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Abstract 

This paper addresses the problem of automatically recognizing linguistically significant nonmanual expressions in American Sign 
Language from video. We develop a fully automatic system that is able to track facial expressions and head movements, and detect 
and recognize facial events continuously from video. The main contributions of the proposed framework are the following: (1) We 
have built a stochastic and adaptive ensemble of face trackers to address factors resulting in lost face track; (2) We combine 2D and 
3D deformable face models to warp input frames, thus correcting for any variation in facial appearance resulting from changes in 3D 
head pose; (3) We use a combination of geometric features and texture features extracted from a canonical frontal representation. 
The proposed new framework makes it possible to detect grammatically significant nonmanual expressions from continuous signing 
and to differentiate successfully among linguistically significant expressions that involve subtle differences in appearance. We 
present results that are based on the use of a dataset containing 330 sentences from videos that were collected and linguistically 
annotated at Boston University. 
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1. Introduction 

Signed languages used by the Deaf are manifested in the 
visual/gestural modality, but are full-fledged natural 
languages comparable in structure, organization, and 
complexity to spoken languages. Computer-based sign 
language recognition (SLR) offers promise for improving 
accessibility for the deaf, as well as for enabling efficient 
retrieval, annotation, and interpretation of sign language 
videos for research and a wide range of practical 
applications.  

However, challenges arise from linguistic 
components of signed languages that occur 
simultaneously. In parallel with the production of signs 
through movements of the hands and arms, critical 
linguistic information is expressed in signed languages 
through facial expressions and head gestures that occur 
in complex combinations and extend over differing 
phrasal, scopal domains (Baker & Cokely, 1980; 
Coulter, 1979; Liddell, 1980; Neidle et al., 2000; 
Padden, 1988). These nonmanual expressions involve 
such things as raised or lowered eyebrows, differing 
degrees of eye aperture, eye gaze, nose wrinkling, head 
tilts and periodic head movements (nods and shakes). 
Such facial expressions and head gestures combine in 
various ways to mark the grammatical status of 
propositions (e.g., questions of different types, negation, 
conditional/when clauses, relative clauses) or the 
information status of constituents (e.g., topic, focus). 
Identification and interpretation of expressions of this 
kind, essential to proper interpretation of the meanings 
of sentences, pose significant challenges for 
computer-based sign language recognition (Ong & 
Ranganath, 2005). 

In recent years, researchers have come to recognize 
the importance of nonmanual signals for 
computer-based sign language recognition (von Agris et 

al., 2008). Nonmanual expressions have been explored 
as an aid to the recognition of manual signs (Aran et al., 
2009; Ming & Ranganath, 2002; Sarkar et al., 2010). 
Other work has focused on the component parts of 
grammatical expressions, such as head gestures and 
eyebrow movements (Erdem & Sclaroff, 2002; Kelly et 
al., 2009; Lafferty et al., 2001; Xu et al., 2000).  
Accurate tracking of the facial landmarks is a key 

factor for estimation of nonmanual signals in a practical 
system. Although many models have been proposed for 
face tracking, such as Active Shape Models (Cootes et 
al., 1995) and Active Appearance Models (Cootes et al., 
2001), most of the existing methods target global shape 
optimization, and are sensitive to occlusions of the face. 
In practice, tracking facial landmarks and recognizing 
facial expressions and actions is still a challenging 
problem, and most of the research has been limited to 
recognizing head gestures (Ding & Martinez, 2008) and 
eyebrow movements (Aran et al., 2009). However, 
recognizing and distinguishing the wide range of 
grammatical uses of subtly different combinations of 
such nonmanual gestures remains a difficult challenge. 

Another method uses a 3D deformable model for 
face tracking (von Agris et al., 2008). However, this 
method emphasizes outlier rejection and occlusion 
handling at the expense of slower run time, and cannot 
be applied in real-time systems. A Bayesian framework 
and PPCA approach (Nguyen & Ranganath, 2008) have 
been applied to estimate real locations of occluded 
points. However, given a large number of parameters, 
the training procedure is computationally inefficient, and 
prone to be over-fitted to the training data. Moreover, 
without measuring local similarity for each tracked 
point, it is impossible, on that approach, to know which 
points are occluded, which may cause errors with 
respect to the occluded points to propagate to other 
points.  



Hidden Markov Models (Michael et al., 2010) and 
Hidden Markov Support Vector Machines (HMSVM) 
(Michael et al., 2011) have been applied to recognition 
of nonmanual markers. However, these works focus on 
classifying discrete markers, and are not able to 
recognize nonmanual markers automatically from 
continuous signing. 

Nguyen & Ranganath (2010) detect nonmanual 
grammatical signals in continuous signing through the 
use of a 2-layer CRF model. However, this method 
requires manual initialization of the face tracker, thus is 
not able to run fully automatically. While most of the 
existing methods use only geometric features captured 
from landmark positions, we additionally use the facial 
texture around tracked landmarks. We argue that the 
geometric features are very sensitive to the accuracy of 
the tracking results, while the texture information is 
more robust in combination with the geometric features.  

To overcome limitations of previous methods that do 
not take into account shape and texture variation in 
different poses, we propose a pose correction method, 
which uses 3D deformable shape models to warp a 
non-frontal face to frontal. We extract both geometric 
and texture information from the warped faces and build 
statistical sequence models to detect and recognize 
nonmanual signals.  
In this paper, we present a new framework for 

tracking and analysis of facial expressions and head 
motions from continuous signing. The main 
contributions of the proposed framework are the 
following: (1) We have built a stochastic and adaptive 
ensemble of face trackers to address factors resulting in 
lost face track; (2) We combine 2D and 3D deformable 
face models to warp input frames, thus correcting for 
any variation in facial appearance resulting from 
changes in 3D head pose; (3) We use a combination of 
geometric features and texture features to extract a 
canonical frontal representation. The proposed new 
framework makes it possible to detect grammatically 
significant nonmanual expressions from continuous 
signing and to differentiate successfully among 
linguistically significant expressions that involve subtle 
differences in appearance.  

2.  System Overview 
An overview of our system is shown in Figure 1. We first 
design a robust face tracker to track the landmark 
locations in each frame. Then we fit 3D deformable shape 
models to the tracked landmarks and warp the non-frontal 

faces to frontal. Next, both geometric features and 
appearance features are extracted from the warped faces. 
Finally, statistical sequence models are applied to detect 
and recognize nonmanual markers.  
The details of our system are described below. First 

we describe the three main technical contributions of 
this paper. Then we present our learning-based approach 
for recognizing various nonmanual signals. Finally, we 
show our promising experimental results on the 
recognition of nonmanual markers. 

2.1 Occlusion-Robust Stochastic Face Tracker 
Tracking of the face for sign language recognition is a 
more challenging task than face tracking in other 
applications, because the faces of the signers are often 
partially occluded by hands performing manual signs or 
fingerspelling. Traditional face tracking methods (Baker 
& Matthews, 2004; Vogler & Goldenstein, 2008; Vogler et 
al., 2007) are not able to handle significant face occlusion. 
If parts of the shape are occluded, the unobservable 
landmarks cannot find a correct match; and the misplaced 
landmarks are projected back into the shape subspace, 
which leads to a distortion of the whole shape.  

We develop a new method that addresses situations 
of lost track arising not only from occlusions, but also 
from abrupt movements and changes in illumination and 
appearance. The new method is based on a probabilistic 
and adaptive ensemble of face trackers. This is 
implemented as a modified particle filter (Isard & Blake, 
1998) with adaptive observation likelihoods and a linear 
state transition model, factoring in translational and 
rotational velocity, and local shape deformation. Figures 
2 and 3 illustrate the effect that occlusion by bangs had 
on the detection of eyebrow height using our previous 
methods (Michael et al., 2009), as well as the 
improvement in eyebrow tracking achieved through use 
of our new non-parametric tracker. 
We use a hierarchical observation likelihood function 

consisting of the following components: (1) average 
texture match cost per landmark based on a set of 
training face images, (2) similarity to appearance 
templates (in the form of spatial pyramids of Local 
Binary Patterns) around key-points (i.e., eyebrows, eyes, 
nose), obtained in the first frame and updated online as 
tracking progresses, and (3) anthropometric constraints 
preserving the statistical geometry of the tracked facial 
shape across neighbouring frames. This results in 
significantly improved performance for face tracking.  
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Figure 1: Overview of our system: (a) The input frames, (b) Facial landmarks being detected and tracked from the 
input frames, (c) Faces warped to frontal pose, (d) Geometric and appearance features extracted from the frontal 

faces, (e) Statistical sequence models applied to detect and recognize linguistically significant nonmanual markers. 
 
 



2.2 3D Pose Normalization  
Nonmanual signals often involve frequent changes in head 
pose and periodic head motion (e.g., nodding, shaking). 
However, the geometric features and face appearances are 
significantly different under varying poses. Thus the 
characteristics of features learned in one pose cannot be 
directly applied to other poses. To solve this problem, we 
propose a pose correction method, to warp the non-frontal 
face region into a frontal pose. 
For a given face image, we first recover its 3D pose 

by fitting a 3D deformable face shape. We follow the 
method of Yang et al. (2011), which is an efficient 
method for fitting 3D deformable models to near-frontal 
faces. The deformable face shape is defined using a 
shape vector ! concatenating the !! !! !  coordinates of 
all vertices. The deformable face model is constructed 
by using principal component analysis (PCA) on the 
training 3D shapes, and a new shape can be formed as a 
linear combination of eigenvectors !: 

! ! ! ! !" 
The 3D fitting is performed by varying the 

coefficients β in order to minimize the error between 
the projections of the pre-defined  landmarks on  the  3D  

face geometry and the 3D feature points detected by the 
face tracker. We use an energy minimization approach, 
where the total energy is defined as the total of square 
errors for all landmarks, and is minimized with respect 
to the model’s projection matrix ! and the model’s shape 
coefficients β . Therefore, the projection of the ! th 
vertex to the image plane !!!!is written as: 

!! ! !!!! ! !!!! 
The projection matrix !  can be decomposed into 

scale and pose parameters. We construct a new 
projection matrix !′ from the same scale parameters 
while setting the pose parameters to be zero. With the 
new projection matrix, the 3D deformable face shape 
can be projected to the frontal pose. The displacement of 
each vertex forms a flow map that can be applied to 
warp the original non-frontal face image, as seen in 
Figure 4. 

The proposed pose correction filters out the effects 
of the head orientation to the geometric features and 
appearance features computed from the given region. 
Therefore, we can learn pose-independent recognition 
models for nonmanual markers from only frontal faces, 
and apply the same model to faces of various poses. This 
is a significant improvement over previous methods and 
avoids the need to learn recognition models at various 
facial poses. 

Figure 2-a: When raised eyebrows are occluded by 
hair, the tracker loses track and drifts downwards.  
It therefore incorrectly registers a drop in eyebrow 
height over the nonmanual topic marker (in red). 

Figure 2-b: Our new non-parametric tracker correctly 
tracks the same sequence during the occlusion (no 
landmark drifting) and eyebrow height estimation is 
more accurate over the nonmanual marker (in red). 

Figure 3: Plots of estimated eyebrow height over time, in relation to manual signs (represented by English-based 
glosses), comparing our previous 2D deterministic tracker (left) and new stochastic 2D-3D tracker (right) when 
eyebrow occlusion occurs (frame 35 to 140). The red line indicates yes/no question marking (frames 37-105),  
which characteristically includes raised eyebrows. 

 
 
 
 



 
 
 
 
 
 

 
 
 
 

 
2.3 Geometric and Appearance Features 
We extract both geometric features and appearance 
features from the face images after 3D Pose 
Normalization. The geometric features are extracted from 
the tracked landmarks. We estimate the inner, middle and 
outer height of each eyebrow, and take the average for 
both. The speed and acceleration of the changes of heights 
are computed in the temporal domain. Therefore, we have 
a total of 9 features. Similarly, we estimate the eye 
heights. We also use three head pose angles (pitch, yaw 
and tilt, these values come from the face before 3D Pose 
Normalization), as well as changing speed and 
acceleration. Additionally, in order to capture the motion 
information, we employ a 5-frame window to get a patch 
for each frame. Namely, each frame It and its temporal 
neighbor It-2, It-1, It+1 and It+2 are grouped together as a 
patch. 
 

Feature Description Dimension 
Eyebrow height 45 
Eye height 15 
Head pose angles 45 

Table 1: The geometric features 
 
The geometric features (eyebrow height is illustrated 

in Figure 3, head pose angles in Figure 6) provide 
measures of specific facial actions. However, they are 
often not able to model subtle expression changes 
because of noise and lighting artefacts in the image.  
In addition to geometric features, we also extract 
appearance descriptors from the regions of eyes and 
eyebrows that are relevant for the nonmanual markers. 

We extract histograms of Local Binary Patterns, which 
are able to model, and estimate the significant 
expression changes on faces. 
2.4 Nonmanual Recognition based on 
Statistical Sequence Modeling 
We apply a Hidden Markov Support Vector Machine 
(HMSVM) (Altun et al., 2003) to recognize nonmanual 
signals from video. The HMSVM models the interactions 
between features and class labels, as well as the 
interaction between neighboring labels within a sequence.  

To enforce the temporal smoothness of the classified 
results, we apply a sliding window approach, which 
combines the features of all the frames inside the 
windows. We empirically set the window size to be 5 
frames; the window is moved by one frame at a time. 
The above method allows the continuous recognition of 
markers. 
 

3. Experiments 
We first perform experiments on classifying segmented 
nonmanual markers. We make use of a dataset containing 
330 sentences, and 406 nonmanual markers. The dataset 
was collected and linguistically annotated at Boston 
University. We randomly selected 206 sentences for 
training, and the remaining 124 sentences were used for 
testing. We focused on the nonmanual expressions 
associated with each of the following types of 
constructions, illustrated in Figure 5 (the pictures in that 
figure are taken from Neidle (2002), which includes more 
detailed descriptions):  
Negation which generally includes a side-to-side 
headshake (usually preceded by an anticipatory head 
turn to the side)  
Wh-questions which sometimes include a slight rapid 
headshake of much smaller amplitude than is found for 
negation (the difference is shown in Figure 5: see the 
red curve showing the changes in yaw angle); these are 
questions involving ‘who’, ‘when’, ‘what’, where’, 
‘why’, ‘how’, ‘how many’, ‘which’, etc. 
Yes/no questions, marking of Topic or Focus, and 
Conditional (‘if’) or ‘when’ clauses, which involve 
expressions that are subtly differentiated from one 
another, but normally all involve raised eyebrows. 

 
 

 
Figure 6: Geometric features extracted from a sentence: head pose angles.   
The yaw angle in both cases shows a periodic side-to-side headshake, as is  

characteristic (although different in nature) in wh-questions (left) and negation (right)

 
Figure 4: Pose correction. Middle: Input face. 
Left: The 3D shape fitted by using the landmarks 

detected from the input frame. Right: Face warped 
to frontal. 



 

  

Negation Wh-questions 

 

 

 

Yes-no questions 

 
Focus (top) 

Topic (bottom) Conditional (left) /when (right) 

Figure 5: Typical facial expressions associated with the 
nonmanual markings used in this experiment 

The recognition accuracy of the HMSVM model is 
summarized in Table 2. 

 
 
 

 
Classes Training 

Samples 
Testing 
Samples 

Negation (Neg) 59 24 
Wh-questions (Whq) 66 40 
Yes/no questions (Y/N) 32 17 
Topics/focus (Top) 33 4 
Conditional/when (C/W) 64 20 

Table 2: Number of segmented sequences per class  
in our dataset 

 
True 
Class 

Predicted Class 
1. Neg 2. Whq 3. Y/N 4. Top 5. C/W 

1. Neg 95.8% 4.2% 0 0 0 
2. Whq 2.5% 92.5% 0 2.5% 2.5% 
3. Y/N 0 0 87.5% 6.3% 6.3% 
4. Top 0 0 0 75.0% 25.0% 
5. C/W 5.0% 0 5.0% 0 90.0% 

Table 3: Confusion matrix of the proposed method 
The subtleties in the distinctions among the nonmanual 
markings that normally include raised eyebrows make 
the fact that there are some confusions among markings 
of yes/no questions, conditionals, and topics 
unsurprising. Future research will be aimed at more 
robust discrimination of these markings. However, 
particularly given the close similarities among these 
expressions, success rates of 87-90% in recognition of 
yes-no questions and conditional/when clauses is 
particularly impressive. 

We then test our system for continuous sign 
recognition. Sample results are shown in Figure 7. The 
blue lines show the ground truth; the red lines show our 
recognition  results.   We  use  precision   and  recall  for 

  

   
Figure 7: Performance of the proposed method in continuous sign recognition: some examples. The y-axis values 

correspond to the labels that were included in the annotations (from among the five listed above, or none).  
The blue lines show ground truth markers; the red lines show our recognition results.  

English-based glosses are provided for the manual signs, with purple lines showing the duration of each. 



quantitative evaluation of the performance of continuous 
recognition. Precision is the ability to retrieve the most 
precise results. It is the fraction of correct detections in 
all detected results. For a detected marker, if over 50% 
of the length has the correct ground truth label, then we 
count it as a correct detection. Recall means the ability 
to retrieve as many elements as possible from a class. It 
is the fraction of successfully detected markers over all 
the markers in the dataset. The overall precision and 
recall are shown in Table 4. 

Precision 81.08 % 
Recall 80.37 % 

Table 4: Precision and recall for continuous recognition 

4. Conclusions 
This paper proposes a novel framework to detect and 
recognize nonmanual markers of American Sign 
Language. Our system uses a stochastic and adaptive 
ensemble of face trackers, and extracts both geometric 
and appearance features from a canonical frontal 
representation. We build statistical sequence models to 
detect and classify nonmanual markers from continuous 
video input. To improve the recognition of nonmanual 
expressions, we used a combination of geometric 
features and texture features extracted from a canonical 
frontal representation. 

The proposed new framework makes it possible to 
detect grammatically significant nonmanual expressions 
from continuous signing and to differentiate successfully 
among linguistically significant expressions that involve 
subtle differences in appearance. Based on the above 
innovations, our results  showed, for the first time, over 
80% precision and recall for the recognition of 5 types 
of nonmanual markers. It is our intention to improve our 
tracking and learning methods further to create a robust 
real-time nonmanual recognition system. 
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