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A Motion Description Language for Robotic

Reconnaissance of Unknown Fields

Dimitar Baronov and John Baillieul

Abstract

In this paper, we present two motion primitives that allow a mobile sensor to explore the features

of an unknown scalar field. The first motion primitive is designed to follow and to map level contours

(contours with constant value of the field). The second one steers the sensor to ascend or alternatively

descend the field gradient and, as a result, to localize its extremum points. Both of these primitives

are defined in terms of the geometric characteristics of the potential function and their performance

is analyzed for different ranges of the parameters describing the geometry. The two motion primitives

constitute a suitable library for rapid information acquisition aimed at the mapping of unknown fields.

The motion control primitives developed bellow will provide the foundation of a theory of control for

information acquisition in the exploration of unknown fields by means of mobile point sensors. This

theory is treated in a companion paper.

I. INTRODUCTION

For many decades, there has been a notable level of interest in the relationship between control

and other areas of information science and engineering. We refer to the compilations [1], [2], and

[3] for accounts of some of the directions in which this research has evolved. Broadly speaking,

information based control has historically been focused on the role of information in game and

team theory strategies (see, e.g., [14], [21]), spatio-temporal patterns of information that occur

in sensor localization, consensus, and multi-agent formation control (see the papers on graph

This work was supported by ODDR&E MURI10 Program Grant Number N00014-10-1-0952, by ODDR&E MURI07 Program

Grant Number FA9550-07-1-0528, by the National Science Foundation ITR Program Grant Number DMI-0330171, all to Boston

University.

D. Baronov and J. Baillieul are with the Department of Mechanical Engineering, Boston University, Boston, MA, 02215.

{baronov,johnb}@bu.edu

DRAFT

To appear: European Journal of Control, 2011.



2

theoretic methods in [1], [2], and [3]), and feedback control using data-rate limited feedback

channels (for which we refer to [34], [29], [33], and [24]). The research presented bellow, in

conjunction with a companion paper [13], presents results that are aimed at establishing a theory

of control for information acquisition. More specifically, this paper introduces a small family of

mission specific motion control primitives that are aimed at steering mobile point sensors using

sensed environmental data while at the same time storing the data so as to construct maximally

descriptive maps of the environment. The application of these control laws and the related

reconnaissance strategies (as detailed in [13]) are aimed at efficient information acquisition

regarding unknown scalar fields. While there is now a considerable literature regarding control

of mobile sensors (which we briefly review below), the novelty of the control laws presented here

and their use in the reconnaissance strategies of [13] is the explicit quantification of information

and the notion of optimal climbing of information gradients.

The literature on exploration of unknown fields by mobile robotic sensors provides the context

for the research described in this paper. (See, for instance, [10], [11], [36], [23], [18], [17], and

[28].) A common theme in prior work is the exploration of unknown environments that are

abstracted by scalar potential fields by using sensors with limited sensing range. The application

of this type of search is almost universal, from environmental monitoring [23], where such

quantities as species density, radioactivity, and so forth can only be measured at the position of

the sensor, to the nano-scale imaging [9], where the main tool is the Scanning Probe Microscope,

which acquires an image by scanning a point probe over a path on a sample. In general,

algorithms that aim to efficiently acquire information about unknown potential fields can be

called non-raster scan techniques—the main idea being that the raster scan, as the baseline

solution to the problem, is also the most inefficient. Reference [5] provides a survey on several

such approaches. We also note that the approach to exploration of unknown fields described in

[13] offers a new perspective on the use of information metrics in adaptive sensing along the

lines described in [31].

In this paper, we present control laws that allow a sensor carrying mechanism (vehicle, probe,

etc.) to ascend (or equivalently descend) a potential surface, or to track level sets with a constant

potential value. Such control laws enable a mobile sensor to map specific features of the potential

field (isolines and extrema). A defining feature of these control laws is that they rely on the

interaction between the moving sensor and sensed measurements of the unknown environment,
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and therefore we designate them as reactive motion primitives. Part of the work in this paper has

appeared in our previous papers [10] and [11]. Here, we extend this work to present a unified

library of control laws that can provide the building blocks for complex strategies for monitoring

and exploring potential fields, such as the ones presented in [8], [12], and a major companion

paper [13].

We will distinguish between two different types of methods for designing reactive search

motion primitives–methods that rely on a single sensor and methods that rely on an array

of sensors. The second type is represented by the work in [36], [30], [37]. Reactive control

algorithms for mobile sensor arrays are typically aimed at maintaining configurations that provide

array data to estimate the field’s geometric characteristics, e.g., gradient directions and curvature.

The motion objectives are achieved by the agents being guided by two separate control laws–a

shape control that keeps them in a rigid formation, and a reactive control, that allows them either

to track a level set [36], [37], or move in the direction of the gradient [30].

The utilization of a single mobile platform equipped with a single sensor comes with the

limitation of not being able to instantaneously estimate the gradient or any other higher-order

characteristic of the potential surface. As is often the case, nature has found a way around this

limitation. Through the process of chemotaxis, bacteria can navigate towards higher concen-

trations of oxygen, minerals or organic nutrients. E-coli, for instance, utilize a sensing-enabled

protocol employing the alternation of two primitives–tumble in place and swim in straight line. If

the bacterium perceives the concentration of food (L-Aspartate being a fovorite) as increasing,

there is a higher probability to move forward, and if the potential is not changing, a higher

probability to tumble in place [4]. In the robotic search realm, examples of strategies resembling

or inspired by this behavior are [28], [19].

The control laws investigated in the current paper are within the single-mechanism-single-

sensor framework. In comparison with the algorithms that use multiple moving sensors, we

present a more parsimonious use of resources. An important feature of the work is a framework

within which the performance of the control laws can be specified in terms of the geometric

parameters of the potential surface. This framework requires the introduction of nonholonomic

constraints in the kinematics of the mobile sensor carrier, a beneficial side effect that allows

for easier real-life implementation. References [15], [16] also present control laws for reactive

search with a nonholonomic vehicle, but the control laws there are time dependent. They apply
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periodic perturbations to the steering rate, whereas the control laws discussed in this paper lead

to smoother trajectories.

The contribution of the current work in comparison to our previous papers [10], [11] is an

analysis of the control laws that establishes their applicability to a broader range of geometric

parameters of the potential surface. Indeed, the implementation of the control laws explicitly

involves curvature invariants of the unknown potential field. From this geometry, a precise

understanding of the way the speed of the sensor carrying mechanism affects its performance

can be achieved.

Although, this work deals with idealized sensor information, we note that the general setup,

which treats unknown geometric parameters as perturbations, can easily incorporate sensor noise.

We reserve this analysis for future work, and in this paper we focus on the fundamental principles

that guide the design of feedback motion controls for exploring unknown potential fields.

We conclude this introduction with remarks about the broader research context into which the

results of this paper fit and about the paper’s title. Some time ago we became interested in the

theoretical foundations of decision making in exploration and reconnaissance tasks. Within this

large research domain, our focus has been on the reconnaissance of unknown scalar fields. In a

companion paper [13], we have proposed strategies of exploration with sensor-equipped mobile

robots that can be shown to efficiently acquire information about unknown scalar fields defined

on planar domains. It is precisely the control laws described below that enable implementation

of these strategies.

Finally, a word of explanation regarding the title is in order. It might seem strange that a mere

two motion primitives should constitute the building blocks of a motion description language

(MDL) in the sense that Manikonda et al. ([26]) write about MDL’s. Nevertheless, it is shown in

[13] that the set of complex motions that are realizable as alternating concatenations of our two

motion primitives is rich enough to be used to completely specify a wide class of reconnaissance

missions. Thus, while our motion description language uses only a two letter alphabet, it has

sufficient expressive power to be useful in defining all motion strategies within a class that is

of practical importance. This stands in sharp contrast to other problem settings in which it is

challenging to determine whether a set of motion primitives can be used create all motion plans

that are of interest. We refer to [26] for more information.

The paper is organized as follows. In the next section, we present the design framework for
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the control laws, and in sections III and IV, we present respectively the control laws for isoline

following and gradient ascending/descending.

II. REACTIVE POTENTIAL FIELD EXPLORATION

For what follows, we will assume that the mobile sensor motion is contained in a connected,

and simply connected domain X ⊂ R2, further referred to as the search domain. The potential

function, f : X → R, r 7→ f(r), associated with the search domain abstracts the environment

that the mobile sensor aims to explore. Naturally, we will impose mild regularity conditions

on this function to prevent pathological behavior that would otherwise complicate the current

discussion. To this end, we shall assume that this function is a Morse function within X . This

implies that f(r) has non-degenerate critical points, one consequence of which is that its critical

points are isolated. (See [27] for a proof of this property.) Hence, there will be no areas for

which the potential surface is flat, and therefore, we can rely on our control laws to be informed

by the local changes of the potential field.

In the work that follows, a single sensor-equipped mechanism is evaluating a scalar function

f(·) at a single point. Hence, the observations are given by Y (t) = f(r(t)), which is the value

of the scalar potential measured at the position of the mobile sensor, r(t) ∈ R2. (The trajectory,

r(t), is specified with respect to a fixed Cartesian coordinate frame.)

The general model for the resultant system is given by:

ṙ = u, (1)

Y = f(r(t)); (2)

that is, the potential function can be thought of as a nonlinear observation function of sensed

values along the trajectory of the mobile sensor. Note that at this point in the development, we

are modeling the sensor carrying mechanism as a point with unconstrained motion in the plane.

A feedback control that maps the output, Y (t), directly to a control input, u(t), will be called

a reactive control law. Moving under such a control law, the sensor harvests information about

the environment (the spatial distribution of f(r)) by controlling its trajectory solely based on the

measurements it acquires. The underlying premise of the control designs below is that both the

control objective and the control realization are expressed in terms of the sensor reading Y (t).

One example is keeping the output such that Y (t) =const, while maintaining nonzero speed,
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which makes the mobile sensor track a level set. Another example is steering the sensor such

that Y (t) is strictly increasing (or strictly decreasing), which leads to trajectories that ascend (or

descend) the potential surface. The use of such primitives allows the mechanism to map local

minima and maxima of the potential function. Inspired by the symbolic control literature, [26],

we will further refer to such control laws as motion primitives, the idea being that a library of

primitives can constitute a basis for search behaviors, as shown in [12].

A. Modeling framework for describing sensor-environment interaction

To formalize the objectives of the different motion primitives, one needs to define a framework

in which the evolution of the measurements, Y (t), is coupled explicitly to the motion of the

sensor carrying mechanism. This can be addressed through dropping the Cartesian coordinate

frame in favor of a nonlinear coordinate system defined by the geometry of the potential function.

The curvilinear coordinate system that we choose to work with has coordinate directions that

are aligned with and transverse to the level sets of f(r). The mild assumption of f being a

harmonic function—i.e. that there is a harmonic conjugate g : R2 → R satisfying:

∇g · [1, 0]T = ∇f · [0, − 1]T

∇g · [0, 1]T = ∇f · [1, 0]T ,

where ∇ represents the gradient operator, guarantees that {f, g} constitutes locally an orthogonal

coordinate system. The utilization of such a setup will allow us to treat the functions f(r) and

g(r) as local coordinate transformations from the Cartesian coordinate system, and thus, to

analyze the trajectory of the sensor in terms of [f̃(t), g̃(t)], where

f̃(t) = f(r(t))

g̃(t) = g(r(t)).

(Note that according to this definition and (2), it follows that f̃ = Y , and therefore in what

follows we will use them interchangeably.)

We note that the assumption of f being a harmonic function is not actually needed. Its main

purpose is to define the curvilinear coordinates, {f̃ , g̃}, as a local alternative to r. However, in

the convergence analysis of the control law only the f̃ coordinate will be used. Therefore, the
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harmonic assumption can be viewed as nothing more than a convenient tool to illustrate the

motion primitives objectives, and it does not affect their practical implementation.

Directly from (1), the equations of motion of the mobile sensor in the new coordinate frame

yield:

˙̃f = ∇f · ṙ = ∇f · u (3)

˙̃g = ∇g · ṙ = ∇g · u.

We further show that in the new coordinate frame, {f̃ , g̃}, the equations of motion explicitly

involve such geometric invariants as curvature. Thus, the performance of a motion primitive can

be defined in terms of intuitive, physical properties of the unknown potential surface.

We denote the magnitude of the gradient by:

M = ‖∇f‖,

and the angle between the tangent to an isoline and the x axis of the Cartesian coordinate frame

as α.

Fig. 1. The motion of the sensor in Cartesian and curvilinear coordinates. The depicted angles are as follows: θ corresponds to

the heading of the vehicle relative to a fixed Cartesian coordinate frame; α corresponds to the angle between the tangent vector

of a particular level set, f = const, at the position of the sensor and the x axis of the same coordinate frame; and φ = θ − α

corresponds to the angle between the tangent vector and the velocity of the vehicle.

The notation is depicted in Fig. 1, where it should be noted that in terms of α and M ,

∇f = M [sinα,− cosα]T ,

DRAFT



8

and

∇g = M [cosα, sinα]T ,

and hence equation (3) can be rewritten as ˙̃f

˙̃g

 = M

 sinα − cosα

cosα sinα

u. (4)

On the other hand, on the trajectory of the sensor, α evolves according to

α̇ = ∇α · ṙ

=

 (∂ sinα
∂x
− ∂ cosα

∂y
) cosα− (∂ cosα

∂x
+ ∂ sinα

∂y
) sinα

(∂ sinα
∂x
− ∂ cosα

∂y
) sinα + (∂ cosα

∂x
+ ∂ sinα

∂y
) cosα

T u (5)

=

 κf cosα− κg sinα

κf sinα + κg cosα

T u, (6)

where {x, y} are the coordinates of the employed Cartesian system, and the divergence of the

unit normal vectors to the isolines and the gradient lines are replaced with

κf = ∇ ·
(
∇f
‖∇f‖

)
(7)

κg = ∇ ·
(
∇g
‖∇g‖

)
, (8)

which correspond to the curvatures of the contours f(r) = const and g(r) = const evaluated at

the position of the sensor. (See [32] for information on level contours and their curvatures.)

The parameters κf and κg will have a closed form representation only for special potential

functions. E.g., if the potential function is radial, there exists a choice of a point ro and a function

of a scalar variable F : R → R such that f(r) = F (‖r − ro‖), for r ∈ X . The two curvatures

then satisfy:

κ̇f = ±κ2
f

 sinα

− cosα

T u (9)

and

κg = 0,

where the sign in (9) depends on the sign of ∂F
∂r

, r = ‖r− ro‖.
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B. General control strategies

The system described by (4) and (5) has three unobservable parameters—the curvatures κf and

κg, and the magnitude of the gradient, M . The estimation of these parameters, that are second

and third order characteristics of the potential surface geometry, requires the sampling of the field

at at least three non-collinear points. If the mobile entity relies on an array of sensors as in [36],

[30], the control can explicitly implement such an observer. In the current set-up, however, an

explicit estimation will require trajectories that allow the sensor carrying mechanism to utilize

a single sensor in achieving this by sampling the field at enough points. Instead of relying

on the estimation of these parameters, in what follows, we choose to treat them as unknown

disturbances, so as to design strategies that can perform well given that the disturbances are

bounded. We note that in neighborhoods of the critical points, such an assumptions will be

invalid, which will become apparent in the analysis that follows.

In terms of the observation, Y (t) = f(r(t)), the objectives of the different motion primitives

can be specified as follows.

Isoline Following-given a fixed potential value, fd, and non-zero speed, ‖u‖ > ε > 0, steer

the sensor carrying mechanism such that

|Y (t)− fd| = 0, ∀t > t∗, (10)

which equivalently can be interpreted as the sensor mapping a connected level set.

Gradient Ascend/Descend- for a neighborhood Ω ⊆ X , that does not contain critical points,

achieve
dY (t)

dt
= M‖u‖,∀r(t) ∈ Ω, (11)

or alternatively
dY (t)

dt
= −M‖u‖,∀r(t) ∈ Ω, (12)

with non-zero speed, ‖u‖ > ε > 0, which will make the sensor follow the gradient and

respectively either ascend or descend the potential surface.

We will further refer to these specifications as the idealized performance of the motion prim-

itives. Because the variables κf , κg, and M are unknown, achieving such idealized performance

will be challenging. Our approach will be to describe the system in terms of a nominal base

and added perturbation terms. Given no perturbations, we would expect the control law to steer
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the system such that it performs exactly according to the specifications, and given bounded

perturbations, such that it achieves performance that is within a neighborhood around the ideal

one.

We define the control u as:

u = v[cos θ, sin θ]T , (13)

where θ is the angle of ṙ relative to the x axes of the Cartesian coordinate system, and v is the

speed

v = ‖u‖.

Accordingly, we can also define the heading of the sensor carrying mechanism relative to the f̃

coordinate of the nonlinear coordinate system, {f̃ , g̃}, as φ, where it can be observed in Fig. 1

that

φ = θ − α.

Substituting (13) in (4) and (5) and exploiting some elementary trigonometric identities then

yields:  ˙̃f

φ̇

 =

 −vM sinφ

θ̇ − vκf cosφ− vκg sinφ

 . (14)

This can be rewritten as ˙̃f

φ̇

 =

 −vM̄ sinφ

θ̇

+

 v
(
M̄ −M

)
sinφ

−vκf cosφ− vκg sinφ

 .
Assuming that M̄ is a known bound on the magnitude of the gradient within the area the

sensor moves (M̄ ≤M ), the first vector of this equation will correspond to the nominal system

and the second vector to the perturbations. In terms of (14), isoline following, (10), will be

equivalent to the system being stabilized to an equilibrium

{f̃ = fd, φ = 0}; (15)

that is the sensor carrying mechanism moves on the contour f(r) = fd. The descending/ascending

control (respectively (11) and (12)), on the other hand, will correspond to the system converging

to a manifold

φ =
π

2
(16)
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or

φ = 3
π

2
. (17)

In the next two sections, equation (14) will be used to define two different control laws and to

analyze their convergence properties. These control laws will accomplish the motion primitives

specifications. This analysis will be performed with respect to different geometric parameters of

the potential field, which will establish the applicability of these feedback routines in various

scales and scenarios.

To conclude this section, we note that in the proposed control setup represented by (14),

the control action appears as the steering rate θ̇ and the speed v. Going back to the Cartesian

coordinate system, this translates to the sensor being driven by,

ṙ = v

 cos θ

sin θ

 (18)

θ̇ = ω.

In other words, in the pursuit of splitting the system into a nominal and a perturbed part, we

have effectively introduced nonholonomic constraints. In what follows, we will treat the speed,

v, as fixed, and hence, the feedback control law will be implemented via the steering, ω.

III. ISOLINE FOLLOWING

As discussed in the previous section, isoline following corresponds to stabilizing (14) to

{f̃ = fd, φ = 0}, with a finite non-zero speed, where fd is the desired potential level to be

followed. Thus, the sensor is controlled such that its position coincides with the chosen level

set, while its velocity is tangent to it. Usually, in the generic scenario, a control law for contour

following utilizes the curvature of the contour, e.g., [25], [20], [35]. In our set-up, however,

the curvature is unknown (and treated as a disturbance), and therefore it is natural to expect

that such exact following will be impossible. Instead, we will aim at steering and confining the

sensor to a neighborhood: √
(Y (t)− fd)2 + φ2 ≤ c, (19)

where 0 < c < π
2

is an arbitrarily chosen constant, and Y (t), as in (2), is the potential measured

at the position of the sensor.
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Fig. 2. Following an isoline within a neighborhood in curvilinear coordinates.

Fig. 2 illustrates the appearance of this neighborhood in Cartesian coordinates. The possible

trajectories that yield (19) are restricted to a band around the desired isoline contour and since

|φ| < π
2

the associated velocities will be always pointing in a positive direction relative to the

tangent vector of a neighboring level set, thus traversing the band along the desired contour.

Our aim is to show that given finite disturbances (M , κf , and κg), a constant speed, v, can

be prescribed such that an appropriately defined feedback control maintains the motion of the

sensor within an arbitrary small tubular neighborhood of the above form.

The control law that we propose to achieve this objective is

ω =
K1

v
(Y − fd) +

K2

v
∇f · ṙ, (20)

where K1, K2, and v are constants that have to be chosen with respect to the geometry of the

potential function.

The term ∇f · ṙ is the directional derivative of the potential field along the trajectory of

the sensor, which in the curvilinear coordinates yields ˙̃f = −vM sinφ. In general, it can be

estimated by a differentiation filter from the measurement, Y (t). However, if this control law is

applied directly to the heading, θ, we have

θ(t) =

∫ t

0

ω(τ)dτ =
K1

v

∫ t

0

(
(Y (τ)− fd) +

K2

v
˙̃f(τ)

)
dτ

=
K1

v

∫ t

0

(Y (τ)− fd)dτ +
K2

v
Y (t), (21)

and the estimation of the derivative is not needed. In the analysis that follows, we will find it

convenient to use the form given by (20).
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The next theorem shows a general stability result that will be further applied to establish that

the proposed control law steers the system to a neighborhood of the form shown on Fig. 2.

Theorem 1: [22] Take the system ẋ = h(x), and let V (x) be a continuously differentiable

function such that

c1||x||2 ≤ V (x) ≤ c2||x||2,

and
∂V

∂x
h(x) < −W (x) ≤ 0, ∀x s.t. β ≥ ||x|| ≥ ν > 0

where c1, c2, and β are positive constants, and W (x) is a continuous positive definite function.

Suppose that

ν <

√
c1

c2

β. (22)

Then for every initial state x(t0) satisfying ‖x‖ ≤
√

c1
c2
β, there is T ≥ 0 such that the solution

of the system ẋ = h(x) satisfies

‖x(t)‖ ≤
√
c2

c1

ν,∀t ≥ t0 + T. (23)

Applying this theorem to the system described by (14) and controlled by (20) yields the

following result.

Theorem 2: Define θ̇ = ω, where ω is given by (20), for the system described by (14). Suppose

that in an arbitrary connected neighborhood {r : |f(r)−fd| < c} the geometric parameters satisfy

M > M̄ , |κf | < κ̄f , and |κg| < κ̄g, for some positive constants M̄ , κ̄f , and κ̄g. Then, given any

c satisfying 0 < c < π
2
, there exists a choice of control parameters (K1, K2, and v) for which

the system is contained within √
(Y (t)− fd)2 + φ(t)2 ≤ c.

Proof: We begin by introducing a change of variables, x1 = f̃−fd
v

, x2 = φ. Transforming

(14) accordingly yields:

ẋ1 = −M sinx2

ẋ2 = K1x1 −K2M sinx2 − vκf cosx2 − vκg sinx2.

The candidate Lyapunov function is given by:

V (x1, x2) = x2
1 − x1x2 + 2(1− cos(x2)).
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It can be shown that in the interval x2 ∈
[
−π

2
, π

2

]
the following relationship holds

x2
2

2
≤ 2(1− cos(x2)) ≤ x2

2.

Therefore

V (x1, x2) ≥ x2
1 − x1x2 +

1

2
x2

2 ≥ c1

(
x2

1 + x2
2

)
, (24)

and

V (x1, x2) ≤ x2
1 − x1x2 + x2

2 ≤ c2

(
x2

1 + x2
2

)
, (25)

where

c1 =
3−
√

5

4

c2 =
3

2
.

The derivative of the Lyapunov function can be written as:

V̇ (x1, x2) = −xTPx + vRx,

where x = {x1, x2}, and P and R are respectively defined as:

P =

 K1 − sinx2
x2

(
M
(

1
2
K2 − 1

)
+K1

)
− sinx2

x2

(
M
(

1
2
K2 − 1

)
+K1

)
M
(

2K2 − x2
sinx2

)(
sinx2
x2

)2

 ,
and

R = (κf cosx2 + κg sinx2)
[

1 −2 sinx2
x2

]
.

It is important to note that:

lim
x2→0

x2

sinx2

= 1,

and x2
sinx2

∈ [1, π
2
] for x2 ∈

[
−π

2
, π

2

]
. Therefore, by arbitrarily choosing K2 = 2, P can be made

positive definite by choosing K1 such that

K1 < M̄
(

4− π

2

)
< M

(
4− x2

sinx2

)
,

where M̄ ≤M .

Once P is made positive definite, taking into account that

0 <
sinx2

x2

≤ 1, x2 ∈
[
−π

2
,
π

2

]
,
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the derivative of the Lyapunov function yields

V̇ (x1, x2) ≤ −λmin(P )‖x‖2 + v
√

3
(
κ2
f + κ2

g

)
‖x‖, ‖x‖ ≤ π

2

where λmin(P ) is the minimum eigenvalue of P for x2 ∈
[
−π

2
, π

2

]
.

We define b as:

b =

√√√√√3
(
κ2
f + κ2

g

)
λmin(P )

,

and as long as
√
vb < π

2
, it follows that V̇ < 0 for all ‖x‖ in the set

√
vb ≤ ‖x‖ ≤ π

2
. According

to Thm. 1, this will imply that the system is contained within the ball:

‖x‖ ≤
√
c2

c1

√
vb,

where in addition

min

[
1

v
, 1

]√
(Y − fd)2 + φ2 ≤ ‖x‖.

Therefore, √
(Y − fd)2 + φ2 ≤ max[v, 1]

√
c2

c1

√
vb,

which implies that by appropriately choosing v, we can contain the system within any neigh-

borhood chosen according to (19).

The effects of the potential function’s geometry on the performance of the control law can be

better understood through dividing the geometric parameters into two categories, vanishing and

non-vanishing perturbations. The vanishing perturbations are the ones that vanish at the targeted

manifold {f = fd, φ = 0}, and in (14) they are represented by M̄ −M and κg, since they do

not affect the system at φ = 0. The non-vanishing perturbation is the curvature of the isoline,

κf , since the term vκf cosφ affects the system even when its trajectory evolves on the targeted

manifold. The next corollary establishes that κf 6= 0 introduces a steady-state bias to the tracking

of the isoline contour.

Corollary 1: Let the scalar potential function f : X → R be a radial function, i.e. there exist

a function F (‖r‖) such that f(r) = F (‖r‖), and let the control law be given by (20). Then,

for every choice of speed v > 0, there is a choice of control gains, K1 and K2, such that there

exists a neighborhood of initial conditions for which the system satisfies

lim
t→∞

(
K1

v
(Y (t)− fd)− vκf

)
= 0

lim
t→∞

φ(t) = 0.
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Proof: We first assume an appropriately chosen origin of the Cartesian coordinate frame

such that the potential function can be represented in terms of a function of a scalar variable,

f(r) = F (r), where r = ‖r‖. It follows that the equilibrium that has to be proven stable satisfies

K1

v
(F (r)− fd)− vκf = 0. (26)

or in other words the systems should converge to a level set which is a solution of the equation:

F (r) = fd + v2 κf
K1

.

Here we will let r∗ be a point such that r∗ = ‖r∗‖ solves (26).

Note here that it can be shown that if F ′(r) > 0, κf = 1
r

and κf = −1
r

otherwise. Therefore,

the term v2 κf
K1

acts to reduce the curvature of the level set that the sensor follows, and moreover

r∗ is a unique solution of (26). These observations motivate the following candidate Lyapunov

function

V (f̃ , φ) =

∫ f̃

f(r∗)

1

vM

(
K1

v
(y − fd)− vκf

)
dy + (1− cos(φ)).

Since r∗ is unique, this function is a positive definite function for φ =
[
−π

2
, π

2

]
. Therefore, the

convergence properties proved as a result of applying this candidate Lyapunov function will hold

for a neighborhood V (f̃ , φ) ≤ 1.

From the fact that f is radial, it follows that both M and κf can be represented solely as

functions of the potential value at the position of the sensor. Therefore the derivative yields

V̇ (f̃ , φ) = −K2M sin2 φ+ vκf (1− cosφ) sinφ ≤ − (K2M − v |κf |) sin2 φ,

and by choosing:

K2 ≥
v|κf |
M

,

we can guarantee that V̇ ≤ 0. The LaSalle invariance principal [22], on the other hand, establishes

that under this condition the equilibrium point is asymptotically stable.

A Simulated Example: We do not yet have a complete understanding of feedback designs

for optimal performance of control laws of the form (20). Experience with both simulations and

laboratory implementations indicates that there are wide ranges of gain parameters K1 and K2

such that the control law (20) steers the vehicle rapidly into a small neighborhood surrounding

the desired isoline. In order to illustrate the above discussion regarding steady-state bias and the

interpretation of high curvature as a disturbance, we have deliberately sought gain parameters
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that are mistuned so as to cause noticeable deviations from the prescribed isoline path. Thus,

Fig. 3 illustrates the effect of the curvature on the tracking error. It can be clearly observed how

Y (t)− fd changes sign as the curvature changes from negative to positive.

Fig. 3. An example of applying the control law given by (20) for following an isoline contour that has varying curvature sign.

IV. DESCEND/ASCEND

Without loss of generality, in this section we will consider only an ascending motion primitive.

The case of a descending motion primitive has a completely analogous treatment.

An optimal ascend control should guide the sensor such that it follows the gradient—the

steepest path on the potential surface. In this case, the ascend rate is

∇f · ṙ = vM,

but since we do not have explicit knowledge of the gradient vector, our goal will be to steer

the sensor carrying mechanism such that it ascends the potential surface with rate that exceeds

a lower bound. As in the isoline following control law, this performance will be conditioned on

the geometric parameters (treated as disturbances) being bounded. However, since an ascending

path will lead to a local extremum, there is some neighborhood of the critical point at which the

perturbations will fail to satisfy the assumption. Hence, we pursue a control law that can steer
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the sensor carrying mechanism to a bounded ascend rate in finite time, and maintain this rate

as long as the perturbations are within the assumed bounds. As a result, it will be shown that

the sensor will ascend the potential surface until it reaches a neighborhood of a critical point.

The proposed control law to accomplish this task is

ω = K1(1−K2∇f · ṙ). (27)

As in the previous section, ∇f · ṙ can be either numerically estimated from the measurements,

Y (t) = f(r(t)), or the control law can be directly applied to the heading of the sensor, θ. (See

(21).) Again, we will find it advantageous to analyze the control law from the perspective that

it steers the sensor through ω = θ̇.

The next theorem establishes that (27) will guide the sensor such that it reaches and maintains

the desired ascend rate. The implications of this theorem in terms of geometric features of the

potential surface are presented as separate corollaries.

Theorem 3: Let a connected set Ω ⊆ X satisfy:

M > M̄, |κf | ≤ κ̄f , |κg| ≤ κ̄g,∀r ∈ Ω,

for some positive constants M̄, κ̄f , and κ̄g. (Note that M > M̄ > 0 implies that there are no local

extremum points (min,max) in Ω.) Suppose that under the control (27) the system described

in {f̃ , φ} space by (14), and in Cartesian coordinates by (18) is initialized with r(0) = r0 and

φ(0) = φ0 such that

φ0 /∈
(

3π

2
, 2π

)
,

and such that the ball Bδ = {r ∈ R2 : ‖r− r0‖ < δ} satisfies

Bδ ⊂ Ω,

for some arbitrarily small δ.

Then, there is a choice of gains, K1 and K2, for which there exists a time T ≥ 0 such that

r(t) ∈ Bδ ∀t ∈ [0, T ],

and

∇f |r(t) · ṙ(t) ≥ βvM̄, ∀t ≥ T provided r(t) ∈ Ω, (28)

where 0 < β < 1 is an arbitrary constant.
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Proof: From (14), ∇f · ṙ satisfying (28) yields:

βM̄ ≤ −M sinφ,

which is equivalent to:

sin−1 βM̄

M
+ π ≤ φ ≤ 2π − sin−1 βM̄

M
,

which we will equivalently denote as:

φ∗a ≤ φ ≤ φ∗b .

Fig. 4 depicts the domain where the bounded ascent rate is satisfied in the {f̃ , φ} phase plane.

The rest of the proof will focus on showing that the trajectory reaches this domain in finite time,

and stays there as long as the theorem conditions are satisfied. Specifically, we will choose

K2 =
1

vM̄

(
1 +

vκ̄g
K1

)
, (29)

and will show that there exist values for the gain K1 such that φ is contained within a trapping

region,
[
φ∗a,

3π
2

]
and such that this this trapping region is attracting for all φ ∈ [0, φ∗a]. (See Fig.

4 for an illustration of this conjecture in terms of the general directions of the vector field in

the {f̃ , φ} phase plane.)

f̃

Fig. 4. The sign of φ̇ as function of φ. The changes of sign occur at points φ1 ∈
[
φ∗
a,

3π
2

]
and φ2 ∈

[
3π
2
, 0
]
, which are not

depicted in the figure.

Substituting φ = 3π
2

and K2 from (29) in the second equation of (14) yields

φ̇ = K1

(
1− M

M̄

)
− vκ̄g + vκg < 0.
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On the other hand, setting φ = φ∗a yields

φ̇ = K1(1− β)− vβκ̄g − vκf cos
βM̄

M
− vκg sin

βM̄

M

> K1(1− β)− v
(
βκ̄g +

√
κ̄2
g + κ̄2

f

)
,

an inequality which also holds for φ ∈ [0, φ∗a]. Since β < 1, K1 can be chosen large enough to

make this expression satisfy φ̇ > 0. In this case, starting from any initial position φ0 ∈ [0, φ∗a], a

bound on the time for which the sensor will reach the trapping region (and start climbing with

a bounded rate) is given by:

T < |φ∗ − φ0|
/

inf
φ∈[−2π,φ∗]

[
φ̇
]

<
φ∗ − φ0

K1(1− β)− v
(
βκ̄g +

√
κ̄2
g + κ̄2

f

) .
Since T → 0 as K1 →∞, the gain K1 provides a control over the time that it takes the sensor to

converge to the desired bounded ascend rate. On the other hand, if φ0 is in the trapping region,

the bounded ascend rate will be achieved for T = 0. (See Fig. 4 for an illustration of this proof.)

This theorem establishes that if the geometric parameters are bounded, the sensor can achieve

a bounded ascend rate in an arbitrarily small neighborhood from its starting position, and stably

maintain this rate as long as this condition is satisfied. To further establish the implication of

this behavior, we will consider the trajectories that evolve in simply connected domains of the

type X = {r ∈ R2 : f(r) ≥ a} that contain only a single local maximum, r∗. The fact that f is

a Morse function will imply that the only singularity of the field is at r∗ and that, excluding an

arbitrary small neighborhood around this extremum point, one can always find a subset of the

search domain that has well behaved geometric parameters.

Corollary 2: Let a Morse function f : X → [a, b] ⊂ R satisfy f |∂X = a, where ∂X is the

boundary of the search domain. (That is, we assume that the boundary ∂X is a level set of f .)

Assume that f(r) has a single extremum point within the search domain, f(r∗) = b. Then, for

all choices of constants c, d such that a < c < d < b, we can find gains K1 and K2 for the

control law given by (27) such that for initial conditions:

r0 ∈ {r ∈ X : c ≤ f(r) ≤ d},
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Fig. 5. An example trajectory illustrating the proof of Corollary 2

the system satisfies

r(t) ∈ X, ∀t > 0

with associated time T ,

f(r(t)) ≥ d, ∀t > T.

Proof: First, choose a positive constant δ such that a ≤ c− δ and b > d+ δ. Since the only

singularity is at f(r∗) = b, we can find positive constants κ̄f , κ̄g, and M̄ such that

κ̄f ≥ sup
r∈D
|κf |

κ̄g ≥ sup
r∈D
|κg|

M̄ < inf
r∈D

M,

where D is the annulus

D = {r ∈ X : c− δ ≤ f(r) ≤ d+ δ}.

From Theorem 3, by choosing K2 according to (29), we can guarantee that under sufficiently

large K1 the system will be a) climbing with a rate that is bounded from bellow in D; and b)

it cannot descend more than δ units before starting to ascend again. This proof is illustrated in

Fig. 5.
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We proceed to illustrate the properties of the control law by imposing additional assumptions

on the potential function. We further show that under curtain geometries of the potential surface,

the trajectory of the sensor carrying mechanism can be shown to converge to a limit cycle around

the extremum point.

Corollary 3: Let f(r) be a radial function, i.e. f(r) = F (‖r−r∗‖), where r∗ is the coordinate

of the maximum, and choose the gain K2 of (27) to be

K2 =
1

vM̄
. (30)

Then, if M ≥ M̄ for all r such that ‖r− r∗‖ ≥ v
K1

, the trajectory of the system satisfies:

lim
t→∞
‖r(t)− r∗‖ → v

K1

(31)

∀r0 such that ‖r0 − r∗‖ > v
K1

, and ∀φ0.

Proof: The proof proceeds as follows: first, we use a change of coordinates (f̃ → r), where

r = ‖r− r∗‖; then, we establish a trapping region for the trajectory as in the previous theorem;

and finally, we use a Lyapunov function defined for a subset of the trapping region to show that

the trajectory converges to the implied equilibrium point.

The parameter κf corresponds to curvature, and given the particular radial potential function,

i.e. F ′(r) < 0, it yields

κf = −1

r
.

Therefore,

ṙ = sinφ (32)

φ̇ = K1

(
1 +

M

M̄
sinφ

)
+

1

r
cosφ,

where without loss of generality, we have set v = 1, and also set K2 = 1
M̄

in the control law of

(27).

Equation (31) implies that the trajectory of (32) should converge to r = 1
K1

, and it can be

verified that {r = 1
K1
, φ = π} is a fixed point for (32).

Now consider Fig. 6, and more specifically the lines denoted by 1 and 3, which correspond

respectively to φ = π and φ = 3π
2

for r ≥ 1
K1

. On these lines, it can be easily verified that

respectively φ̇ > 0 and φ̇ < 0. Therefore, the segment φ ∈
[
π, 3π

2

]
, r ≥ 1

K1
, can be viewed as
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Fig. 6. A trapping region for the system given by (32). The first boundary is a segment on the line φ = π, the second is a

level set, V (r, φ) = 1, of the function from (33), and the third is a segment of the line φ = 3π
2

.

an attracting trapping region, which, since ṙ < 0, the trajectory can leave only through the line

r = 1
K1

. Now consider the boundary denoted by 2 in Fig. 6 as

V (r, φ) = 1,

where V (r, φ) is a positive definite function for φ ∈
[
π
2
, 3π

2

]
given by:

V (r, φ) =
1

2
(rK1 − 1)2 + r(1 + cosφ), (33)

with V
(

1
K1
, π
)

= 0. We have shown that once φ ∈
[
π, 3π

2

]
, r ≥ 1

K1
, the trajectory will reach

the interior V (r, φ) ≤ 1. Taking, the derivative of V (r, φ) on the trajectory of (32) yields

V̇ (r, φ) = −rK1
M

M̄
sin2 φ < 0.

The LaSalle invariance principle then implies that once in the interior of V (r, φ) ≤ 1, the

trajectory converges to the desired equilibrium.

Fig. 7(a) illustrates the resultant trajectory of the sensor in the {r, φ} coordinate frame given

that the gain K2 satisfies (30). The trajectory converges to the point (r, φ) =
(

1
K1
, π
)

. Fig. 7(b),

on the other hand, shows the same trajectory in Cartesian coordinate frame.

A closer look at the proofs of the last two corollaries allows us to conclude the following

qualitative relations associated with the control gains, K1 and K2. The gain K1 determines the
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(a) A trajectory of the sensor carrying mechanism under the

ascending control law in {φ, r} space,

(b) and in the original, Cartesian coordinate system.

Fig. 7. Phase plot of the control law from Corollary 3 in Cartesian and in {φ, r} coordinates.

total turning rate at zero gradient (M = 0) and as such should be chosen according to the

curvatures of the isolines and the gradient lines. The higher are the curvatures the faster turning

rate is needed to suppress the perturbations that they cause. This can be clearly verified by

Corollary 3, where the gain K1 determines how close to the extremum point the mobile sensor

can converge, and respectively what is the maximum isoline curvature that the control law can

handle. The gain K2, on the other hand, depends on the minimum magnitude of the gradient. It

can be thought of as an amplification gain of the input signal, the input signal being the change

of the potential on the trajectory of the sensor. Therefore, the flatter the potential field is, the
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higher the gain K2 should be.

From a control design perspective, the gain K1 will be assigned depending on the minimum

turning radius of the mobile sensor, and on the desired terminal proximity between the sensor

and the extremum point. The choice of a value for the gain K2, on the other hand, will be driven

by the minimum value of the gradient of the field, and therefore will require some knowledge

of the underlying phenomenon.

(a) A trajectory of the sensor carrying mechanism under the

ascending control law in {φ, r} space,

(b) and in the original, Cartesian, coordinate system.

Fig. 8. Phase plot of the ascending control law with a small gain K2 in Cartesian and in {φ, r} coordinates.

Fig. 8 illustrates qualitatively the behavior of the mobile sensor, in the case that the gain K2

is small, and therefore the control cannot assure a uniform (stable) ascent. The trajectory of the
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sensor is shown in both cartesian coordinates and in {r, φ} coordinates. Although the sensor

does not monotonically climb the field, it still reaches a neighborhood of constant radius around

the maximum point.

V. CONCLUSIONS

The paper has described what we call reactive control laws. These are control laws that

rely on the interaction between a moving sensor and the sensed measurements that it makes

of an unknown environment. With applications to robotic reconnaissance and scanning probe

microscopy in mind, we have modeled unknown environments as scalar fields defined on planar

domains. The performance of control laws that we have proposed for exploring these unknown

fields has been shown to depend on geometric characteristics of the field—specifically certain

curvature parameters. Because the curvatures are a priori unknown, they are treated as distur-

bances, and the performance of the control laws has been shown to depend on the magnitude

of such disturbances. While the dependence of mobile sensor performance on the geometric

characteristics of the unknown field is conceptually attractive, the approach in which unknown

geometric parameters are treated as perturbations has the additional advantage that it can be

extended to treat sensor noise. It is noted that the controls described above are appropriate for

robotic vehicles with enough actuator authority to make kinematic control effective. In most

laboratory settings, this is almost always the case. For applications in which dynamic effects

need to be accounted for, the designs we have described would need to be further validated and

refined.

Previous work ([7], [6]) speaks in some detail about the challenges in designing sensor

based feedback control laws for nonholonomic robotic vehicles. While the gradient-climbing

and isoline-following controls presented above have been shown to be robust with respect to the

given design objectives, it is clear that control gains that are not well matched to the geometric

characteristics of the a priori unknown fields will result in degraded performance. Research on

control laws that adapt to acquired environmental information may provide increased efficiency

in the kinds of reconnaissance missions treated here and more broadly in [13]. A further area for

future research is sensor based control for exploration of non-stationary fields (such as would

occur with diffusing chemical contamination). For such problems, rates of change of the time-

varying field will need to be taken into account in controller design, and clearly the motion
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primitives we have discussed will need to be modified. The many open problems of this type

indicate that the development of new approaches to control for information acquisition has a

very rich future.
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