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Decision Making for Rapid Information
Acquisition in the Reconnaissance of Random

Fields
Dimitar Baronov and John Baillieul

Abstract

Research into several aspects of robot-enabled reconnaissance of random fields is reported. The
work has two major components: the underlying theory of information acquisition in the exploration of
unknown fields and the results of experiments on how humans use sensor-equipped robots to perform
a simulated reconnaissance exercise.

The theoretical framework reported herein extends work on robotic exploration that has been
reported by ourselves and others. Several new figures of merit for evaluating exploration strategies are
proposed and compared. Using concepts from differential topology and information theory, we develop
the theoretical foundation of search strategies aimed at rapid discovery of topological features (locations
of critical points and critical level sets) of a priori unknown differentiable random fields. The theory
enables study of efficient reconnaissance strategies in which the tradeoff between speed and accuracy
can be understood. The proposed approach to rapid discovery of topological features has led in a natural
way to to the creation of parsimonious reconnaissance routines that do not rely on any prior knowledge
of the environment. The design of topology-guided search protocols uses a mathematical framework
that quantifies the relationship between what is discovered and what remains to be discovered. The
quantification rests on an information theory inspired model whose properties allow us to treat search
as a problem in optimal information acquisition. A central theme in this approach is that “conservative”
and “aggressive” search strategies can be precisely defined, and search decisions regarding “exploration”
vs. “exploitation” choices are informed by the rate at which the information metric is changing.

The paper goes on to describe a computer game that has been designed to simulate reconnaissance of
unknown fields. Players carry out reconnaissance missions by choosing sequences of motion primitives
from two families of control laws that enable mobile robots to either ascend/descend in gradient
directions of the field or to map contours of constant field value. The strategies that emerge from
the choices of motion sequences are classified in terms of the speed with which information is acquired,
the fidelity with which the acquired information represents the entire field, and the extent to which
all critical level sets have been approximated. The game thus records each player’s performance in
acquiring information about both the topology and geometry of the unknown fields that have been
randomly generated.

Index Terms

geometry of random fields, differential topology, height function, excursion set, exploration and
exploitation, decision making, information gradient, autonomous reconnaissance
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I. INTRODUCTION

The use of mobile point sensors to explore unknown fields is of current interest across many
characteristic length scales and in many domains of science and technology. Applications ranging
from environmental monitoring [1], where mobile sensors must traverse significant distances to
map variations in thermal fields or concentrations of chemical species, to nano-scale imaging [2],
where the main tool is the Scanning Probe Microscope, which acquires an image by scanning
a point probe over micrometer-scale samples. Previous work has been focused on utilizing field
characteristics (length and time scales) to design optimal reconnaissance strategies [1], [3], [4],
[5]. In these references, the reconnaissance agents are distributed and controlled such that they
minimize the error in their estimate of the unknown field.

The goal of the reconnaissance strategies described in the present paper is to map topological
features of unknown random fields. This feature-based reconnaissance accommodates unknown
field reconstruction aimed at capturing the field’s geometry (level sets, curvatures, gradients,
etc.) and the field’s topology (critical points). It exploits hierarchically organized feedback loops,
wherein low level reactive motion primitives as described in [6], [7], [8], [9], [10], [11] allow the
mobile sensor to track features, while at a high level, models of optimal data acquisition guide
the system to efficiently assemble a global representation of important qualitative features of the
field. To this end, we make a connection between differential topology and information using
the language of ergodic theory and the notions of entropy that were first applied to ergodic
theory by Kolmogorov. Following essentially the same development that is presented in [12]
and [13] for ergodic mappings, we shall define the entropy of a scalar field by means of a three
stage process. We begin by defining the partition entropy of finite partitions of compact sets.
Next, we define the entropy of a function on a compact domain with respect to a finite partition
of its range. Ultimately, this leads to a definition of the entropy of the function itself. One of
the main elements in our information-theoretic approach to the study of unknown fields is the
relationship between the entropy of the field and a certain finite partition of the domain called
the topology-induced partition. This sought-after connection between the differential topology
of the field and its entropy is given in Theorem 3.

The relationship between topology and entropy guides our exploration of reconnaissance
strategies. Recalling previously published work [6], [7], [8], two families of sensor motion
control laws are introduced in terms of which reconnaissance strategies can be implemented.
These families consist of (a) motions that climb or descend gradients of the unknown field and
(b) motions that follow lines along which the value of the field is constant. By appropriately
switching between the control laws, data is acquired about the unknown field. As more and more
lines of constant value (isolines) become known, they provide the boundaries between cells in an
increasingly fine set of partitions of the domain that we call data-induced partitions. By keeping
track of the rate of increase of data-induced partition entropy as isolines are mapped, we obtain
essential insight into how effectively the reconnaissance strategy is discovering information about
the unknown field.

While every isoline that is mapped increases the entropy of the data-induced partition, it is
only certain isolines that yield information about the topology-induced partition. Specifically, it
is shown that by mapping a new isoline in a cell in the data-induced partition with negative Euler
characteristic, new information regarding the topology-induced partition may be obtained. Using
this observation, a reconnaissance strategy is described in which our robotic motion primitives
instantiate the well known exploration versus exploitation paradigm. Specifically, the gradient
ascend/descend motions are used to discover local maxima and minima in the field. The search
for these constitutes the exploration phase of the reconnaissance. The localization of max’s
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and min’s enables the exploitation phase in which isolines can be mapped so as to provide an
increasingly complete set of information regarding the topological characteristics of the field.
One can think of the isoline mapping strategy that is designed using knowledge of the fields’
extremum points as providing a steepest ascent along an information gradient aimed at learning
as much as possible about the topology induced partition.

A decision criterion based on the rate at which an information metric is increasing under isoline
mapping informs choices of whether to next map isolines or gradients in the proposed reconnais-
sance strategy. The criterion involves parameters similar to those in simulated annealing, and a
comparison is made between aggressive strategies (which place high value on finding extremum
points) and conservative strategies (emphasizing isoline mapping to fill in geometric detail
regarding the field). Using Monte-Carlo simulations, reconnaissance strategies are compared
in terms of how rapidly they acquire information about the topological characteristics of the
unknown field.

In the final part of the paper, we turn to the study of human performance in the kinds of
reconnaissance missions we have abstractly characterized. Work reported in [14] suggests that
in exploring unknown environments humans assimilate information in the form of topological
maps. The same circle of ideas will play a role in our determination of styles emerging in
the human guided reconnaissance of unknown fields. A computer game that simulates a human
guided robot-enabled search is described. The game is designed so that a human mission director
can have a robot map either gradient ascending/descending lines or map isolines of an unknown
field. A metric of bias toward the acquisition of topological information is proposed, and in terms
of this metric, we assess the styles of twenty-seven subjects who played the game. All subjects
exhibited some bias toward acquiring topological information, but the range of the bias was
broad. The players who sought and discovered information about the topology-induced partition
tended to be very parsimonious in terms of the numbers of isolines that were mapped. They also
tended toward consistency in their performance from one game to the other.

The road map of this paper together with the progression of the main concepts is provided in
Fig. 1. In the next section, we present a mathematical abstraction of scalar fields based on their
critical point structure. In Section III, we show how reconnaissance protocols for uncovering
the field’s topological structure can be based on the motion primitives developed in [6], [7],
[8]. This is further formalized in Section IV, where the reconnaissance process is described as
the acquisition of information as measured by a certain Shannon-like entropy metric. In Section
V, we propose protocols for unknown field reconnaissance and compare them by Monte-Carlo
simulations. Human in-the-loop reconnaissance is treated in Section VI, where we describe an
experiment in which human subjects play a computer game of simulated robotic reconnaissance.
In Section VII, we offer some concluding remarks and discuss open problems.

The following notation will be used throughout the paper. Notation that is contained within a
single section is omitted for simplicity.
• Information

– H(Vk)—The entropy of Vk
– H(M|Vk)—The conditional entropy of M with respect of Vk.
– H(Vk)—The bound of H(M|Vk) given H(Vk).

• Reconnaissance
– f(r)—the scalar field for reconnaissance.
– X—The reconnaissance domain.
– biso(ro)—An isoline mapping motion program that starts from ro
– bgrad(ro)—An gradient line mapping motion program that starts from ro
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Fig. 1. A schematic of this paper organization and concepts progression.

– Bk—A sequence of k motion programs.
– S(Bk)—The set of all mapped level sets, including extremum points, by Bk.
– Q(Bk)—The set of all mapped gradient lines by Bk.

• Topology
– ξ—A level set of f .
– ζ—A gradient line of f .
– Cr(f,X)—The critical level sets of f within X .
– Cr0,2(f,X)—The critical level sets of f within X that are single points (maxima and

minima).
– Cr1(f,X)—The critical level sets of f within X that are contours (corresponding to

index 1 critical points).
– M(f,X)—The topology induced partition of f within X .
– Vk—A data induced partition after the execution of k motion programs.
– V i

k—A cell in Vk.
– χ(V i

k )—The Euler characteristic of the set V i
k .
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– V ′k—A subset of Vk containing cells with Euler characteristics smaller or equal to −1.

II. TOPOLOGY OF A SCALAR FIELD

The following section presents a formal treatment of the topology of scalar functions defined
on compact planar domains. In particular, we present a construction called the topology induced
partition of a function f : R2 → R, which is based on the concept of monotonic sets that can
be traced to the image processing literature [15], [16], [17]. Here, however, the description of
the topology is defined in the context of the data acquisition particulars of the search process.
In [18], we have introduced the related notion of a monotone search sequence. These concepts
and their relationship to reconnaissance decisions will be discussed in what follows.

The function under consideration is a scalar field, f : X → R, defined on a compact, connected
and simply-connected domain X ⊂ R2 called the search domain. To avoid pathological behavior
which would not contribute to the current discussion, the following technical assumptions are
imposed on f :

Assumption 1: The function f : X → R is a Morse function.
This assumption implies that its critical points are non-degenerate, and therefore isolated.
Assumption 2: The boundary of the search domain, ∂X , is a level contour of f , f |∂X =const.
Basic results in Morse theory [19] allow us to describe the topological characteristics of

functions that satisfy these assumptions. Conditions under which a random field will be a Morse
function are given in [20]. To make the analysis invariant to scaling, we assume that range of
the unknown function always reflects the full dynamic range of the sensor being modeled.

A. The topology induced partition
To investigate the topology of scalar fields through Morse theory, we will consider these

functions as surfaces in three dimensions. Then, as in [19], f : X → R can be considered as the
height function, and important topological characteristics can be described through the changes
in the number of connected components of

Xc = {r ∈ X : f(r) ≥ c} , (1)

as c is allowed to vary over the range of f .
Assume without loss of generality that the range is the unit interval [0, 1]. Then as c decreases

from 1 to 0, we observe in Fig. 2 that the number of connected components of Xc changes at
the critical points of the height function—connected components appearing at the maxima (Fig.
2(a) and 2(b)), merging at the saddle points (Fig. 2(c)) and disappearing at local minima (not
shown).

(a) (b) (c)

Fig. 2. The height map for three different values
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Our objective is to study the differential topology of the surface by decomposing it into
component parts, each of which belongs to a homotopy class that is a member of a family of
homotopy classes determined by the critical point structure of f . We obtain a corresponding
decomposition of the domain X into diffeomorphic components. Diffeomorphisms preserve
homotopy classes and the Euler characteristic invariant. Recall that for a connected set, the
Euler characteristic is defined as χ =the number of vertices −the number edges+the number
of faces for any triangulation of the set [21]. For a disk, the Euler characteristic is 1, and it is
easy to see that introducing a hole reduces the Euler characteristic by 1, since this effectively
removes a face from the simplicial decomposition. Hence for an annulus, the Euler characteristic
is 0, and other planar domains and their Euler characteristics are illustrated in Fig. 3.

(a) χ = 1 (b) χ = 0 (c) χ = −1

Fig. 3. For any planar domain with sufficient regular boundary, the Euler characteristic is 1 − g where g is the number of
holes.

What we show next is that there exists a unique decomposition of the surface into critical
level sets and annuli.

A well-known result from Morse theory is the following.
Lemma 1 ([19]): Define for some arbitrary c1 < c2 the sets Xc1 and Xc2 associated with the

height map according to (1). Assume that there is no critical value c∗ s.t. c∗ ∈ [c1, c2], where a
critical value is defined as a value for which there exist a critical point r∗, f(r∗) = c∗. Then,
Xc1 is diffeomorphic to Xc2 .

From this lemma, it follows that we may partition the surface into connected components
having the same Euler characteristic between the critical values of the function.

Definition 1: For any domain V ⊂ X , we denote the set of connected components of V by
cc(V ).

Definition 2: A critical level set of the function f in the domain X is a connected component
ξ(c∗), f(r∗) = c∗, with r∗ being a critical point, which satisfies

ξ(c∗) ∈ cc({r ∈ X : f(r) = c∗})
r∗ ∈ ξ(c∗).

The set of all critical level sets of f in the domain X will be denoted by Cr(f,X). In addition,
let Cr0,2(f,X) denote critical level sets of dimension 0 (extremum points—i.e. values of f at
local maxima and local minima), and let Cr1(f,X) denote critical level sets of dimension 1
(contours associated with saddle points), so Cr(f,X) = Cr0,2(f,X) ∪ Cr1(f,X).

Finally, define a set of annular subsets of the domain X ,

M(f,X) = cc (X \ Cr (f,X)) .

We callM the topology induced partition of the function f . We note thatM is strictly speaking
not a partition, since the critical level sets are removed, and hence the cells are open sets. Fig.
4 shows the topology induced partition of a particular field. The white areas are magnifications
of critical level sets.
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Fig. 4. The topology induced partition of a particular field.

B. Properties of the topology induced partition
To establish the properties of the topology induced partition, we use the Poincaré-Hopf theorem

to relate the number of critical points to the Euler characteristic of the set in which this function
is contained (see Def. 1 for the notation in the theorem). As noted, the surface can be viewed as
a manifold embedded in three dimensional space. Thus, the gradient of the field, ∇f , induces a
corresponding vector field on the surface. In view of these observations, we restate the Poincaré-
Hopf theorem in the following manner. (See [22].)

Theorem 1 (Poincaré-Hopf): Let f : X → R be as above satisfying Assumptions 1 and 2 in
a compact domain X ⊂ R2. Let V ⊆ X be a connected set with a boundary ∂V having the
property that each connected component of ∂V is a level set of f . Then, if m is the number of
the extremum points (index 0 and index 2 critical points) of f in V , and n is the number of its
saddle points (index 1 critical points),

m− n = χ(V ). (2)

The next corollary shows how the Poincaré-Hopf theorem can be restated in terms of the
critical level sets, Cr(f,X).

Corollary 1: Let the set V ⊆ X be connected with the connected components of its boundary
being level sets of a Morse function, f : X → R, and let m and n be respectively the cardinalities
m =

∣∣{ξ ∈ Cr0,2(f,X)|ξ ⊂ V
}∣∣ and n =

∣∣{ξ ∈ Cr1(f,X)|ξ ⊂ V
}∣∣. Suppose that with every

critical set, ξ ∈ Cr1(f,X), there is only a single associated saddle point. Then m− n = χ(V ).
Proof: Let the curves ξ0, ξ1, · · · , ξl be the connected components of ∂V , having the same

orientation such that in traversing ξ0 in the positive sense, int(V ) lies inside ξ0, while in traversing
ξj , j = 1, · · · , l, in the same positive sense, int(V ) lies outside of ξj . That is to say that V is a
compact multiply connected domain whose outer boundary is ξ0 and whose interior boundaries
are ξ1, · · · , ξl. Then, χ(V ) will be equal to 1 − l, since every ξj , j = 1, · · · , l will correspond
to a hole in V .

Denote by mi, ni the numbers of even index and odd index critical points respectively in
the interior of each boundary curve, int(ξi). Each int(ξi) is diffeomorphic to a disk, and we can
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apply Theorem 1. Moreover, taking into account that ξ0 is the outer boundary, we can write:

m = m0 −
l∑

i=1

mi

n = n0 −
l∑

i=1

ni

and therefore

m− n = m0 − n0 −
l∑

i=1

(mi − ni) = 1− l = χ(V ).

Fig. 5. A particular topology induced partition and its graph representation. Critical level sets correspond to vertices and cells
correspond to edges.

To further elaborate the properties of the topology induced partition, we recall that each
cell Mi ∈ M is an annular component, and therefore has two boundaries one of which may
degenerate to a point. Thus, a cell can be viewed as connecting two level sets. As a result,
we will be able to associate the topology induced partition to a tree graph, G(v, E), where the
vertices correspond either to critical level sets or to the boundary of the search domain, ∂X . The
edges of the graph will be associated with the annular cells of the topology induced partition. In
this way, the leaf vertices will correspond to extrema or to the boundary, ∂X . The vertices with
degree 3 will be associated with the elements of Cr1(f,X). Such graphs are referred to as Reeb
graphs, [15]. Fig. 5 illustrates the graph representation of a simple topology induced partition.

The Reeb graph representation implies the following cardinality for the topology induced
partition.

Theorem 2: Let f : X → [a, b] satisfy Assumptions 1 and 2, let Cr0,2(f,X) ⊂ Cr(f,X) be the
set of all extremum points of f within X , and suppose that for each element of Cr1(f,X) there
is a single associated index 1 critical point. Then, for the topology induced partition, M(f,X),
the following holds:

|M(f,X)| = 2
∣∣Cr0,2(f,X)

∣∣− 1.

Proof: Since G(E, v) is a tree graph,

|E| = |v| − 1 = |Cr(f,X)|+ 1− 1,
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where it is taken into account that the boundary is also a vertex. However, Corollary 1 gives the
following relationship:

|Cr0,2(f,X)| − |Cr1(f,X)| = 1.

This yields
|E| = |M(f,X)| = 2

∣∣Cr0,2(f,X)
∣∣− 1.

The graph representation will be further utilized to illustrate different aspects of the proposed
reconnaissance strategies.

III. RECONNAISSANCE WITH MOTION PRIMITIVES

A motion primitive for unknown field reconnaissance denotes a feedback control law that
allows the vehicle to navigate the field to track either a path along a level set, or a path
of increasing or decreasing intensity. Thus, the vehicle can map features of the surface and
accumulate information about its general topology, and about its topology induced partition in
particular.

In the design of the reconnaissance strategy, we consider two motion programs, biso(ro) and
bgrad(ro), that map respectively isolines, ξ, and gradient paths, ζ , passing through the point ro.
One can ultimately think of a motion program as a construction that utilizes feedback control
laws to track a specific feature of the unknown field. In [6], [7], [8], we have shown how isoline
and gradient tracking control laws can be designed that rely purely on the intensity measurements
of the field.

The biso(ro) will produce the level set contour that passes through the point ro. The bgrad(ro),
on the other hand, will produce a contour passing thorough ro that is tangent to the gradient at
each point, and whose end points either lie on the boundary, or at one of the extremum points
of the function.

A reconnaissance protocol will be a rule for choosing points ro and the motion programs
that should be executed from them. Thus, a program biso(ro) will consist of two steps: i) go
to the point ro, and ii) map the isoline passing through ro. A sequence of k motion programs
will be denoted by Bk = {b1, b2, · · · , bk}, where bi ∈ {biso, bgrad} (i ∈ {1, 2, . . . , k}) and every
program has its own originating point rio. In what follows, the reconnaissance protocols that will
be discussed will be restricted to choosing the originating points for every consecutive motion
program from the paths traced by a previously executed program. In more detail, the different
features mapped as a result of a string Bk will be denoted by

S(Bk) = {ξ1, ξ2, · · · , ξm}, (3)

for the collection of mapped level sets and extremum points, and by

Q(Bk) = {ζ1, ζ2, · · · , ζl},

for the mapped gradient paths. Then, in terms of this notation, the proposed reconnaissance
protocol is depicted in Fig. 6. The originating points for the isoline following motion programs
will be chosen from the set of mapped gradient paths, and vice versa, the originating points for
the gradient following motion programs from the set of mapped level contours.

We illustrate this reconnaissance protocol by a particular example. Consider a scalar field with
a topology induced partition such as the one illustrated in Fig. 7(a). The critical level sets are
depicted as dashed curves, but these are unknown at the initiation of the search. Initially the
only level set that is known is the boundary of the domain. We assume that the agent choses two
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Chose motion program 

Update Map 

Fig. 6. The general protocol of applying the biso and the bgrad motion programs into search strategies. First, a particular
mapping program is chosen (isoline or gradient line mapping). Then, if the program is isoline mapping, ro is chosen from a
previously mapped gradient line, and vice versa, if the program is gradient line mapping, ro is chosen from a previously mapped
isoline. The mapped object is then added to the map.

(a) (b) (c)

Fig. 7. Example application of the biso and the bgrad motion programs according to the proposed strategy.

sufficiently separated random points on this boundary and maps the gradient lines that originate
from them with the bgrad motion program (Fig. 7(b)).

From a topological point of view, these actions can be described in terms of the graph
description of the topology (Fig. 8(a)). That is, the two mapped gradient lines correspond to
paths in this graph that span a connected subgraph, Fig. 8(b). In effect the bgrad primitives have
revealed the existence of two maxima and the saddled point that is implied by them (Thm. 1).
Now assume that the robot proceeds and maps the isolines also depicted as red curves in Fig.
7(c), with originating points chosen, according to the proposed protocol, at random locations
along the previously mapped gradient lines. As a result, the robot has confined one of the saddle
points within the shaded region of the figure, i.e. it has collected information about the topology
induced partition of the function. Here, the term information is used loosely, but in the next
section it is formalized, in order to provide a framework within which the reconnaissance can
be equated to information acquisition. Moreover, subsequently in this work, we formalize and
generalize the type of Poincaré-Hopf based inference that allowed us in the example to conclude
the existence of a critical set associated with a saddle point.

IV. RECONNAISSANCE AND INFORMATION

In this section, we introduce the information theory of scalar fields through first defining
the concepts of entropy and conditional entropy of partitions. The main result of this theory
is summarized by Theorem 3, which establishes that the scalar field information content is
determined by its topology, which, on the other hand, is represented by the topology induced
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(a) (b)

Fig. 8. The inference of a part of the topology from the mapped gradient paths. The two valence three nodes in (a) represent
unknown index 1 critical level sets. In (b), the circled nodes correspond to mapped local maxima, and the boxed valence three
node corresponds to the inferred index 1 critical point (depicted within the shaded region in Fig. 7(c).

partition. In Section IV-B, we show that pursuing the discovery of this partition through the data
acquisition protocols specified in Section III corresponds to iterative information acquisition.
Section IV-C builds upon the information formulation of reconnaissance and the properties of the
topology induced partition described in Section II to state rules through which the reconnaissance
can be effectively guided based on topology inference procedures and information metrics.

A. Measuring the information capacity of a function or field
Information about an unknown field will be measured by the entropy (analogous to Shannon

entropy) associated with certain partitions that reflect how important qualitative features of the
field vary over the search domain. Work along these lines that studied transformations on measure
spaces in terms of metrics on partitions of their domains was reported in [12]. Our work is
inspired in part by this early effort, as well as by the concepts of information in ergodic theory
as reported in [13] and the numerous references cited therein and the seminal work on topological
entropy by Adler, Konheim, and McAndrew, [23].

We begin by discussing the notion of partition entropy, roughly following the development in
[13]. Suppose that X is a compact metric space—e.g a compact, connected subset of Rn having
nonempty interior. Suppose that X comes equipped with a measure µ together with a σ-algebra
Σ of measurable subsets. Let α and β be two at-most-countable partitions of X such that all cells
in α, β are members of Σ. To make the link between partitions and probability and information
theory, we think of the partitions α = {A1, . . . } and β = {B1 . . . } as describing the possible
outcomes of experiments, with µ(Aj) being the probability of outcome Aj in experiment α and
µ(Bk) being the probability of outcome Bk in experiment β.

To each partition, we associate a measure H(α) (resp. H(β)) that describes the amount of
uncertainty about the outcome of the experiment. We thus define the partition entropies

H(α) = −
∑

Ai∈α µ(Ai) log2 µ(Ai), and

H(β) = −
∑

Bj∈β µ(Bj) log2 µ(Bj).

(We assume that µ(X) = 1.) In the same spirit, the conditional entropy of α conditioned on β
is given by
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H(α|β) =
∑
Bj∈β

µ(Bj)H(α|Bj)

= −
∑
Bj∈β

µ(Bj)
∑
Ai∈α

µ(Ai ∩Bj)

µ(Bj)
log2

µ(Ai ∩Bj)

µ(Bj)

= −
∑
Bj∈β

∑
Ai∈α

µ(Ai ∩Bj) log2

µ(Ai ∩Bj)

µ(Bj)
. (4)

To establish certain properties of the conditional entropy, we state the following definition.
Definition 3: Let β and γ be two partitions of X . We say that γ is a refinement of β (denoted

by writing β ≤ γ) if each element of β is the finite union of elements of γ. The partition γ is
said to be a proper refinement of β if there is an element B ∈ β that is the union of no fewer
than two elements of γ.

Then, the following bounds on the conditional partition entropy (cf. [24]) are included for
completeness.

Proposition 1: Let α and β be two partitions of a given domain X , then the metric H(α|β)
defined by (4) satisfies the inequality

0 ≤ H(α|β) ≤ H(α), (5)

with equality:
H(α|β) = 0

if and only if β is a refinement of α (β ≥ α).
Proof: Starting with the right side of (5), the log-sum inequality [24] yields:

−
∑
Bj∈β

µ(Ai ∩Bj) log2

µ(Ai ∩Bj)

µ(Bj)
≤ −

∑
Bj∈β

µ(Ai ∩Bj)

 log2

∑
Bj∈β µ(Ai ∩Bj)∑

Bj∈β µ(Bj)

= −µ(Ai) log2 µ(Ai),

and therefore
H(α|β) ≤ −

∑
Ai∈α

µ(Ai) log2 µ(Ai) = H(α).

For the left side, on the other hand,

µ(Ai ∩Bj)

µ(Bj)
≤ 1,

with equality satisfied if and only if Bj ⊆ Ai (or more precisely µ(Bj ∩ Āi) = 0), and therefore,

log2

µ(Ai ∩Bj)

µ(Bj)
≤ 0,

which when substituted back in (4) concludes the proof.
Proposition 2: Let α = {A1, . . . }, β = {B1, . . . }, γ = {C1, . . . } be partitions of X such

that β is a refinement of α. Than H(α|γ) ≤ H(β|γ). The inequality is strict if β is a proper
refinement of α, provided that γ is not a refinement of β.
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Proof: Let A ∈ α be written as

A =

nA⋃
j=1

Bj.

We claim that

−µ(A ∩ C) log2

µ(A ∩ C)

µ(C)
≤ −

nA∑
j=1

µ(Bj ∩ C) log2

µ(Bj ∩ C)

µ(C)
(6)

with the inequality being strict if nA ≥ 2. The result is easily established for nA = 2 by writing
p1 = µ(B1 ∩ C)/µ(A ∩ C), p2 = µ(B2 ∩ C)/µ(A ∩ C) and q = p1 + p2. Then we have

0 ≤ −p1

q
log2

p1

q
− p2

q
log2

p2

q

with the inequality being strict unless one of p1 and p2 is zero. This inequality is easily shown
to be equivalent to (6) for nA = 2, where the inequality is strict unless µ(Bj ∩ C) = 0.

The proof of the case nA > 2 uses a simple inductive argument along the same lines. Here,
for each C ∈ X we have

−
∑
Ai∈α

µ(Ai ∩ C) log2

µ(Ai ∩ C)

µ(C)
≤ −

nA∑
j=1

µ(Bj ∩ C) log2

µ(Bj ∩ C)

µ(C)

with the inequality being strict if β is a proper refinement of α. The proposition follows by
summing both sides over C ∈ γ.

Corollary 2: Let α = {A1, . . . } and β = {B1, . . . } be partitions of X such that β is a
refinement of α. Then H(α) ≤ H(β). The inequality is strict if β is a proper refinement of α.

Proof: This is a special case of Proposition 2 in which γ is the trivial partition γ = {X}.

Proposition 3: Let α = {A1, . . . }, β = {B1, . . . }, γ = {C1, . . . } be partitions of X such that
γ is a refinement of β. Then H(α|β) ≥ H(α|γ).

Proof: For each Bj ∈ β, write Bj =
⋃nj

i=1Ci and note that

µ(Bj) =

nj∑
i=1

µ(Ci), and

µ(Ak ∩Bj) =

nj∑
i=1

µ(Ak ∩ Ci), ∀Ak ∈ α.

The log-sum inequality [24] may be rendered
nj∑
i=1

µ(Ak ∩ Ci) log2

µ(Ak ∩ Ci)
µ(Ci)

≥

(
nj∑
i=1

µ(Ak ∩ Ci)

)
log2

∑nj

i=1 µ(Ak ∩ Ci)∑nj

i=1 µ(Ci)

= µ(Ak ∩Bj) log2

µ(Ak ∩Bj)

µ(Bj)
.

Multiplying both sides of the inequality by −1 and summing over the cells in the partition yields
the desired result.

Remark 1: Proposition 3 shows that conditional entropy, H(α|β), is a non-increasing function
of β under partition refinement. Even when γ is a proper refinement of β, however, it is not
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necessarily the case that H(α|β) > H(α|γ). A simple example that illustrates this is given by
taking α = β = {X} and letting γ = {C1, C2} where µ(C1) = µ(C2).

We seek to transfer these notions of entropy to quantify the entropy of continuous scalar
functions defined on compact domains. Let X ⊂ Rm be a compact, connected, simply connected
domain, and let f : Rm → R. Then f(X) is a compact connected subset of R which we write
as [a, b]. At the outset, we fix a finite partition, Πm, of this interval:

a = x0 < x1 < · · · < xm = b. (7)

For each xj, j = 1, . . . ,m, we denote the set of connected components of f−1([xj−1, xj]) by

cc (f−1([xj−1, xj]) ).

For any such partition, we obtain a corresponding domain partition

VΠm =
m⋃
j=1

{
cc
(
f−1 ([xj−1, xj])

)}
(8)

of X . We define the entropy of f with respect to VΠm = {V 1, . . . , V N} (or equivalently with
respect to Πm) as

H (f,VΠm) = −
N∑
j=1

µ(V j)

µ(X)
log2

µ(V j)

µ(X)
, (9)

where µ is Lebesgue measure on Rm. We shall also refer to (9) as the partition entropy of f
with respect to VΠm (with respect to Πm).

It is easy to write down expressions for the entropy of simple functions as the one illustrated
in Fig. 9. In all cases, the range is the interval [0, 1], and we partition this range into m equal
subintervals of length 1/m. We evaluate the entropy (9) for m between 1 and 20. The entropy
grows in all cases as the number m of cells in the range partition increases (See the bottom
graph of Fig. 9). However, it grows with different rates, with function (a) growing with log2m,
(b) growing slower since it contracts lengths near 0 and expands them near 1, and (c) growing
with the highest rate since its topology partitions the domain into finer sets. We shall thus be
less interested in the specific value of the entropy than in the relative sizes for different classes
of functions—and in how these scale as m becomes large. At this point, we can quantify the
relationship between the topology induced partition and the entropy of the function.

Theorem 3: Let Vm be a domain partition of X corresponding to a range division of f : X →
R into m equal components. Let M be the topology induced partition of the same function and
define δi for each cell Mi ∈M as:

δi =
supr∈Mi

f(r)− infr∈Mi
f(r)

supr∈X f(r)− infr∈X f(r)
.

Then the following holds:

lim
m→∞

(H(f,Vm)− log2m) ≤ H(M) +
n∑
i=1

µ(Mi)

µ(X)
log2 δi, (10)

where n = |M| is the cardinality of the (finite) topology induced partition.
Proof: For each Mi ∈M, let

V i = {V j ∈ Vm : V j ⊂Mi},
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Fig. 9. From left to right, the functions mapping the unit interval onto itself are given by (a) f1(x) = x, (b) f2(x) = x2,
and (c) f3(x) = sin2 2πx. The bottom graph corresponds to the entropy, H (f,VΠm), for the three functions for uniform range
partitions of different sizes, m

and let
V∗ = {V j ∈ Vm : V j is not confined in any Mi}.

Then, we may write

H(f,Vm) = −
∑
Mi∈M

∑
V ij∈Vi

µ(V ij)

µ(X)
log2

µ(V ij)

µ(X)
−
∑
V k∈V∗

µ(V k)

µ(X)
log2

µ(V k)

µ(X)
. (11)

Given any ε > 0, we can find an mε sufficiently large that for all m > mε

−
∑
Mi∈M

∑
V ij∈Vi

µ(V ij)

µ(X)
log2

µ(V ij)

µ(X)
< −

∑
Mi∈M

µ(Mi)

µ(X)
log2

µ(Mi)

µ(X)dδime
+
ε

2
(12)

and

−
∑
V k∈V∗

µ(V k)

µ(X)
log2

µ(V k)

µ(X)
<
ε

2
, (13)

where d·e denotes the ceiling function. The right hand side of (12) is:

H(M) +
n∑
i=1

µ(Mi)

µ(X)
log2dδime+

ε

2
= H(M) +

n∑
i=1

µ(Mi)

µ(X)
log2

dδime
m

+ log2m+
ε

2
.
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Then combining these relationships back in (11) yields

H(f,Vm)− log2m < H(M) +
n∑
i=1

µ(Mi)

µ(X)
log2

dδime
m

+ ε

As m→∞, dδime
m
→ δi, and since ε can be chosen arbitrarily, the result follows.

Remark 2: Under the assumption that X is compact and f : X → R is Morse function, the
right-hand-side of (10) is well defined and the limit on the left-hand-side is always finite.

Remark 3: There exist fields for which either one or both sides of the inequality (10) are
negative.

Remark 4: It is not difficult to prove that if Πm is any partition (7) of the range of the function
f having corresponding domain partition VΠm (8), then

lim
m→∞

(H(f,VΠm)− log2m) = lim
m→∞

(H(f,Vm)− log2m) ,

provided
max

1≤j≤m
|xj − xj−1| → 0.

The last remark motivates the following.
Definition 4: Given a compact set X and a Morse function f : X → R, and given a set of

partitions of the range of f into m equal subintervals, the entropy of f is defined by:

lim
m→∞

(H(f,Vm)− log2m) .

Remark 5: For any partition Πm (7) of the range of f having corresponding domain partition
VΠm (8), we can think of the conditional entropy of the domain partition conditioned on the
range partition being given by the expression

−
m∑
j=1

∑
V i∈VΠm

µ
(
V i ∩ f−1([xj−1, xj])

)
log2

µ (V i ∩ f−1([xj−1, xj]))

xj − xj−1

. (14)

If Πm is the uniform partition with xj − xj−1 = b−a
m

for j = 1, 2, . . . ,m, then, up to an additive
constant that is independent of m, this conditional entropy coincides with

H(f,Vm)− log2m.

Strictly speaking of course, (14) is not an actual conditional entropy since VΠm and Πm are
partitions of different spaces that do not have a common measure. Moreover, as indicated by
Remark 3, the expression (14) may take negative values, which means that it cannot be viewed
as a conditional entropy in the usual sense. Nevertheless, it is useful to think of the quantity (14)
as the limiting value under partition refinement of the conditional entropies of domain partitions
corresponding to increasingly fine sequences of range partitions. (Another way to view (14) is
as the capacity of the function f to act as an information channel between the range, [a, b], and
the domain, X .)

Going back to Sec. II, the bound of the entropy of a particular function, as its range partition
is refined, depends completely on its critical level sets and their scalar value. Therefore, the
reconnaissance strategies, that we will analyze, will be focused on the discovery of the topology
induced partition.
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B. Reconnaissance as information acquisition
We note that the reconnaissance cannot directly discover the boundaries of the cells in the

topology induced partition that are associated with saddle points. For this to happen, the robot
should choose an originating point, ro, for an isoline mapping primitive that lies on a particular
critical level set ξ∗ ∈ Cr1(f,X), Cr1(f,X) being the set of critical level sets associated with
saddle points. Since these are zero-measure sets, their discovery in the course of random mapping
of isolines can occur with zero probability. Therefore, we pursue a procedure by which the set of
mapped level sets, S(Bk), can be used to make inferences about the topology induced partition
and more specifically about Cr1(f,X). To achieve this, by analogy with the domain partition
associated with a given range partition, we describe the collected data as a partition induced by
the mapped level sets (contours and extrema), V (S (Bk)) := Vk given by

Vk := cc (X \ S (Bk)) . (15)

The elements of this data induced partition will be connected components that do not contain
mapped level sets, and we will denote them by Vk =

{
V 1
k , V

2
k , · · · , V N

k

}
.

The evolution of Vk under the search process corresponds to iterative partition refinement.
That is, given the mapping of a level set ξ in the set V j

k−1 ∈ Vk−1, the updated data induced
partition will be given by:

Vk =
(
Vk−1 \

{
V j
k−1

})
∪ cc

(
V j
k−1 \ ξ

)
, (16)

where again cc(·) signifies the set of connected components. (Fig. 10 shows an example update
of the data induced partition under the mapping of a particular isoline.) We also remind that
S(Bk) will contain the mapped extremum points (cf (3)), which are degenerate level contours.
Therefore, the data induced partition will be updated also by the mapping of gradient lines. That
is, the discovered extremum points are subtracted from X , which does not create new cells in
Vk, but instead alters cells’ topology.

(a) The data induced partition before
the update V1 = {V 1

1 , V
1
2 }

(b) and after the mapping of
ξ2, yielding V 1

2 = V 1
1 , and

{V 2
2 , V

3
2 } =cc(V 2

1 \ ξ2)

Fig. 10. The data induced partition before and after updating to account for the mapping of an isoline ξ2. The updating consists
of relabeling V 1

1 to become V 1
2 and replacing V 2

1 with {V 2
2 , V

3
2 }.

The problem of quantifying the information content of S(Bk) becomes equivalent to quan-
tifying the relationship between the data induced partition and the topology induced partition.
For this purpose, we will consider the conditional entropy metric (4) and define the conditional
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entropy, H (M|Vk), as the following function of the data induced partition and the topology
induced partition.

H (M|Vk) = −
∑
Mi∈M

∑
V j

k ∈Vk

µ
(
Mi ∩ V j

k

)
µ(X)

log2

µ
(
Mi ∩ V j

k

)
µ(V j

k )
. (17)

An important property of how the conditional entropy evolves under a motion primitive based
reconnaissance is stated in the next proposition.

Proposition 4: Let M and Vk be respectively the topology induced partition and a data
induced partition, and let Vk evolve according to (16). Then the conditional entropy, H(M|Vk),
is a non-increasing function of k.

Proof: This result follows directly from Proposition 3, because Vk is a refinement of Vk−1.

By employing Proposition 1 and Proposition 4, the conditional entropy allows us to describe
the evolution of the reconnaissance as iterative information acquisition. Initialization with no
prior information is equivalent to V0 = {X}, and also H(M|V0) = H(M). (Note, that H(M)
is unknown at the outset.) Under the reconnaissance, as more information is gathered, H(M|Vk)
decreases, and assuming that H(M|Vk) approaches zero in the limit as k → ∞, the topology
induced partition can be fully recovered from the collected data by merging cells of Vk as k
increases according to (15).

C. Guiding reconnaissance through the conditional entropy
Since the reconnaissance can be represented as an iterative information acquisition process, an

efficient reconnaissance protocol should at each step utilize the acquired information to decide
what motion program to apply next and where in the search domain to apply it. Therefore, our
aim is to exploit the structure of the data induced partition as a means to guide the reconnaissance
such that it collects relevant topological information. Collecting relevant information in terms
of the conditional entropy will correspond to a refinement of Vk through isoline mapping which
yields a strict decrease in the conditional entropy:

H(M|Vk) > H(M|Vk+1).

As a first step to achieve this objective, the next theorem gives a connection between the
structures of the data induced partition and the topology induced partition.

Theorem 4: Let Vk be the data induced partition of the domain, X , under the search sequence
Bk applied to the scalar field f : X → R. Define for every V j

k ∈ Vk the set

M′ (V j
k

)
=
{
Mi ∈M (f,X) : Mi ∩ V j

k 6= ∅
}
. (18)

Then, it follows that ∣∣M′ (V j
k

)∣∣ ≥ | − 2χ(V j
k ) + 1|. (19)

Proof: We start the proof by noting that S(Bk) contains the discovered extremum points,
and therefore, according to (15), there are no mapped extremum points in the cells of the data
induced partition. Assume that V j

k ∩ ξ∗i = ∅, ∀ξ∗i ∈ Cr0,2(f,X), i.e. all extremum points are
known and subtracted from X . Then, by applying the same argument as in the proof of Theorem
2, we can show that: ∣∣M′ (V j

k

)∣∣ = | − 2χ(V j
k ) + 1|.
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If, however, this assumption is not valid, i.e. there are extremum points that lie within the given
cell (i.e. extrema that have not been discovered), the cardinality of |M′(V j

k )| will increase.
Having information about the number and locations of extremum points allows many con-

clusions to be drawn regarding the topology induced partition. In what follows, we describe
corollaries of Theorem 4 that establish properties ofM under the assumption that all extremum
points have been discovered. This assumption can be expressed in terms of Cr0,2(f,X) and
S(Bk) as:

Cr0,2(f,X) ⊂ S(Bk), (20)

since S(Bk), in addition to the mapped level contours, contains the mapped extremum points.
(See the definition in (3).) Moreover, taking into account (15), this assumption will imply that
all extremum points are reflected in the topology of the cells in the data induced partition.
Specifically, given a mapped isoline contour ξ, and given that there are exactly K extremum
points in its interior, the sum of the Euler characteristics of all cells of Vk that also lie in this
contour’s interior is given by 1−K.

Corollary 3: For each V j
k ∈ Vk consider the Euler characteristic χ(V j

k ). Assume that all
extremum points have been discovered (20), and define the set

V ′k =
{
V j
k ∈ Vk : χ

(
V j
k

)
≤ −1

}
. (21)

Then the following holds:

H(M|Vk) = −
∑
V j

k ∈V
′
k

∑
Mi∈M

µ
(
Mi ∩ V j

k

)
µ(X)

log2

µ
(
Mi ∩ V j

k

)
µ
(
V j
k

) . (22)

Proof: If the reconnaissance has discovered all extremum points in X and they are included
in S(Bk), the partition Vk will not contain cells with Euler characteristic 1. Moreover, by Theorem
4, if for a particular cell V j

k ∈ Vk, χ(V j
k ) = 0, then

∣∣M′ (V j
k

)∣∣ = 1. This implies that there exist
Mi ∈M(f,X), s.t. V j

k ⊆Mi, which implies that

µ(Mj ∩ V i
k )

µ(X)
log2

µ(Mj ∩ V i
k )

µ (V i
k )

= 0.

Therefore, only elements of Vk with Euler characteristic less than zero will have a contribution
to the conditional entropy.

Corollary 4: Let Vk−1 be a data induced partition with the set V ′k−1 defined by (21). Assume
that the isoline ξ is mapped such that ξ ∈ V j

k−1 ∈ V ′k−1, and it induces the update

Vk =
(
Vk−1 \ {V j

k−1}
)
∪
{
V a
k , V

b
k

}
.

Then assuming that both µ(V a
k ), µ(V b

k ) > 0, it follows that

H(M|Vk−1) > H(M|Vk).

Proof: Note that

H(M|Vk−1)−H(M|Vk) = −
∑
Mi∈M

µ(Mi ∩ V j
k−1)

µ(X)
log2

µ(Mi ∩ V j
k−1)

µ(V j
k−1)

+
∑
Mi∈M

∑
l∈{a,b}

µ(Mi ∩ V l
k)

µ(X)
log2

µ(Mi ∩ V l
k)

µ(V l
k)

.
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From the log-sum inequality this expression is equal to zero if and only if:

µ(Mi ∩ V a
k )

µ(V a
k )

=
µ(Mi ∩ V b

k )

µ(V b
k )

,∀Mi ∈M, (23)

and otherwise is strictly larger than zero.
Note that i) according to Theorem 4 |M′(V j

k−1)| > 1; and ii) every isoline lies within a
single cell of the topology induced partition. Therefore, there is at least one cell Mi such that
Mi ∩ V b

k = ∅ and Mi ∩ V a
k 6= ∅, or equivalently Mi ∩ V a

k = ∅ and Mi ∩ V b
k 6= ∅. This contradicts

(23), which implies that:
H(M|Vk−1) > H(M|Vk).

Assuming that all extremum points are known, the information about the topology induced
partition is localized in the cells of the data induced partition that have Euler characteristic
χ(V j

k ) < 0. Therefore, a parsimonious reconnaissance procedure that does not acquire redundant
information is to concentrate the isoline mapping in these cells, which, according to Corollary
4, yields strictly decreasing conditional entropy. In this way, given that all extremum points have
been discovered, i.e. all areas that contribute to the conditional entropy have been identified,
this procedure will continuously yield information about the topology induced partition of the
function. However, if this is not the case, i.e. if there are undiscovered extremum points, isoline
mapping carried out in accordance with the protocol of Fig. 6 will be insufficient to reconstruct
the topology induced partition, and the agent will have to also apply gradient following to identify
the remaining extremum points.

This type of reasoning reveals a connection between reconnaissance and the paradigms of
exploration vs. exploitation. In various fields of study, such as ecology [25], behavioral economics
[26] and cognitive psychology [27], interrelated concepts of exploration and exploitation have
proven to be useful of organizing discussions of human decision dynamics. The distinction
between these phases of information acquisition have been well described by Cohen et al. [27]:
“Decisions require an exploration of alternatives before committing to exploiting the benefits of
a particular choice. Furthermore, many decisions require reevaluation, and further exploration
of alternatives, in the face of changing needs or circumstances.” All decision makers face the
choice of “whether to exploit well-known but possibly suboptimal alternatives or to explore risky
but potentially more profitable ones.”

In this sense, the analogy between the exploration vs. exploitation paradigm and the current
set-up of unknown field reconnaissance can be revealed by considering the partition cells in V ′k.
The isoline mapping that subdivides these cells is equivalent to exploitation. On the other hand,
the discovery of new critical points and thereby the addition of elements to V ′k can be equated
to the finding of new alternatives to be exploited. In this way, the mapping of gradient lines
becomes equivalent to exploration.

We further formalize this notion through defining a bound on the conditional entropy that can
be evaluated from the perspective of the reconnaissance agent.

Corollary 5: Assume that all extremum points (maxima and minima of the field) are known
and define

H (Vk) =
∑
V j

k ∈Vk

µ
(
V j
k

)
µ(X)

log2

∣∣−2χ
(
V j
k

)
+ 1
∣∣ . (24)

Then, the following inequality holds

H(M|Vk) ≤ H (Vk) . (25)
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Proof: Noting that the entropy is maximized when the partition is divided into equal parts,
we can write

−
∑
Mi∈M

µ
(
Mi ∩ V j

k

)
µ(X)

log2

µ
(
Mi ∩ V j

k

)
µ
(
V j
k

) ≤
|M′(V j

k )|∑
n=1

µ
(
V j
k

)
µ (X)

∣∣M′
(
V j
k

)∣∣ log2

µ
(
V j
k

)
µ
(
V j
k

) ∣∣M′
(
V j
k

)∣∣
= −

µ
(
V j
k

)
µ(X)

log2

µ
(
V j
k

)
µ
(
V j
k

) ∣∣M′
(
V j
k

)∣∣ .
On the other hand, with an argument similar to the proof of Theorem 4, it can be shown that:

µ
(
V j
k

)
µ(X)

log2

µ
(
V j
k

)
µ
(
V j
k

) ∣∣M′
(
V j
k

)∣∣ =
µ
(
V j
k

)
µ(X)

log2

∣∣−2χ
(
V j
k

)
+ 1
∣∣ .

The metric H (Vk) purely depends on the data induced partition. Therefore, it represents a
subjective quantification of the remaining uncertainty. The next theorem shows how it evolves
under a reconnaissance protocol that restricts the isoline mapping motion programs only to the
cells of V ′k.

Theorem 5: Let the search be conducted according to the search protocol shown in Fig. 6,
and suppose that for every bk = biso(ro), the point ro is chosen within a cell V j

k−1 ∈ V ′k−1, where
V ′k−1 is defined by (21). Then, if bk = biso, it follows that

H(Vk) < H(Vk−1), (26)

and if bk = bgrad, it follows that
H(Vk) ≥ H(Vk−1),

where H(Vk) is defined by (24).
To prove Theorem 5, we state the following proposition.

Proposition 5: Let ξ be an isoline mapped according to the protocol described by the flow
chart of Fig. 6, such that ξ ∈ V j

k−1 ∈ Vk−1, and which induces the update

Vk =
(
Vk−1 \ {V j

k−1}
)
∪
{
V a
k , V

b
k

}
.

Then, the topology of the cells V a
k and V b

k satisfies the following:

χ(V a
k ), χ(V a

k ) ≤ 0 (27)

and
χ (V a

k ) + χ
(
V b
k

)
= χ

(
V j
k−1

)
. (28)

Proof: The search protocol shown in Fig. 6 dictates that all isolines are mapped starting
from a previously mapped gradient line. This means that an isoline will always encircle at least
a single previously discovered extremum point and as a result form two cells, both of which
have Euler characteristics satisfying (27).

On the other hand, (28) follows directly from the Poincaré-Hopf theorem.
The proof of Theorem 5 can now be given.
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Proof of Theorem 5: For (26) under isoline mapping, the rate of change in H(Vk) = Hk

yields

Hk −Hk−1 = −
µ(V j

k−1)

µ(X)
log2

(
−2χ(V j

k−1) + 1
)

+
∑
i∈{a,b}

µ(V i
k )

µ(X)
log2

(
−2χ(V i

k ) + 1
)
,

where it is assumed that V a
k , V

b
k ⊂ V j

k−1, and it is taken into account that because of (27), it
follows that

−2χ(V j
k−1) + 1 = | − 2χ(V j

k−1) + 1| ≥ 1.

From the log-sum inequality, it follows that∑
i∈{a,b}

µ(V i
k )

µ(X)
log2

1

(−2χ(V i
k ) + 1)

=
∑
i∈{a,b}

µ(V i
k )

µ(X)
log2

µ(V i
k )

µ(V i
k ) (−2χ(V i

k ) + 1)

≥
∑
i∈{a,b}

µ(V i
k )

µ(X)
log2

∑
i∈{a,b}

µ(V i
k )

µ(X)∑
i∈{a,b}

µ(V i
k )

µ(X)
(−2χ(V i

k ) + 1)

>
µ(V j

k−1)

µ(X)
log2

1(
−2χ(V j

k−1) + 1
) .

Therefore, ∑
i∈{a,b}

µ(V i
k )

µ(X)
log2

(
−2χ(V i

k ) + 1
)
<
µ(V j

k−1)

µ(X)
log2

(
−2χ(V j

k−1) + 1
)

and respectively
Hk < Hk−1.

Under extremum search, finding a new extremum is equivalent to puncturing a hole, and
respectively, decreasing the Euler characteristic of the cell containing this extremum by 1. When
substituted back, this shows that Hk is nondecreasing under extremum search, which concludes
the proof.

This result establishes Hk as a useful metric in the context of the exploration vs. exploitation
paradigm. That is, Hk is consumed under isoline mapping (exploitation) and increased under
gradient line mapping (exploration). We will utilize this relationship to define reconnaissance
protocols that are inspired by foraging.

V. MACHINE RECONNAISSANCE AND TOPOLOGY BASED FEEDBACK

In this section, we present two reconnaissance protocols for identifying the topology induced
partition of a particular unknown field. The first one employs the metrics developed above
together with the topology of the cells in the data induced partition as a decision input. Hence, it
utilizes them to decide where and with what motion program to search next. The other strategy
under consideration will be called a scanning strategy, since it will not base next steps on
anything inferred about the topology. These two strategies will be compared through Monte-
Carlo simulations. From this perspective the scanning strategy can be thought of as the baseline
solution to the problem against which the benefits of employing topology based feedback can
be evaluated.
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A. The topology feedback strategy
We will base the topology feedback strategy on the consumption rate,

Rk = Hk−1 −Hk,

which is utilized as a switching criteria. As established by Theorem 5, if isoline mapping is
restricted to the cells of the data induced partition with Euler characteristic equal or smaller
than −1, Rk is strictly positive in the exploitation mode. In the exploration mode, it is either
strictly smaller than zero (if the exploration mode yields the discovery of a new extremum), or
equal to zero (if it does not). The heuristic that we propose is to exploit (map isolines), when
the consumption rate lies within the set

{Rk > k−T} ∪ {Rk ≤ 0}, (29)

and to explore otherwise. The constant T ≥ 0 determines how aggressive the reconnaissance
strategy is. The most aggressive behavior is equivalent to the rate being such that Rk < k−T ,
∀k > 0. In this case, it is easy to verify that the search sequence will consist of alternating biso
and bgrad motion programs. At the other extreme, a conservative reconnaissance will correspond
to exclusive exploitation, i.e. for some time n, T can be chosen sufficiently large s.t. Rk > k−T ,
∀k > n.

The rate Rk provides a choice of a program to search with. The question that remains is
at which point to initiate a particularly chosen motion routine. A consistent choice should
guarantee that the conditional entropy, H(M|Vk), converges to zero. Under the assumption that
all extremum points have been discovered, Hk is a bound on the conditional entropy. Therefore,
we will show that there exists a suitable choice of an infinite sequence of originating points,
which guarantees that under the exclusive execution of biso programs, Hk goes to zero.

Theorem 6: Assume that Bk is generated according to the reconnaissance protocol described
by Fig. 6. Moreover, assume that there exists n such that bk = biso(ro), ∀k > n, with the points
ro chosen at each instance according to the following sequence:
• Define the segments lij = V i

k ∩ ζj where V i
k ∈ Vk, ζj ∈ Q(Bk) (ζj a gradient path), and let

the constants Aij , aij associated with each segment be defined as:

aij = inf
r∈lij

f(r)

Aij = sup
r∈lij

f(r)

• Find a segment l∗ij such that .

l∗ij = arg max
lij=V i

k∩ζj
(Aij − aij) . (30)

• Choose the point, ro such that ro ∈ l∗ij and

f(ro) =
f(Aij) + f(aij)

2
.

Then, the following holds:
lim
k→∞

Hk = 0.

Proof: Define the metric

Lk =
∑
V i

k∈V
′
k

∑
Mj∈M

(
sup

r∈V i
k∩Mj

f(r)− inf
r∈V i

k∩Mj

f(r)

)
,
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where V ′k is the set of cells in Vk having Euler characteristic ≤ −1 as defined by (21), and let
Nk be the cardinality of the set {V i

k ∩Mj : V i
k ∈ V ′k,Mj ∈ M}. Given that the reconnaissance

is executed under the protocol described by Fig. 6, Prop. 5 dictates that every time a cell is split
by isoline mapping, the sum of the Euler characteristics of the two new cells is equal to the
Euler characteristic of the original, and moreover, neither of the two resultant cells have Euler
characteristic of 1.

Assume that one of the new cells formed by the isoline mapping has Euler characteristic of
0, then this new cell will not be a part of V ′k+1, and therefore, the metric Lk evolves according
to:

Lk+1 < Lk

(
2Nk − 1

2Nk

)
. (31)

This follows from (30), i.e. the protocol dictates that the segment that is cut in half is the largest
one.

Another possible scenario is that both of the new cells have Euler characteristic smaller than
0. Again, according to Prop. 5 this can only occur when the original cell has Euler characteristic
smaller than −1 (the sum of the Euler characteristics of the resultant cells should equal to the
Euler characteristic of the original one). In this case, Lk does not change, but it is easy to see
that:

Nk+1 = Nk + 1, (32)

since V ′k+1 will have one more element than V ′k. Also from Proposition 5 it can be concluded
that this scenario can occur only a limited number of times until all the cells in V ′k+1 have Euler
characteristic of −1. That is, each cell V j

k ∈ V ′k, such that χ(V j
k ) = n < −1, can be divided

by a sequence of isoline mappings into at most n cells with χ = −1. Therefore, we can have
Lk = Lk+1 at most −χ− 1 times. By defining Ck as:

Ck =
∑
V i

k∈V
′
k

−1− χ(V i
k ),

for every case of l > k, we can write:

Ll < Lk

(
2Nk − 1

2Nk

)max[0,l−k−Ck]

.

Thus, as l→∞, Ll converges to zero. Since f(r) is Morse function,∑
V i

k∈V
′
k

∑
Mj∈M

µ(V i
k ∩Mj),

will also converge to 0 as k →∞ and consequently so will Hk.
To complete the specification of the topology guided strategy, we designate a random procedure

for choosing the originating points for gradient tracking. That is, the initialization points for the
bgrad(ro) programs will be chosen at random with respect to a uniform probability density on the
set of points on the mapped isolines S(Bk). The resulting reconnaissance protocol is summarized
in Alg. 1. Fig. 11 shows the isolines mapped during a particular run of this topology driven
reconnaissance strategy. It can be clearly observed that the mapped isolines are concentrated
near the critical level sets associated with saddle points.
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Algorithm 1 Topology guided reconnaissance strategy
1: k = 0
2: Bk = {}.
3: Vk = {X} {Initialization with no prior information}
4: loop
5: if Rk > k−T or Rk ≤ 0 then
6: Choose ro according to the sequence described in Thm. 6
7: Execute bk+1 = biso(ro) to map ξ
8: Vk+1 =

(
Vk \

{
V j
k

})
∪ cc

(
V j
k \ ξ

)
9: else

10: Get ro ∼ U(S(Bk)) (That is, choose the point at random from a uniform distribution
on the set points on the mapped isolines.)

11: Execute bk+1 = bgrad(ro) to map ζ
12: for All critical points r∗i uncovered by ζ do
13: Vk+1 =

(
Vk \

{
V j
k

})
∪
{
V j
k \ r∗i

}
14: end for
15: end if
16: Bk+1 = Bk ∪ {bk+1}
17: k = k + 1
18: end loop

Fig. 11. The isolines mapped under a particular run of the reconnaissance strategy described by Alg. 1 for T = 0.5.

B. Open loop scan strategy
The scanning strategy that will be further utilized as a benchmark is a simple routine, which

divides a mapped gradient line into n parts with equal range drop and maps the isolines that
originate from them. It is formally described by Alg. 2.

An illustration of the first several steps in executing this strategy is presented in Fig. 12.
After a gradient line is mapped, its range is partitioned uniformly into n parts (Fig. 12(a)). After
mapping the isolines corresponding to this partition, the robot moves to a point randomly chosen
on an unexplored part of the search domain and again maps a gradient line and then repeats the
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Algorithm 2 Scanning reconnaissance strategy
1: k = 0
2: Bk = {}.
3: Vk = {X}
4: loop
5: Choose ro ∼ U(X)
6: Execute bgrad(ro) to map ζ
7: Find {ri ∈ ζ : 1 ≤ i ≤ n} with f(ri) corresponding to a uniform partition of the range

f(ζ)
8: for i = 1 : n do
9: Execute biso(ri, X) to map ξ

10: Vk+1 =
(
Vk \

{
V j
k

})
∪ cc

(
V j
k \ ξ

)
11: end for
12: end loop

(a) (b)

Fig. 12. An illustration of the initial several steps in mapping an unknown field through the n−scan strategy

same isoline mapping routine (Fig. 12(b)).

C. Monte Carlo Validation
To validate and compare these two reconnaissance protocols, we will use scalar fields that are

realizations of a spatial gaussian process. Such fields are widely used in atmospheric modeling
and data assimilation [28], and they have also been employed as underlying models for studies
in unknown field reconnaissance [1].

They are defined as follows: for each point r ∈ X , the value of the function is considered as
a realization of a random process f(r) ∼ N(0, 1), which for each two points r1, r2 ∈ X has a
correlation

E [f(r1), f(r2)] = exp

(
−‖r1 − r2‖2

2d2

)
. (33)

Reference [20] provides conditions under which the function f , as a realization of a random
field, will be a Morse function with probability 1. In practical terms, we can calculate the

DRAFT



27

realization of the field at discrete grid points, and then estimate the value of the field at each
point of the domain through linear interpolation.
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Fig. 13. The evolution of the conditional entropy for two different values of T : an aggressive strategy (T = 0.5) and a more
conservative strategy (T = 2).

In Fig. 13, we show the result of Monte-Carlo simulations of applying the topology guided
strategy with two different values of T : an aggressive strategy corresponding to T = 0.5, and a
more conservative strategy corresponding to a larger value, T = 2. Fig. 13(a) plots the average
of

H(M)−H(M|Vk),
for each instance k over 100 runs of the strategy, each on a different randomly generated field.
Both strategies are initialized with V0 = {X}, which implies that H(M|V0) = H(M). An
important observation is that the strategy with the large T is more efficient in the short term.
This is due to the fact that the short term exploitation of the available resources gives an initial
gain. However, the strategy with the large T is overwhelmed by the strategy with the small T
in the long run, as the early investment in finding extremum points pays off and provides more
area to be exploited as the reconnaissance progresses. Fig. 13(b) gives the standard deviation of
the conditional complexities of the two strategies. This shows that the more aggressive strategy
in this case is also the more consistent in the long term.

Fig. 14 presents the topology guided strategy compared with the benchmark n-scan strategy.
The topology guided strategy can be clearly identified as the more efficient one. It consistently
collects more information and achieves this with smaller dispersion.

VI. HUMAN GUIDED RECONNAISSANCE

In the previous section, we have proposed a protocol for unknown field reconnaissance, whose
goal is to uncover the topological structure of the field. This design objective has been motivated
by the need to efficiently identify a minimum set of features, whose mapping can yield a good
qualitative and quantitative understanding of the underlying phenomenon. In this section, the
focus shifts from the design of algorithms to the assessment of human decision making. In
particular, the guiding conjecture will be that humans intuitively recognize the importance of
the field’s topology and therefore manifest a preference for discovering the topology induced
partition.
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Fig. 14. A comparison of H(M)−H(M|Vk) comparing a topology guided strategy that uses feedback of information about
the topological characteristics of cells currently in the data induced partition and an open-loop, n-scan strategy.

A. Reconnaissance game for testing human decision making
To evaluate human-in-the-loop reconnaissance, we have designed a game, which simulates the

mapping of a unknown field by a robotic vehicle that is under the supervisory control of a human
subject. The subject is instructed that the hypothetical reconnaissance agent under her control
can perform two types of tasks—the mapping of gradient lines and the mapping of isolines.
Hence, the subject can utilize the same two search programs as the ones that are employed by
the machine reconnaissance protocols discussed in the previous section.

The scalar field is defined on a square search domain and it is generated according to (33),
with two correlation lengths–d = 0.25 and d = 0.5 (given that the square has unit length sides).
Fig. 15 illustrates that by varying the correlation length, we effectively control the complexity of
the topology, and hence of the induced partition. Every subject is presented with multiple fields
to map. The fields are chosen from a large archive with each field having a unique identifying
number. Every even numbered field has high topological complexity (d = 0.25), and every odd
numbered field has low topological complexity (d = 0.5).

(a) Low topology complex-
ity area (d = 0.50).

(b) Hight topology com-
plexity area (d = 0.25).

Fig. 15. Two examples of high and low topology complexity fields.

Every subject is instructed by a video [29] before the experiment, which assures the uniformity
of the instructions. The basic points that are conveyed by the video are:
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• The game involves robotic reconnaissance of an unknown terrain.
• The player teams up with a virtual robot that has been programmed to perform simple

motions—mapping gradient lines and mapping isolines.
• The responsibility of the player is to instruct the robot how to explore a specific area and,

when she believes the acquired map of the given area is of sufficient quality, to command
the robot to another one.

• The subject is told that there is no wrong choice of what constitutes a sufficient mapping
of a terrain.

The game interface is shown in Fig. 16. The subjects are given 12 minutes for mapping. When
the clock runs down to zero, the game automatically stops. Every time the subject clicks on the
empty space, she automatically maps a gradient line (Fig. 20(b)). On the other hand, when a
subject clicks on a gradient path, the result is the mapping of an isoline (Fig. 16(b)). Whenever
a subject believes that the map is of sufficient quality, she clicks on the “Go to another area”
button and starts mapping a new square domain (Fig. 16(c)).

(a) (b) (c)

Fig. 16. A basic depiction of the game interface as described in the text.

B. Topology feedback in human subjects
As we have seen in Section IV, acquiring topology relevant information is equivalent to

continuously decreasing the conditional entropy. Therefore, if a subject is utilizing topology
feedback with the goal of uncovering the structure induced by the critical points, she will have
a preference for mapping isolines that reduce the conditional entropy.

Corollary 3 established that the uncertainty about the structure of the topology induced partition
is concentrated within cells of the data induced partition that–assuming all extremum points are
removed from them–have Euler characteristic χ ≤ −1. This observation leads to a natural
procedure for determining the existence of a preference for identifying the topology of the field.
The data induced partition can be divided into two parts, Vok , and its complement Vk \Vok . In this
division, the set Vok contains all cells of the data induced partition that have Euler characteristic
less than or equal to −1, together with the cells that would have such characteristic under the
discovery of new extremum points. In other words, Vok ⊆ V ′k, where V ′k is defined by (21). If
all extremum points have been discovered, then Vok = V ′k. It can be easily verified that every
time an isoline is mapped within Vok the conditional entropy is decreased, while if it is mapped
within Vk \ Vok , it stays the same. Therefore, the preference of a subject for mapping isolines
within Vok , as opposed to mapping isolines within its complement, will also imply a preference
for identifying the cells of M.
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To quantify this propensity, we state the hypothesis that the probability of a subject clicking
on a point ri in a cell V belonging to Vok to map an isoline is given by:

P β(ri ∈ V ∈ Vok) =

(
µ(Vok)

µ(X)

)β
,

where β > 0 is a positive constant for each subject.
If β = 1, the probability of the subject mapping an isoline within a cell belonging to Vok

is equal to its normalized area. In other words, the behavior of the subject is random, and
she does not utilize any topology feedback. However, if β = 0, the subject exclusively maps
isolines within Vok , and in this way achieves continuous reduction of the conditional entropy.
(The topology guided protocol described in Sec. V-A has β = 0.) Therefore, the preference of
the subject towards identifying the topology can be directly quantified by the value of β, with
smaller values corresponding to higher preference.

Assuming that the clicks are independent of each other, the probability of a particular sequence
of isoline mapping clicks,

{r1, r2, · · · , rm},

where ri corresponds to the position of the ith click, will be given by:

P (r1, r2, · · · , rm) =
m∏
i=1

{
P β(ri) if ri ∈ V ∈ Voki

1− P β(ri) else . (34)

Here, we have used the indexing ni to denote the state of Voki
immediately before the ith isoline

is mapped.
The parameter β can be estimated through a maximum likelihood estimator as

β = arg max
β>0

P (r1, r2, · · · , rm).
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Fig. 17. Histograms of the estimated parameter β for two populations— a human player population and a random computer
player control population.

Fig. 17 shows the histograms of β for two populations of players. The first population
consists of 26 human players, who were subjects of the above described experiment. The
control population consists of 26 “computer players”, who conduct reconnaissance on the same
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fields that were mapped by the human players by mapping the same number of isolines. The
difference between the control population and the human population is that the control population
is programmed to map the isolines randomly by choosing the originating points from a uniform
random distribution on the search domain.

The statistics of the two samples, whose histograms are shown in Fig. 17, are as follows: the
mean of the human population is β̄human = 0.32 and the standard deviation is σhuman = 0.15;
the mean of the computer players population is β̄computer = 0.97 with standard deviation of
σcomputer = 0.04. As expected, the computer population has a β characteristic close to 1, which
corresponds to their random game strategy. At the same time, the small value of β for the human
population is an evidence that the humans have a strong preference for discovering the topology.

To confirm the difference between the random style of the computer players, and the style of
the humans, we performed statistical significance testing. Kolmogorov-Smirnov statistics (K-S)
was used to test the hypothesis that the two populations were sampled from the same random
process. The K-S test rejects or confirms such a hypothesis based on the distance between the
empirical cumulative distribution functions (CDF) of two samples. For the two populations under
investigation, this distance was calculated to be 1. (The same can be also concluded from Fig.
17). This distance corresponds to p− value = 6× 10−13, which is the probability of achieving
such extreme test statistic by chance, i.e. the probability that the two populations have been
sampled from the same random distribution. To calculate the test statistic and its corresponding
p−value, we used the kstest2 function of Matlab R2010a, which in turn has been developed
according to [30].
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Fig. 18. The parameter β for each subject with respect to the topological complexity of the environment.

From the statistical analysis of β, it is clear that humans have a manifested preference for
mapping the topology of the field, i.e. β < 1. This preference, however, is stronger in some
subjects and weaker in other. Since an alternating sequence of low topology complexity maps
and high topology complexity maps is used in the experiment, we can verify the consistency of
the preference for each subject through computing β independently for the two types of fields.
Fig. 18 shows the result of this analysis (the correlation between these two data sets is 0.78).

We use this consistency to divide the subjects into three equal-sized groups based on their β
characteristic: bottom third (containing the third of the subjects with the lowest values of β),
middle third and a top third. Each group can be viewed as having a different reconnaissance style,
and we will analyze how the differences in these styles manifest through the defined information
metrics.
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Fig. 19. The evolution of (35) and its standard deviation as function of the number of clicks.

Fig. 19 shows

H(M)−H(M|Vk), (35)

averaged over separate games played by the subjects in the bottom third and the top third group
for each click k. In this case, we have used H(M) = H(M|V0) (V0 = {X}) as a normalization
factor to account for the fact that the different fields explored by the subjects have varying
topological complexities. Also, to be able to account for the different lengths of the games, we
have adopted standard game duration for each group. That is, the length over which the separate
games are averaged in each group corresponds to the duration above which only 10% of the
games continue.

There are three observations that can be made: i) the subjects in the bottom third perform
more efficient reconnaissance of the topology; ii) the subjects in the top third spend more clicks
per area; iii) the standard deviation of the conditional entropy as a function of the number of
clicks is higher for the subjects that use less topology based feedback.

Fig. 20(a) compares the same groups in terms of the entropy of the data induced partition.
One can clearly observe that at the expense of spending more clicks per a field, the subjects in
the top third achieve higher data induced partition entropy.

Another interesting observation can be made through Fig. 20(b). The graph corresponds to the
distance between the maximum possible partition entropy, log2 |Vk|, and the actual one H(Vk):

log2 |Vk| −H(Vk).
It also represents a metric of the uniformity of the size of the cells within the data induced
partition. This metric initially grows for subjects in both of the groups. This corresponds to a
concentrated mapping of isolines at the beginning (isolines associated with a single gradient
line), which leads to few small-size cells and a large cell corresponding to the unexplored space.

The initial growth gradually tapers off for the subjects in the bottom third. This can be
explained by the fact that they pursue an understanding of the field’s topology as opposed to
a detailed map of its shape. In other words, they parsimoniously try to acquire a good picture
of the underlying structure induced by the critical points and, as a result, distribute the mapped
isolines more uniformly around the search domain. On the other hand, the subjects in the top
third acquire maps with a higher level of detail. They achieve this by methodically mapping
higher numbers of isolines per each gradient path.
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(a) The evolution of the entropy for the subjects
in the bottom third and the high third β.
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(b) The distance log2 |Vk|−H(Vk) as function of
the number of clicks k.

Fig. 20. The evolution of the entropy as a function of the number of clicks.

VII. CONCLUSIONS AND OPEN PROBLEMS

The research described in this paper began as an attempt to understand decision dynamics in
the execution of tasks carried out by mixed teams of humans and robotic agents. The specific
focus has been the decisions that are required in carrying out reconnaissance missions–and more
specifically in the exploration of unknown scalar fields. The paper has introduced formal models
of information content in the kinds of spatially varying unknown fields. A Shannon-like entropy
metric of information content of an unknown field was proposed, and it was shown how this
metric could be related to the differential topology—and more specifically to the critical level
sets of the field. In terms of this information metric, we were able to describe the way in which
a reconnaissance mission acquired knowledge of the unknown field. By mapping gradient lines
and isolines using the reactive control laws of our previous work ([6], [7], [8]), an increasingly
fine partition of the reconnaissance domain was obtained. It is precisely the partition entropy of
these partitions whose rate of increase can be used to define how effectively the reconnaissance
is progressing. By defining a distinguished partition associated with the a priori unknown critical
level sets of the field, we have been able to make use of certain conditional entropies to describe
how much topological information is being acquired by the reconnaissance.

In trying to understand the information needed to describe a unknown field defined on a
compact domain, the critical level sets have turned out to be surprisingly important. While they
clearly comprise a minimal set of essential qualitative features, the connection established in
Theorem 3 with the entropy of the field came as something of a surprise. In view of this,
the results of Section IV and the algorithm of Section V have been aimed at showing how a
reconnaissance mission can be structured so as to climb an information gradient aimed at the
goal of estimating all critical level sets.

The final part of the paper reports results of an experiment in which human subjects (under-
graduate engineering students) acted as mission directors in a simulated robotic reconnaissance of
an unknown scalar field. A measure of bias toward learning topological features of the unknown
field is described, and in terms of this measure, we have observed that all our subjects showed
some tendency toward trying to discover topological information—i.e. toward trying to learn the
location of all critical level sets. Some subjects exhibited this tendency much more than others,
however. Analysis of the game play showed that subjects who were strongly biased toward
accumulating information about the topological characteristics of the field tended to be more
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parsimonious in terms of the numbers of isolines they mapped. They also tended to be more
consistent from one game to another. The subjects who were biased toward seeking topological
information exhibited a more even balance between numbers of isolines and number of gradient
lines mapped. Subjects who were less biased toward topological information tended to acquire
more general detail about the search domain by mapping large numbers of isolines.

The results we have reported must be viewed as preliminary, but they point to a number of
questions that seem worthy of further study. In terms of modeling information acquisition in
problems of search and reconnaissance, there are many potentially important extensions that
could be pursued. Perhaps the most obvious is to consider fields that vary in either time or
space. All the work reported above has treated spatially stationary gaussian fields. In order for
the models to capture the key features of real world reconnaissance problems, the correlation
lengths of (33) should be allowed to vary over the domain. When this occurs, there are a variety of
questions about which little is known. The trade off between metric and topological information
will need to be studied carefully in such settings. In particular, if spatially non-stationary random
fields are used in experiments with human beings, it will be of interest to learn what features
of the field have greatest attraction for people directing simulated reconnaissance missions. Is
there greater interest in finding and mapping the highest peaks or are regions of high variability
in the field strength of greater interest?

In any setting in which human decisions in the exploration of unknown fields are studied, it will
be important to understand how acquired information provides cues regarding what to explore
next. We have explored the way in which knowledge of the field’s topological characteristics
seems to inform next steps in the reconnaissance. Decision makers may be sensitive to other
types of features as well, and research is needed to understand which characteristics of field
variability will be most important in guiding a human mission director.

A significant area that is open for future research is temporally varying fields—such as would
be used to model a chemical cloud undergoing both diffusion and convection in the atmosphere.
Nothing is currently known about the time variation of critical level sets or the partition entropies
that we have studied. Moreover, in terms of decision making, time variation raises an entirely
new set of questions for future study.

Yet another question for the future is to understand how the reconnaissance of an known
field should be carried out most effectively when multiple sensor-equipped robotic agents are
available. The question is of special interest in the case in which the field is either spatially or
temporally varying, but it is of interest in the stationary case as will.

We conclude by saying that the research presented in this paper has raised more questions than
it has answered. At this point our only definitive conclusion is that the process of information
acquisition in the exploration of unknown fields is worthy of further study.
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