otherwise,
the robot cost share converges to 1, and given that the latter has a positive limit, it follows that
limj rj(t) > 0. In particular, for large dates, the robot sector is active, so that:

(52) pr(t) = cr(1, qr(t)) ≤ cr(1, ν
−1
r pr(t)).

where the latter inequality comes from the feasibility of automation in the robot sector.

Now, self-replication fails by assumption, so limη→0 cr(η, 1) ≥ νr. Multiplying through by
prν

−1
r , and using the concavity of the robot cost function (the first part of our regularity con-

dition on fr), pr ≤ c(1, ν−1
r pr) for every pr > 0. Indeed, using (37) of Lemma 2 and the

unbounded steepness of c at pr = 0 (inherited in turn from the unbounded steepness of fr),
we make a stronger claim: there is ε > 0 such that

(53) pr(t) ≤ cr(1, ν
−1
r pr(t))− ε.

at every conceivable equilibrum price pr(t) at any date.25 Combining (52) and (53),

cr(1, qr(t)) ≤ cr(1, ν
−1
r pr(t))− ε,

which in turn implies the existence of ε′ > 0 such that

qr(t) ≤ ν−1
r pr(t)− ε′

25Note first that pr(t) is bounded below (Lemma 2. Now consult Panel B, Figure 1. Because cr(1, pr) is
concave and initially lies strictly above the diagonal, it cannot converge back to the diagonal without actually
crossing it. So it must remain separated from the diagonal by some strictly positive number.
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for all t large. So, because the unit task cost is bounded away from what it would have been
with full automation, it follows that ar(t) = rr(t)/hr(t) must be bounded above. But then,
because asks in the robot sector can be produced by humans alone (the second part of our
regularity condition on fr), it must be that the share of human labor income in the total value
of robot production (equal to robot income) is bounded away from 0. Therefore in this case,
too, the share of human income in task cost is bounded away from zero, and the proof of the
proposition is complete.

Proof of Proposition 4. In any equilibrium, all prices are bounded below (pointwise) by
strictly positive numbers, just as before; see (37) of Lemma 2. Under self-replication, Propo-
sition 1 additionally applies and robot prices are also bounded above exactly as before, and
independent of human productivity. In turn, this provides pointwise upper bounds on prices
in all sectors, see (38) of Lemma 2. That includes the same bound on price of capital, so part
(i) of Theorem 1 holds under the same conditions and following exactly the same proof.

The remainder of the proof consists in applying the following argument at more than one
point:

Claim. Suppose that for some occupation o ∈ ∪jOj , the human wage per unit of productivity,
wo(t), is bounded on the equilibrium path by some w̄o < ∞. Then human labor in efficiency
units is also bounded along that same path.

To establish the Claim, pick some S > 0 such that

(54) peS >
w̄o

1− β
+ p̄eL

o

where β is the largest discount factor among all types. Next, using (H.1), pick M < ∞,
larger than initial productivity endowment and the cross-occupation bound, such that e(µ, µ+

∆, o, o) ≥ S∆ for all µ ≥ M . Suppose an individual contemplates a move beyond a pro-
ductivity of M without changing occupation; i.e., there exists t such that she moves from
µo(t − 1) ≥ M to µo(t) > µo(t − 1). Let ∆ ≡ µo(t) − µo(t − 1). Then the lifetime wage
gain as a result of this move is bounded above by w̄o∆/(1− β). Also, the higher productivity
can lower the marginal cost of subsequent actions. By (H.2), these gains are bounded above
by p̄eLj∆, where p̄e is an upper bound on the price of education. So total gains are bounded
above by

(55)
w̄o∆

1− β
+ p̄eLj∆
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On the other hand, the cost of this move is given by

pe(t)e(µ
o(t− 1), µo(t), o, o) = pe(t)e(µ

o(t− 1), µo(t− 1) + ∆, o, o) ≥ p
e
S∆.

Combining this expression with (54) and (55), we must conclude that the cost of the proposed
move exceeds its benefits, so it will never be made. That proves the Claim.

For parts (ii) and (iii), minor adjustments are needed. In (ii), we prove that any sector j must
be asymptotically fully automated along any subsequence in which its output grows. Just as
in the proof of Theorem 1, we can first show that inputs in some occupation o ∈ Oj in that
sector must also grow. Now we consider two possibilities. If wo(t) grows along some further
subsequence, then the share of human labor income in total income to occupation o must
converge to zero along that subsequence; Lemma 3. The second possibility is that wo(t) is
bounded. Then by the Claim, individual productivity is also bounded, and — given that this
occupation grows — it must become asymptotically automated.

For part (iii), we need to show again that

Ψj(t) =

∑
o∈Oj w

o(t)ho(t)

pj(t)yj(t)
∈ [0, 1],

converges to zero, as in the proof of Theorem 1. Very similar (and minor) changes need
to be made as in the preceding paragraph, using the Claim. We omit the details. With this
established, there is no change in the rest of the argument to establish Theorem 1.


