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The Standard Parts Problem and the Complexity of

Control Communication

J. Baillieul & W.S. Wong

Abstract

The objective of the standard parts optimal control problemis to find a number,m, of control

inputs to a given input-output system that can be used in different combinations to achieve a certain

number,n, of output objectives and to do this in such a way that a specified figure-of-merit measuring

the average cost of control is minimized. The problem is especially interesting whenm is significantly

less thann. Distributed optimization problems of this type arise naturally in connection with recent

work oncontrol communication complexity. In what follows a general formulation of the standard parts

optimization problem is given along with some simple illustrative examples. Control communication

complexity is defined, and it is shown how one measure of this complexity naturally leads to a standard

parts optimization problem. The entire circle of ideas is explored in the context of quadratic optimal

control of the Heisenberg system, and recent results on computability using simple closed curve inputs

are presented.

I. INTRODUCTION

A little over a quarter century ago, a number of researchers became interested in finding a

lower bound on the energy required to perform a computation.The efforts sought to understand

how computational limits were related to the mathematical logic employed, the way hardware

was engineered, and ultimately to the fundamental bounds ofthermodynamics. (See, for instance,

[Ben1],[Ben2],[Tof] and the engaging monograph [Feyn].) At around the same time, other

researchers worked on problems motivated by the optimal design of VLSI circuits, and they
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worked to find the best ways for components to communicate with each other in carrying out

computations. A growing body of research oncommunication complexity has emerged following

a seminal paper [Yao1] by Andrew C.-C. Yao, and a good introduction to the area is the

monograph [K&N]. Generally speaking, papers dealing with communication complexity have

been information-theoretic in character and have not directly touched upon the physical aspects of

communication. Work on theoretical foundations of the complexity of implementing distributed

computing by means of steering a control system has recentlyappeared in work of Wong, [Wong].

This work has been further developed, with potential connections to quantum computation being

suggested in [WongBal1] and [WongBal2]. The essential ideabehind what we have calledcontrol

communication complexity is that multiple parties simultaneously but independentlyprovide

inputs to a control system whose state is observed to change accordingly. The problems are

formulated in such a way that the state changes provide the results of computations using data

encoded by the inputs of the parties. The cost of the computation is just the cost steering the

control system using the chosen inputs, and in [WongBal1] and [WongBal2], this cost is given

by a simple quadratic form integrated over the finite time interval on which the control system

is allowed to operate.

The goal of our current work oncontrol communication complexity is to understand the way

in which the complexity of a computation may be understood ofin terms of the physical effort

required to carry it out. A very simple illustration of what is involved is provided by the following

elementary optimization problems.

Problem 1. Suppose we wish to make a rectangular container of a prescribed depth and volume

V . What should be length and width such that the amount of material used is minimized? This

can be posed to a beginning calculus class, and the solution is easily shown to be that the length

and width should be equal (to the square root of the area of thebottom of the container).�

For people who have thought about elementary optimizations, the solution is intuitively

obvious. A problem that is of comparable simplicity but without such an obvious solution involves

the optimal design of a slightly more complex rectangular container.

Problem 2. Suppose we wish to make a rectangular container of a prescribed depth and volume

and comprising two rectangular chambers, the areas of the bottoms of which areA andB. We

formulate the problem of finding the minimum amount of material needed as finding length
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valuesℓ1, ℓ2, ℓ3 such thatℓ1ℓ2 = A, ℓ1ℓ3 = B, and3ℓ1 + 2ℓ2 + 2ℓ3 is minimized. (See Figure 1.)

Again elementary calculus yields the solution:

ℓ1 =

√

2(A+B)

3
, ℓ2 =

A
√

3
√

2(A+B)
, ℓ3 =

B
√

3
√

2(A+B)
.

It is somewhat interesting to note that this solution is close to but slightly better than what one

would get by simply dividing a square base of area2A in half in the case thatA = B. �

1

2 3

1A B

Fig. 1. A rectangular container with two chambers having areasℓ1 × ℓ2 and ℓ1 × ℓ3 respectively.

Problem 1 is very classical, while Problem 2 is new and pointsto some essential features

of finding minimum communication complexity protocols by solving constrained optimization

problems. To develop the analogy, if we think of the enclosedrectangles as messages and the

lengths of the sides as the cost of transmitting symbols, thesingle “message” (=area) of Problem

1 leaves no basis for choosing the length and width to have different lengths. The two separate

areas of Problem 2 , however, cause us to choose (via mathematical optimization) shorter lengths

for the sides which appear more frequently as boundary segments. If A = B, for instance, there

are four segments of lengthℓ2 = ℓ3
√

3A/2 and three segments of lengthℓ1 = 2
√

A/3, and we

find the optimal lengths satisfyℓ1 = (4/3)ℓ2. One can also see these problems as highlighting

the differences between centralized and distributed optimization. Suppose there are two agents,

one of whom is assigned to select the lengths of the top and bottom segments bounding the

rectangles, and the other who is assigned to select the lengths of the side segments. Problem 1

does not involve any notion of choice on the part of the agentsin that only a single area must

be inscribed. The agents minimize the total perimeter length by choosing the same “side-length”

policy. In Problem 2, however,the two agents must select segment lengths that reflect the fact

that the boundary segments must enclose two separate regions. Each agent chooses segment

lengths that in an averaged sense optimally enclose the prescribed areas.
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A less elementary class of optimization problems that are useful in formulating optimal

information exchange protocols are what we calldistributed optimal steering problems. In general

terms, we consider control systems of the form






ẋ = f(x, u),

y = h(x).
(1)

evolving on some state manifoldM of dimensionn and in which the dimensionm of the input

u = (u1, . . . , um) is greater than one. We are primarily interested in a distributed version of the

problem in which the control inputsui(·) are determined by independent agents who collaborate

to achieve specified control objectives. The objectives, finite in number, are expressed as terminal

statesh(x1(T )), . . . , h(xN(T )) ∈ M.

We can assign a variety of meanings to these terminal states.Two different intepretations are

described here.

1. Generalized standard parts parts optimization problem. This is a generalization of the

problem mentioned in Brockett [RWB4]. The optimal control problem aims to find choices of

control inputs(u1,i1, . . . , um,im) where 1 ≤ ij ≤ kj , j = 1, . . . , m, with eachm-tuple ξ =

(i1, . . . , im) being associated with a unique control objectiveh(xξ(T )) from the list. Obviously,

a necessary condition for the problem to be solvable is thatN ≤ k1k2 · · · km. The case where

N is equal to or close tok1 · · · km is particularly desirable since the the sum of the number of

possible control choices over the components of the inputs,k1 + · · ·+km is less than the number

N of goal states. It is also of interest to note that if we represent the tuples,(ξ, h(xξ(T ))), as

rows in anm+1 column table, the resulting table is not in the second normalform in the sense

of database normalization. This implies that some of the agents do not have any effect on the

control outcome. These are issues of potential interest in control design.

2. Joint terminal state optimization problem. This is essentially the model propounded in

[WongBal1]. Each agent is allowed a finite number of choices known only to the agent. In

particular, agentj has choices,1 ≤ ij ≤ kj. Eachm-tuple ξ = (i1, . . . , im) identifies a unique

utility function which is assumed to possess a unique optimal state,xξ(T ). The objective is to

steer the system to reach such an optimal state.

For both classes of problems, the controls are designed so that eachm-tuple (u1,i1, . . . , um,im)
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steers (1) from a common initial statex0 to the goal statexξ(T ) in such a way that

η =

∫ T

0

k1
∑

j=1

u1,j(t)
2 + · · · +

km
∑

j=1

um,j(t)
2 dt

is minimized.

While them-agent distributed optimization problem is of interest in the context of multiparty

control communication complexity, the present paper will treat only the special case ofm = 2

agents. In this special case, we seek control inputs that will drive an output functionh(·) to a set

of goal valueshij prescribed by ann1 × n2 matrix H. We are thus concerned with the problem

of finding a choice ofn1 scalar inputsui andn2 inputsvj such that togetherui andvj steer

ẋ(t) = a(x(t), u(t), v(t)), y(t) = h(x(t)) (2)

from x(0) = x0 ∈ M to x(T ) such thath(x(T )) = hij and such that the collective cost
∫ T

0

n1
∑

i=1

ui(t)
2 +

n2
∑

j=1

vj(t)
2 dt (3)

is minimized. In the following sections, we consider problems defined by binary matricesH

and periodic inputs. We consider a broad class of systems (2)which have input-output maps

that are bilinear in the control inputs. Before providing specifics of the problem formulation, we

consider one further elementary example.

Problem 3. Consider the problem of bounding three disjoint rectangles constructed by choosing

sides of up to four distinct lengthsℓ1, ℓ2, ℓ3, ℓ4 such that the rectangles have prescribed areas

A, B, and C and such that the total length of all perimeters is minimized. If there are no

restrictions on how the segments of each length can be used toconstruct the boundaries of

the rectangles, then an optimal solution can be shown to require at most three distinct side

lengths—ℓ1 =
√
A, ℓ2 =

√
B, ℓ3 =

√
C, and ℓ4 = 0. The total length of the three perimeters

is then given by4(
√
A +

√
B +

√
C). If we impose a further constraint that the sides of the

rectangles satisfy, say,ℓ1ℓ2 = A, ℓ2ℓ3 = B, ℓ3ℓ4 = C, then no side segmentℓk can be zero, and

the minimum total length of the perimeters becomes4
√

(A+ 2B)(C + 2B)/B. If we impose

an additional constraint beyond this thatℓ4 = ℓ1, then the optimization problem becomes ill

posed, and the only way to satisfy the constraints is to choose ℓ1 =
√

AB/C, ℓ2 =
√

AC/B,

and ℓ3 =
√

BC/A. The total perimeter length is4
√
ABC(A−1 +B−1 + C−1) which is greater

April 2, 2009 DRAFT



6

than4(
√
A+

√
B +

√
C) unlessA = B = C, in which case the values coincide. (Cf.Problem

2.) �

II. BACKGROUND ON DISTRIBUTED COMPUTATION USING NONLINEAR CONTROL SYSTEM

DYNAMICS

The above elementary optimization problems serve to motivate the problem in control com-

munication complexity that we pose in terms of input-outputsystem (2). This system is to be

cooperatively controlled by two agents—Alice, who is responsible for inputsu(·), and Bob, who

is responsible for inputsv(·). Special attention will be focussed on the two-input Heisenberg

system (sometimes referred to as theBrockett Integrator)

d

dt











x

y

z











=











u

v

vx− uy











,











x(0)

y(0)

z(0)











=











0

0

0











∈ R
3. (4)

The output function is defined to be

h((x(t), y(t), z(t)) = z(t). (5)

The optimization problem involves giving Alicem choices{u1, . . . , um} and Bobn choices

{v1, . . . , vn} such that for any given pair of choices(ui, vj) the output (5) of system (4) achieves

a prescribed valuez(1) = Hij at time t = 1 and such that over all possible values of the pairs

(ui, vj), the average cost

η =
1

m

m
∑

i=1

∫ 1

0

u2
i (t) +

1

n

n
∑

i=1

∫ 1

0

v2
i (t)dt (6)

is minimized. The set of all target states are enumerated in an m × n matrix H = (Hij), and

associating the costηH to H via (6), we thereby define the notion ofcontrol energy complexity

for the functionH.

It is not a priori assured that an arbitrarym× n matrix H can be computed in a distributed

fashion. The problem will become solvable if Alice and Bob can exchange information related

to their choices over a communication channel. In the extreme case, one agent can completely

disclose the choice made to the other agent and thereby transform the distributed control problem

to a centralized one. In general, the agents can control the dynamical system by means of

a protocol consisting of multiplerounds; each round is composed of a communication phase
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and a control phase. This concept is adopted from classical communication complexity theory

([K&N]). We can classify distributed control protocols by the number of rounds needed in

order to achieve the control target. By convention, we labelprotocols that do not require any

communications aszero-round protocols. In this paper, we will focus on zero-round protocols.

III. T HE ENERGY COMPLEXITY OF DISTRIBUTED COMPUTING USING THEHEISENBERG

SYSTEM CONTROLLED BY SIMPLE CLOSED INPUT CURVES

Consider the set of2 × 2 matricesH all of whose entries are either+1 or −1. There are 16

such matrices; eight of them have rank one and eight have ranktwo. The rank one matrices have

an even number of−1 entries while the rank two matrices have an odd number. We consider the

control energy complexity of evaluating such matrices using the input-output system (4) with

the inputs restricted to be sinusoids of period 1. Alice and Bob can each choose one of two

loops to input to the system:

Alice : uA1(t) = a1 sin(2πt− ϕ1) 0 ≤ t ≤ 1 choice A1,

uA2(t) = a2 sin(2πt− ϕ2) 0 ≤ t ≤ 1 choice A2,

Bob : uB1(t) = b1 sin(2πt− ψ1) 0 ≤ t ≤ 1 choice B1,

uB2(t) = b2 sin(2πt− ψ2) 0 ≤ t ≤ 1 choice B2.

The goal of the optimization is to select values of the parametersai, bj , ϕk, ψℓ, 1 ≤ i, j, k, ℓ ≤ 2

such that

η =

∫ 1

0

uA1(t)
2 + uA2(t)

2 + uB1(t)
2 + uB2(t)

2 dt (7)

is minimized.

Remark 1: The geometry of input and state loops. When Alice chooses inputuAi and Bob

chooses inputuBj , (uAi(t), uBj(t)) traces an ellipse in the(uA, uB)-plane whose point locus

satisfies

uT ·M(Ai,Bj) · u = 1, (8)

where

M(Ai,Bj) =





1
a2

i
sin2(ϕi−ψj)

− cos(ϕi−ψj)

aibj sin2(ϕi−ψj)

− cos(ϕi−ψj)

aibj sin2(ϕi−ψj)
1

b2
j
sin2(ϕi−ψj)




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is a positive definite matrix provided thataibj 6= 0 andϕi 6= ψj mod π. The proof of this is

straightforward, noting that




uAi(t)

uBj(t)



 =





ai sin(2πt− ϕi)

bj sin(2πt− ψj)





= U





sin 2πt

cos 2πt



 ,

where

U =





ai cosϕi −ai sinϕi
bj cosψj −bj sinψj



 .

It is easy to see, assuming as we do thataibj 6= 0, thatU is nonsingluar if and only ifϕi 6= ψj

mod π. We defineM(Ai,Bj) in terms ofU by writing

M(Ai,Bj)−1 = UUT .

This proves the statement with which we began the remark. It is useful to note several other

points regarding the curves that the input choices of Alice and Bob trace.

Proposition 1: The area of the ellipse (8) is

π|aibj sin(ϕi − ψj)|. (9)

Proof: Working through some lengthy but elementary algebra, one can show that the

eigenvalues ofM(Ai,Bj) are

a2
i + b2j +

√

(ai − bj)2 + 4a2
i b

2
j cos2(ϕi − ψj)

2a2
i b

2
j sin2(ϕi − ψj)

,

a2
i + b2j −

√

(ai − bj)2 + 4a2
i b

2
j cos2(ϕi − ψj)

2a2
i b

2
j sin2(ϕi − ψj)

.

Assumingϕi 6= ψj mod π, these are both positive real numbers which we may rewrite as1/A2,

1/B2 respectively, whereA > 0, B > 0. By the principal axis theorem, there is an orthogonal

change of basis in the(uA, uB)-plane such that the ellipse (8) may be represented in terms of

new coordinatesx, y by
x2

A2
+
y2

B2
= 1.

The area of this ellipse isπAB, and another elementary but tedious calculation using the above

expressions for the eigenvalues, this area is equal toπ|aibj sin(ϕi − ψj)| as claimed.
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Explicitly integrating (4) given the input choicesuAi,uBj , we find that(x(t), y(y)) traces an

ellipse in thex, y-plane. As noted by Brockett, the value ofz at t = 1 is related to this ellipse:

z(1) = 2 ·Area. As above, this area can be explicitly computed, and we find that

z(1) =
|aibj sin(ϕi − ψj)

2π
. (10)

The solution to the problem of finding inputsuAi, uBj to computeH such that (7) is minimized

turns out to depend on the rank ofH. This dependency is explicitly given by considering two

canonical cases

H1 =





1 −1

−1 1



 and H2 =





1 1

1 −1



 .

These have respectively rank 1 and rank 2. Noting how the output z(t) depends explicitly on

the inputs, the constraints imposed by evaluation of the twomatrices are given explicitly in the

following two tables.

B1 B2

A1 a1b1 sin(ϕ1 − ψ1) = 2π a1b2 sin(ϕ1 − ψ2) = −2π

A2 a2b1 sin(ϕ2 − ψ1) = −2π a2b2 sin(ϕ2 − ψ2) = 2π

Table 1

B1 B2

A1 a1b1 sin(ϕ1 − ψ1) = 2π a1b2 sin(ϕ1 − ψ2) = 2π

A2 a2b1 sin(ϕ2 − ψ1) = 2π a2b2 sin(ϕ2 − ψ2) = −2π

Table 2

Remark 2: On the parametric standard parts problem. That the optimization problem is

formulated with respect to inputs that area priori specified to be sinusoids is motivated by

classical results (See, e.g. [Bal1].) in which sinusoids emerge as solutions to optimal control
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problems defined by quadratic cost functionals together with nonlinear evolution equations of

the form (4). A more general optimization problem would be tominimize (7) over a larger

class of functions—say function assumed to be piecewise analytic on [0, 1]. The standard parts

problem at that level of generality remains open.

Remark 3: Why simple closed curves are of interest. For inputs of the form we have proposed,

the outputz(1) is a geometric quantity—namely the area inscribed in the simple closed curve

traced in one unit of time by thexy-states of (4). The geometric nature of the output (5) was

noted in early work of Brockett, and it implies a certain degree of robustness in solutions to

the optimization problems under study. Small amounts of noise and disturbance should have

negligible effect on the output. For detailed information on the effect of phase-noise in the

input to such systems, we refer to [WongBal1]. We further observe that the proposed loop-based

protocol is effectively performing computations by manipulating a Berry’s phase. Thus, as noted

in [WongBal1], our loop-mediated computations may be useful in understanding computations

using quantum spin systems.

In terms of the input loops given in the above parametric form, the problem of minimizing

(7) over all loops such thatz(1) computesH1 is equivalent to minimizinga2
1 + a2

2 + b21 + b22

subject to the constraints in Table 1 being satisfied. The solution is given as follows.

Proposition 2: Given the parametric form of Alice and Bob’s loop inputsuA1, uA2, uB1, uB2,

the corresponding outputz(1) of (4)-(5) computesH1 while minimizing (7) if and only if

ϕ2 = ϕ1 + kπ for some integerk and |ϕi−ψj | = π/2 for all i, j = 1, 2. The optimizing choices

of the ai’s and bj ’s have |ai| = |bi| =
√

2π (i = 1, 2) with the choices of sign made to satisfy

the constraints of Table 1. The minimizing value ofa2
1 + a2

2 + b21 + b22 is 8π.

Proof: (Sketch) We describe a proof with three parts.First, we show the feasibility of the

proposed solution.Second, we show that the phase variablesϕi andψj must satisfy the stated

relations.Third, we show that the proposed solution is indeed optimizing.

First step. For any choices of phase variables satisfying the stated conditions, the entries in

the matrix M1 =





sin(ϕ1 − ψ1) sin(ϕ1 − ψ2)

sin(ϕ2 − ψ1) sin(ϕ2 − ψ2)



 are all either+1 or −1. One can show

that under the assumed relation among phase variables that the determinant ofM1 is zero, and

henceM1 has rank one and hence an even number of negative entries. We can solve the matrix
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equation

H1 =





a1 0

0 a2



M1





b1 0

0 b2





for appropriate values of theai = ±1 and bj = ±1 to realize the matrixH1 with the corre-

sponding costa2
1 + a2

2 + b21 + b22 = 8π as claimed.

The second and third steps of the proof are combined. First, assume without loss of generality

that ϕ1 = 0. Next, we note that satisfying the constraints of Table 1 imposes a relation on

the phase variables: specificallydetM1 = 0. Using the relations of Table 1, we expressa2, b1,

and b2 in terms ofa1 and the phase variablesϕ2,ψ1, andψ2 and we use these to express the

optimizing value ofa1 and hence of cost function in terms of the phase variables. The values of

ϕ2, ψ1 andψ2 that minimize the cost function are exactly those claimed inthe proposition. We

omit the details of these steps which are lengthy to state andquite similar to what is presented

in proving the next result.

Proposition 3: Given the parametric form of Alice and Bob’s loop inputsuA1, uA2, uB1, uB2,

the corresponding outputz(1) of (4)-(5) computesH2 while minimizing (7) if and only if

|ϕ2 − ϕ1| = π/2, |ψ2 − ψ1| = π/2, and |φ1 − ψ1| = π/4 or 3π/4. The optimizing choices of

the coefficients have|ai| = |bi| = 2
1

4

√
2π (i = 1, 2) with the choices of sign made to satisfy the

constraints of Table 2. The minimizing value ofa2
1 + a2

2 + b21 + b22 is 8π
√

2.

Proof: As in the previous proof, there is no loss of generality in assuming thatϕ1 = 0.

Again we use the relations in Table 2 to express our objectivefunction in terms ofa1 and the

phase variables:

a2
1(1 + λ2) +

1

a2
1

µ2

where

λ =
sinψ1

sin(ϕ2 − ψ1)
and µ2 =

4π2

sin2 ψ1

+
4π2

sin2 ψ2

.

This is minimized with respect toa1 if

a1 =

(

µ2

1 + λ2

)
1

4

,

and in terms of this value, the objective function is expressed as2µ
√

1 + λ2. This may be written

explicitly in terms of the phase variablesϕ1, ψ1, ψ2:

2µ
√

1 + λ2 = 4π

√

1

sin2 ψ1

+
1

sin2 ψ2

√

1 +
sin2 ψ1

sin2(ϕ2 − ψ1)
.
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We seek to minimize this with respect toϕ1, ψ1, ψ2. The minimizing values of these variables

will be the same as those that minimize

(
1

sin2 ψ1

+
1

sin2 ψ2

)(1 +
sin2 ψ1

sin2(ϕ2 − ψ1)
). (11)

We note that in order for the relations in Table 2 to be satisfied, a relationship exists among the

phase variables:

sinψ1 sin(ϕ2 − ψ2) + sinψ2 sin(ϕ2 − ψ1) = 0. (12)

Based on this, the quantity (11) may be rewritten

1

sin2 ψ1

+
1

sin2 ψ2

+
1

sin2(ϕ2 − ψ1)
+

1

sin2(ϕ2 − ψ2)
. (13)

Again using (12), the variableϕ2 can be eliminated, and one can then write (13) in terms of

ψ1, ψ2:

F (ψ1, ψ2) =
(cos(2ψ1) + cos(2ψ2) − 2)2

2 sin2 ψ1 sin2 ψ2 sin2(ψ1 − ψ2)
.

Taking partial derivatives and simplifying the resulting expressions, we obtain

∂F

∂ψ1
=

(−2 cos (2ψ1) + cos (2 (ψ1 − ψ2)) + 1) (cos (2ψ1) + cos (2ψ2) − 2)

sin3 (ψ1) sin3 (ψ1 − ψ2) sin (ψ2)
,

and
∂F

∂ψ2
=

(−2 cos (2ψ2) + cos (2 (ψ1 − ψ2)) + 1) (cos (2ψ1) + cos (2ψ2) − 2)

sin (ψ1) sin3 (ψ1 − ψ2) sin3 (ψ2)
.

Looking for minimizing values of the phase variables we set

∂F

∂ψ1
=
∂F

∂ψ2
= 0,

and note that ifcos (2ψ1) + cos (2ψ2)− 2 = 0, then it must be the case that bothψ1 andψ2 are

integer multiples ofπ, and if this is the case, it is not possible to realize the values in Table 2.

Hence, the minimizing values ofψ1, ψ2 must satisfy the simultaneous equations

(−2 cos (2ψ1) + cos (2 (ψ1 − ψ2)) + 1) = 0

and

(−2 cos (2ψ2) + cos (2 (ψ1 − ψ2)) + 1) = 0.

These together imply thatcos(2ψ1) = cos(2ψ2), and thus we may assume that eitherψ1 = ψ2 or

ψ2 = π−ψ1. If ψ1 = ψ2, then both these variables would satisfy−2 cos(2ψ)+2 = 0, and hence

each would be an integer multiple ofπ. As note above this is not possible. Hence we must have
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ψ2 = π − ψ1, and in this case, we obtain−2 cos(2ψ1) + cos(4ψ1) + 1 = 0. The solutions to

this equation, assumingψ1 6= kπ for any integerk areψ1 = ±π/4 with corresponding values

ψ2 = 3π/4, ψ2 = 5π/4. Becauseψ1 andψ2 enter the problem symmetrically, there are also the

solutionsψ1 = 3π/4 andψ1 = 5π/4 with corresponding valuesψ2 = ±π/4. In all cases, we

see that the corresponding values ofϕ2 prescribed by equation (12) are those claimed in the

statement of the Proposition, completing the proof.

IV. EVALUATING LARGER BINARY MATRICES USING THE HEISENBERG SYSTEM WITH

SIMPLE CLOSED INPUT CURVES

There are currently a number of open questions regarding thecontrol energy complexity of

n1×n2 binary matricesH of the form treated in the previous section whenn1 andn2 are greater

than2. In [WongBal2], a very general results shows this complexity to be the sum of the singular

values ofH up to a scaling. The input loops considered in [WongBal2] aregenerally not simple

closed curves, however, and for binary matrices larger than2×2 solutions to the control energy

complexity problem in terms of simple loops are not presently available. In the present section,

we shall discuss two cases.

First consider the problem of two agents (Alice and Bob) using simple loop inputs:

Alice: uAi(t) = ai sin(2πt− ϕi), i = 1, 2,

Bob: uBj(t) = bj sin(2πt− ψj), j = 1, 2, 3.

to evaluate a2×3 matrix H whose entries are either+1 or −1 as in the previous section. There

are 64 such matrices, 48 of which have rank 2 and 16 of which have rank 1. As in the previous

section, we consider two canonical forms for the rank 1 and rank 2 cases:

H1 =





1 1 1

1 1 1



 and H2 =





1 1 1

−1 1 1



 .

To find the control energy complexity associated with each ofthese, we simplify notation by

writing sij = sin(ϕi − ψj). Then the optimization problem may be stated as that of minimizing

a2
1 + a2

2 + b21 + b22 + b23 subject toASB = Hi where

A = diag{a1, a2}, S =





s11 s12 s13

s21 s22 s23



 ,

B = diag{b1, b2, b3}.

April 2, 2009 DRAFT
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We omit the details of the solutions, but these can be found using essentially the same arguments

as employed in the previous section. The result is:

Solution 1: For H1: ϕ2 = ϕ1 (mod)π. ψ1, ψ2, ψ3 are chosen so that|ϕi−ψj | = π/2 for all i

andj. The optimizing values of the coefficients satisfy|ai| = |bj | =
√

2π for i = 1, 2; j = 1, 2, 3.

The solution of the optimization problem forH1 is thus12π.

Solution 2: For H2: ϕ1 andϕ2 satisfy |ϕ2 − ϕ1| = π/2, and|ϕi − ψj | = π/4 or 3π/4. The

optimizing values of the coefficients satisfy|ai| = |bj | = 2
1

4

√
2π for i = 1, 2; j = 1, 2, 3. The

solution of the optimization problem forH2 is 12π
√

2.

Finally, we come to the case of3× 3 binary matrices. There are 512 of the prescribed form,

192 of which have rank 3 and 288 which have rank 2, and 32 that have rank 1. Although a simple

dimension count indicates that the optimization problem could be well-posed, the constraints on

the phase variables rule out the possibility of evaluating arank three binary matrix of the type

considered above. This is expressed in the following.

Theorem 1: There is no set of simple closed-curve inputs to the Heisenberg system (4) such

that the output (5) evaluates a rank 33 × 3 binary matrix.

Proof: The evaluation of a rank 33 × 3 matrix H whose entries are either+1 or −1 by

two agents (Alice and Bob) using (4) with simple closed curveinputs:

Alice: uAi(t) = ai sin(2πt− ϕi), i = 1, 2, 3 and

Bob: uBj(t) = bj sin(2πt− ψj), j = 1, 2, 3.

is equivalent to satisfying the equation

ASB = H,

where

A = diag{a1, a2, a3}, S =











s11 s12 s13

s21 s22 s23

s31 s32 s33











, B = diag{b1, b2, b3}.

This equation can only be satisfied ifS has rank 3 (i.e. is nonsingular). It will be argued

that this cannot be the case. To analyze whetherS is singular, where as above the entries

are sij = sin(ϕi − ψj), there is no loss of generality in assumingϕ1 = 0. The first row of

S is thus (− sinψ1,− sinψ2,− sinψ3). In the second and third rows, expandsin(ϕi − ψj) =

sinϕi cosψj−cosϕi sinψj . Add− cosϕ2 times the first row to the second row, and add− cosϕ3
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time the first row to the third. The resulting matrix has the same rank asS and has second row:

(sinϕ2 cosψ1, sinϕ2 cosψ2, sinϕ2 cosψ3) and third row:(sinϕ3 cosψ1, sinϕ3 cosψ2, sinϕ3 cosψ3).

These are scalar multiples of each other, and hence the matrix is singular. This showsS was

singular to begin with. This proves no rank 3 binary matrixH can be realized.

V. CONCLUDING REMARKS

We have introduced thestandard parts optimization problem and shown how such prob-

lems arise in the study of control communication complexity. We have considered problems

of this type that arise in distributed choices of closed-curve inputs that steer the Heisenberg

system in such a way that the output computes prescribed binary functions. Current research

continues to study the scope of classes of functions that arecomputable using this system

with zero-round protocols. Future work will be aimed at multi-round protocols and how these

compare with zero-round protocols having non-simple loop inputs (such as those defined by

Fourier polynomials in [WongBal2]). Current research is also aimed at understanding the control

communication complexity of motion-based communication protocols for mobile robots. (See

[R&B1],[R&B2],[R&B3].)
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