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Abstract

The objective of the standard parts optimal control problento find a numberm, of control
inputs to a given input-output system that can be used iremifft combinations to achieve a certain
number,n, of output objectives and to do this in such a way that a spetffgure-of-merit measuring
the average cost of control is minimized. The problem is egfig interesting whemm is significantly
less thann. Distributed optimization problems of this type arise mally in connection with recent
work on control communication complexity. In what follows a general formulation of the standard parts
optimization problem is given along with some simple ilhasive examples. Control communication
complexity is defined, and it is shown how one measure of thispgexity naturally leads to a standard
parts optimization problem. The entire circle of ideas iplered in the context of quadratic optimal
control of the Heisenberg system, and recent results on atahpity using simple closed curve inputs

are presented.

I. INTRODUCTION

A little over a quarter century ago, a number of researchecatne interested in finding a
lower bound on the energy required to perform a computafite. efforts sought to understand
how computational limits were related to the mathematiogid employed, the way hardware
was engineered, and ultimately to the fundamental bountseomodynamics. (See, for instance,
[Benl],[Ben2],[Tof] and the engaging monograph [Feyn].) @&ound the same time, other

researchers worked on problems motivated by the optimagulesf VLSI circuits, and they
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worked to find the best ways for components to communicatk edtch other in carrying out
computations. A growing body of research @ammmunication complexity has emerged following
a seminal paper [Yaol] by Andrew C.-C. Yao, and a good intctida to the area is the
monograph [K&N]. Generally speaking, papers dealing witimounication complexity have
been information-theoretic in character and have not tlirécuched upon the physical aspects of
communication. Work on theoretical foundations of the ctaxipy of implementing distributed
computing by means of steering a control system has recapgplgared in work of Wong, [Wong].
This work has been further developed, with potential cohaes to quantum computation being
suggested in [WongBall] and [WongBal2]. The essential lwe@and what we have callembntrol
communication complexity is that multiple parties simultaneously but independemiigvide
inputs to a control system whose state is observed to chacgwdingly. The problems are
formulated in such a way that the state changes provide ghdtseof computations using data
encoded by the inputs of the parties. The cost of the comput& just the cost steering the
control system using the chosen inputs, and in [WongBaltl] [fongBal2], this cost is given
by a simple quadratic form integrated over the finite timennl on which the control system
is allowed to operate.

The goal of our current work onontrol communication complexity is to understand the way
in which the complexity of a computation may be understoothderms of the physical effort
required to carry it out. A very simple illustration of whatinvolved is provided by the following

elementary optimization problems.

Problem 1. Suppose we wish to make a rectangular container of a pbescdepth and volume
V. What should be length and width such that the amount of mahtesed is minimized? This
can be posed to a beginning calculus class, and the solstieasily shown to be that the length
and width should be equal (to the square root of the area obottem of the container).]

For people who have thought about elementary optimizatitims solution is intuitively
obvious. A problem that is of comparable simplicity but waith such an obvious solution involves

the optimal design of a slightly more complex rectangulamtamer.

Problem 2. Suppose we wish to make a rectangular container of a poescdepth and volume
and comprising two rectangular chambers, the areas of ttierb® of which ared and B. We

formulate the problem of finding the minimum amount of mateneeded as finding length
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values/y, (5, (3 such that/1/y = A, (13 = B, and3/(; + 2{5 + 2(3 is minimized. (See Figure 1.)
Again elementary calculus yields the solution:
24+B) , _ AV3 BV3

s PR B T VAT B)

It is somewhat interesting to note that this solution is elts but slightly better than what one

6 =

would get by simply dividing a square base of aetiin half in the case thatl = B. [J

Fig. 1. A rectangular container with two chambers havinggafe x {2 and /¢, x {3 respectively.

Problem 1 is very classical, while Problem 2 is new and poiatsome essential features
of finding minimum communication complexity protocols byl\8ng constrained optimization
problems. To develop the analogy, if we think of the enclosmriangles as messages and the
lengths of the sides as the cost of transmitting symbolssitigle “message” (=area) of Problem
1 leaves no basis for choosing the length and width to haverdift lengths. The two separate
areas of Problem 2, however, cause us to choose (via maticahwgitimization) shorter lengths
for the sides which appear more frequently as boundary setigmié¢ A = B, for instance, there
are four segments of length = ¢;1/34/2 and three segments of length= 2./4/3, and we
find the optimal lengths satisf§; = (4/3)¢;. One can also see these problems as highlighting
the differences between centralized and distributed opdéiton. Suppose there are two agents,
one of whom is assigned to select the lengths of the top anrbosegments bounding the
rectangles, and the other who is assigned to select thehleioftthe side segments. Problem 1
does not involve any notion of choice on the part of the agantbat only a single area must
be inscribed. The agents minimize the total perimeter lehgtchoosing the same “side-length”
policy. In Problem 2, however,the two agents must selecineeg lengths that reflect the fact
that the boundary segments must enclose two separate sedgtach agent chooses segment

lengths that in an averaged sense optimally enclose therjived areas.
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A less elementary class of optimization problems that amefullsn formulating optimal
information exchange protocols are what we datributed optimal steering problems. In general

terms, we consider control systems of the form
&= f(z,u),
y = h(x).

evolving on some state manifolit of dimensionn and in which the dimensiom of the input

(1)

u = (ug,...,u,) is greater than one. We are primarily interested in a disteith version of the
problem in which the control inputs;(-) are determined by independent agents who collaborate
to achieve specified control objectives. The objectivedgefin number, are expressed as terminal
statesh(z1(T)), ..., h(zn(T)) € M.

We can assign a variety of meanings to these terminal statesdifferent intepretations are
described here.

1. Generalized standard parts parts optimization problem. This is a generalization of the
problem mentioned in Brockett [RWB4]. The optimal controbplem aims to find choices of
control inputs(uy ., ..., Un,,) Wherel < i; < k;, j = 1,...,m, with eachm-tuple ¢ =
(i1,...,1,) being associated with a unique control objectie,(7")) from the list. Obviously,

a necessary condition for the problem to be solvable is that £k, - - - k,,. The case where
N is equal to or close ta@; - - - k,, is particularly desirable since the the sum of the number of
possible control choices over the components of the inpyts; - - + &, is less than the number
N of goal states. It is also of interest to note that if we repneéshe tuples(¢, h(z¢(7))), as
rows in anm + 1 column table, the resulting table is not in the second noforah in the sense

of database normalization. This implies that some of thensgdo not have any effect on the
control outcome. These are issues of potential interesbmral design.

2. Joint terminal state optimization problem. This is essentially the model propounded in
[WongBall]. Each agent is allowed a finite number of choicaswkn only to the agent. In
particular, ageny has choices] < i; < k;. Eachm-tuple { = (iy,...,1,,) identifies a unique
utility function which is assumed to possess a unique optstate,z. (7). The objective is to
steer the system to reach such an optimal state.

For both classes of problems, the controls are designedas@aichmn-tuple (uy;,, ..., Un,,)

April 2, 2009 DRAFT



steers (1) from a common initial statg to the goal state¢(7") in such a way that

k kom
n = /T i: ur (24 Y () dt
0 =1 j=1
IS minimized.
While them-agent distributed optimization problem is of interesthe tontext of multiparty
control communication complexity, the present paper wéht only the special case of = 2
agents. In this special case, we seek control inputs thativise an output functiork(-) to a set

of goal values;; prescribed by am, x n, matrix H. We are thus concerned with the problem

of finding a choice ofx; scalar inputs:; andn, inputsv; such that togethes; andv; steer

#(t) = alz(t), u(t), v(t), y(t) = h(z(t)) (2)

T ni n2
A IICES MO ©

is minimized. In the following sections, we consider prabtedefined by binary matricad
and periodic inputs. We consider a broad class of systemsvifiph have input-output maps
that are bilinear in the control inputs. Before providingsifics of the problem formulation, we

consider one further elementary example.

Problem 3. Consider the problem of bounding three disjoint rectamglenstructed by choosing
sides of up to four distinct lengthg, /5, /3, ¢, such that the rectangles have prescribed areas
A, B, and C and such that the total length of all perimeters is minimizédhere are no
restrictions on how the segments of each length can be usednstruct the boundaries of
the rectangles, then an optimal solution can be shown toiregi most three distinct side
lengths—¢, = V/A,¢, = /B, l; = \/C, and/, = 0. The total length of the three perimeters
is then given by4(v'A + VB + v/C). If we impose a further constraint that the sides of the
rectangles satisfy, sa¥, /s = A, (303 = B, (3¢, = C, then no side segmefit can be zero, and

the minimum total length of the perimeters becomgs(A + 2B)(C + 2B)/B. If we impose
an additional constraint beyond this thgt = ¢, then the optimization problem becomes ill
posed, and the only way to satisfy the constraints is to ahéps- \/AB/C, ¢, = \/AC/B,
and(; = \/BC/A. The total perimeter length i&y/ABC(A~' + B~' +- C~') which is greater
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than4(v/A 4+ v B ++/C) unlessA = B = C, in which case the values coincide. (Gf.oblem
2)0

[I. BACKGROUND ON DISTRIBUTED COMPUTATION USING NONLINEAR CONROL SYSTEM

DYNAMICS

The above elementary optimization problems serve to mtittee problem in control com-
munication complexity that we pose in terms of input-outpytem (2). This system is to be
cooperatively controlled by two agents—Alice, who is rasgible for inputsu(-), and Bob, who
is responsible for inputs(-). Special attention will be focussed on the two-input Helszg

system (sometimes referred to as Breckett Integrator)

x u z(0) 0

d

— = = R®. 4
z VT — uy 2(0) 0

The output function is defined to be

h((x(t), y(t), 2(1)) = 2(t). (5)

The optimization problem involves giving Alice: choices{uy,...,u,,} and Bobn choices
{v1,...,v,} such that for any given pair of choicés;, v;) the output (5) of system (4) achieves
a prescribed value(1) = H,; at timet = 1 and such that over all possible values of the pairs

(us, v;), the average cost

= [ [ ©

is minimized. The set of all target states are enumeratedhima n matrix H = (H,;), and
associating the cosfg to H via (6), we thereby define the notion obntrol energy complexity
for the functionH.

It is not a priori assured that an arbitrarmt x n matrix H can be computed in a distributed
fashion. The problem will become solvable if Alice and Bolm &xchange information related
to their choices over a communication channel. In the extrease, one agent can completely
disclose the choice made to the other agent and therebydramthe distributed control problem
to a centralized one. In general, the agents can control yimamical system by means of

a protocol consisting of multipleounds; each round is composed of a communication phase
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and a control phase. This concept is adopted from classtrahwnication complexity theory
([K&N]). We can classify distributed control protocols bye number of rounds needed in
order to achieve the control target. By convention, we lgivetocols that do not require any

communications agero-round protocols. In this paper, we will focus on zero-round protocols.

IIl. THE ENERGY COMPLEXITY OF DISTRIBUTED COMPUTING USING THEHEISENBERG

SYSTEM CONTROLLED BY SIMPLE CLOSED INPUT CURVES

Consider the set o x 2 matricesH all of whose entries are eitherl or —1. There are 16
such matrices; eight of them have rank one and eight havetvamKlhe rank one matrices have
an even number of1 entries while the rank two matrices have an odd number. Weidenthe
control energy complexity of evaluating such matrices gidime input-output system (4) with
the inputs restricted to be sinusoids of period 1. Alice ami Ban each choose one of two

loops to input to the system:

Alice 1 wuaq(t) = agsin(2nt — 1) 0 <t < 1 choice Ay,
ua2(t) = agsin(2mt — ) 0 < ¢t < 1 choice As,

Bob: upgi(t) = by sin(2nt — ;) 0 <t <1 choice By,
upa(t) = basin(27t — 1h9) 0 < ¢t < 1 choice Bs.
The goal of the optimization is to select values of the patamse;, b;, i, ¥, 1 <147, k, 0 <2

such that )
n= / UAl (t)2 + uAg(t)2 + upy (t)Q + UBQ(t)Q dt (7)
0
IS minimized.
Remark 1: The geometry of input and state loops. When Alice chooses input4; and Bob

chooses inputug;, (ua;(t),up;(t)) traces an ellipse in théuy,, up)-plane whose point locus

satisfies
uT - M(Ai,Bj)-u=1, @)
where
5— 21 . COS_(‘gi*wj)
M(AZ, B]) — a; 5(:1:8((;1:;/;])) a;b; sm1 (wi—j)
_ a; bj Sin2(g0i 71/}]') b? sin2 (‘pi*’(fij)
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is a positive definite matrix provided thafb; # 0 and ¢; # ¢; mod 7. The proof of this is

straightforward, noting that

4 (t) . a; sin(27t — ;)
up;(t) B b sin(27t — 1)
B sin 27t
B cos2mt |

where
a; COs (p;  —a; Sin @;

bj COS wj —bj sin wj

U:

It is easy to see, assuming as we do tat # 0, thatU is nonsingluar if and only ifp; # ;

mod 7. We defineM (Ai, Bj) in terms of U by writing
M(Ai, Bj)~ =UU".

This proves the statement with which we began the remarls tseful to note several other
points regarding the curves that the input choices of Alicé Bob trace.
Proposition 1: The area of the ellipse (8) is

W‘aibj SiIl(QOZ‘ — ¢J)| (9)
Proof: Working through some lengthy but elementary algebra, ome gf@w that the
eigenvalues of\/ (Ai, Bj) are
a; + b2 + \/(ai —0;)? + 4a;b? cos?(¢; — ;)
2a3b sin®(¢; — 1) 7
a; + b7 — \/(ai —b;)? + 4a;b3 cos?(p; — ;)
2a3b; sin®(¢; — 1)
Assumingyp; # 1; mod m, these are both positive real numbers which we may rewritie’ 43,

1/B? respectively, whered > 0, B > 0. By the principal axis theorem, there is an orthogonal
change of basis in théuA, up)-plane such that the ellipse (8) may be represented in tefms o

new coordinates;, y by
ZE2 y2
=1,
Az B?

The area of this ellipse is AB, and another elementary but tedious calculation using ltogea

expressions for the eigenvalues, this area is equald@; sin(yp; — 1;)| as claimed. [ |
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Explicitly integrating (4) given the input choicesy;,up;, we find that(z(t),y(y)) traces an
ellipse in thez, y-plane. As noted by Brockett, the value ofat ¢t = 1 is related to this ellipse:

z(1) = 2 - Area. As above, this area can be explicitly computed, and we fiatl th

2(1) = 12its Sm;fi — V). (10)

The solution to the problem of finding inputs;, u; to computeH such that (7) is minimized
turns out to depend on the rank Hf. This dependency is explicitly given by considering two

canonical cases
1 -1 1 1
H, = and Hy =
-1 1 1 -1
These have respectively rank 1 and rank 2. Noting how theubutfs) depends explicitly on
the inputs, the constraints imposed by evaluation of thernvatrices are given explicitly in the

following two tables.

B1 B2
Al | aibysin(pr — 1) =21 | arbgsin(py — 1hg) = =27

A2 | agbysin(pg — 1) = =27 | agbysin(py — y) = 27

Table 1

B1 B2
Al | aybysin(py — 1) = 27 | a1bysin(py — 1) = 27

A2 | aghy sin(pe — 1) = 21 | agby sin(pe — o) = —27

Table 2

Remark 2: On the parametric standard parts problem. That the optimization problem is
formulated with respect to inputs that aaepriori specified to be sinusoids is motivated by

classical results (See, e.g. [Ball].) in which sinusoiderg®a as solutions to optimal control
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problems defined by quadratic cost functionals togethen wanlinear evolution equations of
the form (4). A more general optimization problem would bentmimize (7) over a larger
class of functions—say function assumed to be piecewisltéman [0, 1]. The standard parts
problem at that level of generality remains open.

Remark 3: Why simple closed curves are of interest. For inputs of the form we have proposed,
the outputz(1) is a geometric quantity—namely the area inscribed in thepkinslosed curve
traced in one unit of time by they-states of (4). The geometric nature of the output (5) was
noted in early work of Brockett, and it implies a certain dagiof robustness in solutions to
the optimization problems under study. Small amounts oéex@nd disturbance should have
negligible effect on the output. For detailed information the effect of phase-noise in the
input to such systems, we refer to [WongBall]. We furthereobs that the proposed loop-based
protocol is effectively performing computations by margiung a Berry’s phase. Thus, as noted
in [WongBall], our loop-mediated computations may be usefwnderstanding computations
using quantum spin systems.

In terms of the input loops given in the above parametric fatme problem of minimizing
(7) over all loops such that(1) computesH; is equivalent to minimizing:? + a3 + b% + b3
subject to the constraints in Table 1 being satisfied. Thetisol is given as follows.

Proposition 2. Given the parametric form of Alice and Bob’s loop inputs;, u 2, ug1, ups,
the corresponding outpui(1) of (4)-(5) computesH; while minimizing (7) if and only if
o = 1 + km for some integek and|y; — ;| = 7/2 for all i, j = 1, 2. The optimizing choices
of the a;'s and b;’s have|a;| = |b;| = V27 (i = 1,2) with the choices of sign made to satisfy
the constraints of Table 1. The minimizing valuedf+ a2 + b3 + b3 is 8.

Proof: (Sketch) We describe a proof with three pafsst, we show the feasibility of the
proposed solutionSecond, we show that the phase variablesand; must satisfy the stated
relations.Third, we show that the proposed solution is indeed optimizing.

First step. For any choices of phase variables satisfyiegsthted conditions, the entries in
the matrix M; = sin(ipr = ¢) - sin(pr =02 are all either+1 or —1. One can show

sin(py — 1) sin(ps — 1)
that under the assumed relation among phase variableshthaieterminant oM, is zero, and

henceM; has rank one and hence an even number of negative entriesaV&otve the matrix
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11

equation
H, — a; 0 M, by 0
0 as 0 bs
for appropriate values of the; = £1 andb; = +1 to realize the matrix; with the corre-
sponding cost? + a3 + b3 + b3 = 87 as claimed.

The second and third steps of the proof are combined. Fsstime without loss of generality
that ¢; = 0. Next, we note that satisfying the constraints of Table 1dsgs a relation on
the phase variables: specificallgt M; = 0. Using the relations of Table 1, we expressb,,
and by in terms ofa; and the phase variables,,i);, andy, and we use these to express the
optimizing value ofa; and hence of cost function in terms of the phase variables.values of
9,11 andiy that minimize the cost function are exactly those claimetha proposition. We
omit the details of these steps which are lengthy to stateqaiteé similar to what is presented
in proving the next result. [ |

Proposition 3: Given the parametric form of Alice and Bob’s loop inputs; , v 42, up1, U g2,
the corresponding outpui(1) of (4)-(5) computesH, while minimizing (7) if and only if
|2 — 1| = 7/2, |t — 1| = 7/2, and|¢py — 1| = w/4 or 37 /4. The optimizing choices of
the coefficients havéy;| = |b;| = 2127 (i = 1,2) with the choices of sign made to satisfy the
constraints of Table 2. The minimizing value @f + a2 + b? + b2 is 87/2.

Proof: As in the previous proof, there is no loss of generality inuasisg thaty; = 0.
Again we use the relations in Table 2 to express our objedtimetion in terms ofa; and the
phase variables:

LN
where
sin i 42 472

A=——"-— and p?= + :
sin(gg — 1) K= sin? Yy sin®

This is minimized with respect to, if

(N
! 1+A2)

and in terms of this value, the objective function is expeesas2..v/1 + 2. This may be written

explicitly in terms of the phase variables, v, 15:

1 1 sin? ¢
2uV1 + A2 = 4wy | — + — I+ ———.
\/sm2 Y sin? o \/ sm2(c,02 — )
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We seek to minimize this with respect {9, ¢, 1». The minimizing values of these variables
will be the same as those that minimize
1 1 sin? 1,
: + - 14+ — :
(51n2 Yy sin® N sin?(py — 1)
We note that in order for the relations in Table 2 to be satisferelationship exists among the

(11)

phase variables:
sin ¢y sin(pa — ¥9) + sin by sin(pe — 1) = 0. (12)

Based on this, the quantity (11) may be rewritten
1 1 1 1
sin? 1, + sin? 1)y + sin?(py — 1) - sin?(pg — b2)
Again using (12), the variable, can be eliminated, and one can then write (13) in terms of

Py, Yo

(13)

(cos(211) + cos(2thy) — 2)?
2 SiIl2 77Z)1 SiIl2 ¢2 SiIl2 (77Z)1 — ﬂ)g) .
Taking partial derivatives and simplifying the resultingpesssions, we obtain
OF  (—2cos (2¢) 4 cos (2 (¢4 — 1)) + 1) (cos (2¢h1) + cos (21)5) — 2)

F(%,%) =

Oy sin® (¢01) sin® (11 — ) sin () ’
and
OF  (—2cos (2¢2) + cos (2 (Y1 —1b2)) + 1) (cos (241) + cos (2¢)2) — 2)
Oy sin (11) sin® (; — ) sin® (1) '
Looking for minimizing values of the phase variables we set
or _or _
O Oy

and note that itos (21;) + cos (2¢,) — 2 = 0, then it must be the case that bath and, are
integer multiples ofr, and if this is the case, it is not possible to realize the eslun Table 2.

Hence, the minimizing values af;, 1), must satisfy the simultaneous equations

(—2cos (2¢h1) + cos (2 (Y1 —1Pa)) +1) =0
and
(—2cos (21hg) + cos (2 (1 — 19)) + 1) = 0.

These together imply thabs(2¢) = cos(2¢,), and thus we may assume that eithigr= v, or
1y = m—1y. If 11 = 1), then both these variables would satisfg cos(2¢)) +2 = 0, and hence
each would be an integer multiple of As note above this is not possible. Hence we must have
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1y = m — 1)1, and in this case, we obtain2 cos(21;) + cos(4¢) + 1 = 0. The solutions to
this equation, assuming; # krx for any integerk are); = +n/4 with corresponding values
Yy = 31 /4, 1y = b /4. Because); and, enter the problem symmetrically, there are also the
solutionsy; = 3w /4 and; = 57/4 with corresponding valueg, = +7/4. In all cases, we
see that the corresponding valuesyaf prescribed by equation (12) are those claimed in the

statement of the Proposition, completing the proof. [ |

V. EVALUATING LARGER BINARY MATRICES USING THE HEISENBERG SYSTEM WITH

SIMPLE CLOSED INPUT CURVES

There are currently a number of open questions regardingdh&ol energy complexity of
ny X ny binary matricegd of the form treated in the previous section whenandn, are greater
than2. In [WongBal2], a very general results shows this completatbe the sum of the singular
values ofH up to a scaling. The input loops considered in [WongBal2]gaeerally not simple
closed curves, however, and for binary matrices larger tha solutions to the control energy
complexity problem in terms of simple loops are not preseatfailable. In the present section,
we shall discuss two cases.

First consider the problem of two agents (Alice and Bob) gsimple loop inputs:

Alice: ua;(t) = a;sin(2nt — ¢;), i=1,2,

Bob: wup;(t) = b;sin(2rt —v;), j=1,2,3.
to evaluate & x 3 matrix H whose entries are eitherl or —1 as in the previous section. There
are 64 such matrices, 48 of which have rank 2 and 16 of whick hanwk 1. As in the previous

section, we consider two canonical forms for the rank 1 amét éacases:

1 11 1 11
H, = and Hy, =
1 11 -1 11

To find the control energy complexity associated with eachhete, we simplify notation by
writing s;; = sin(y; — ;). Then the optimization problem may be stated as that of niniim

a? + a2 + b2 + b2 + 12 subject toASB = H; where

. 511 S12 S13
A = diag{ai,as}, S= ,

S21 S22 S23

B = diag{bl, bg, bg}
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We omit the details of the solutions, but these can be fountlessentially the same arguments
as employed in the previous section. The result is:

Solution 1: For Hy: ¢y = ¢; (mod) 7. 4, 12,15 are chosen so thap; — ;| = =/2 for all ¢
and;j. The optimizing values of the coefficients satigfyl = |b;| = V27 fori =1,2;j = 1,2, 3.
The solution of the optimization problem f&i; is thus12r.

Solution 2: For Hy: ¢; andy, satisfy [p2 — 1| = /2, and|p; —¢;| =7 /4 or 3w/4. The
optimizing values of the coefficients satisfy;| = [b;| = 2127 for i = 1,2;5 = 1,2,3. The
solution of the optimization problem fdf, is 127/2.

Finally, we come to the case 8fx 3 binary matrices. There are 512 of the prescribed form,
192 of which have rank 3 and 288 which have rank 2, and 32 the teak 1. Although a simple
dimension count indicates that the optimization probleml@¢de well-posed, the constraints on
the phase variables rule out the possibility of evaluatimgrk three binary matrix of the type
considered above. This is expressed in the following.

Theorem 1: There is no set of simple closed-curve inputs to the Heisgnggstem (4) such
that the output (5) evaluates a rank33 3 binary matrix.

Proof: The evaluation of a rank 3 x 3 matrix H whose entries are eitherl or —1 by
two agents (Alice and Bob) using (4) with simple closed cunputs:
Alice: ua,(t) = a;sin(2nt — ¢;), i=1,2,3 and
Bob: wp;(t) = b;sin(2nt —v;), j=1,2,3.

is equivalent to satisfying the equation
ASB =H,

where
S11 S12 S13
A =diag{ai,as, a3}, S =] sy S99 So3 |, B =diag{b, b, bs}.
831 832 S33
This equation can only be satisfied $f has rank 3 (i.e. is nonsingular). It will be argued
that this cannot be the case. To analyze whethies singular, where as above the entries
are s;; = sin(p; — v;), there is no loss of generality in assumipg = 0. The first row of
S is thus (—sin ¢y, —sin e, —sins). In the second and third rows, expasia(y; — ;) =

sin ; cos 1; —cos ¢; sin ¢;. Add — cos ¢4 times the first row to the second row, and addos @3
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time the first row to the third. The resulting matrix has themeaank asS and has second row:
(sin g cos 1y, sin g cos Py, sin s cos ¥3) and third row:(sin y3 cos 11, sin @3 cos 1y, sin @3 cos 13).
These are scalar multiples of each other, and hence thexnstsingular. This shows$' was

singular to begin with. This proves no rank 3 binary matfixan be realized. [ ]

V. CONCLUDING REMARKS

We have introduced thetandard parts optimization problem and shown how such prob-
lems arise in the study of control communication complexie have considered problems
of this type that arise in distributed choices of closedreunputs that steer the Heisenberg
system in such a way that the output computes prescribedybfoactions. Current research
continues to study the scope of classes of functions thatcangputable using this system
with zero-round protocols. Future work will be aimed at mubund protocols and how these
compare with zero-round protocols having non-simple logputs (such as those defined by
Fourier polynomials in [WongBal2]). Current research soahimed at understanding the control
communication complexity of motion-based communicatioot@cols for mobile robots. (See
[R&B1],[R&B2],[R&B3].)
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