Easy, Effective, Efficient: GPU Programming in Python with PyOpenCL and PyCUDA

Andreas Klöckner

Courant Institute of Mathematical Sciences New York University

PASI: The Challenge of Massive Parallelism Lecture 3 · January 7, 2011

- 4 同 ト - 4 目 ト

Outline

- 2 Code writes Code
- 3 Case Study: Generic OpenCL Reduction
- 4 Reasoning about Generated Code
- 5 Automatic GPU Programming

Outline

LeftoversOpenCL implementations

2 Code writes Code

- 3 Case Study: Generic OpenCL Reduction
- 4 Reasoning about Generated Code
- 5 Automatic GPU Programming

Show the spec!

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Thank you!

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Implementations

Can't say this often enough

If you are performing asynchronous transfers, . . .

... **beware** of Python's big yellow garbage truck.

Kernel Attributes

```
__kernel __attribute__ ((...)) void foo( __global float4 *p ) { .... }
```

```
\blacksquare Implicit \leftrightarrow explicit SIMD \\ Example:
```

__kernel __attribute__ ((vec_type_hint (float4)))
void foo(__global float4 *p) { }

Autovectorize assuming float4 as the basic computation width.

Enforcing work group sizes

```
__attribute__ (( reqd_work_group_size(X, Y, Z)))
```

・ コ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Outline

LeftoversOpenCL implementations

2 Code writes Code

- 3 Case Study: Generic OpenCL Reduction
- 4 Reasoning about Generated Code
- 5 Automatic GPU Programming

Implementations

The Nvidia CL implementation

Targets only GPUs

Notes:

- Nearly identical to CUDA
 - \blacksquare No native C-level JIT in CUDA (\rightarrow PyCUDA)
- Page-locked memory: Use CL_MEM_ALLOC_HOST_PTR.
 - Careful: double meaning
 - Need page-locked memory for genuinely overlapped transfers.
- No linear memory texturing
- CUDA device emulation mode deprecated → Use AMD CPU CL (faster, too!)

The Apple CL implementation

Targets CPUs and GPUs

General notes:

- Different header name
 OpenCL/cl.h instead of CL/cl.h
 Use -framework OpenCL for C access.
- Beware of imperfect compiler cache implementation (ignores include files)

CPU notes:

One work item per processor

GPU similar to hardware vendor implementation.

(New: Intel w/ Sandy Bridge)

The AMD CL implementation

Σ

Targets CPUs and GPUs (from both AMD and Nvidia) GPU notes:

- Wide SIMD groups (64)
- Native 4/5-wide vectors
 - But: very flop-heavy machine, may ignore vectors for memory-bound workloads
- $\blacksquare
 ightarrow \textit{Both}$ implicit and explicit SIMD

CPU notes:

- Many work items per processor (emulated) General:
 - cl_amd_printf

Outline

- 2 Code writes Code The Idea
 - RTCG in Action
 - How can I do it?

Outline

1 Leftovers

- Code writes Code
 The Idea
 RTCG in Action
 How can I do it?
- 3 Case Study: Generic OpenCL Reduction
- 4 Reasoning about Generated Code
- 5
- Automatic GPU Programming

・ 同 ト ・ ヨ ト ・ ヨ ト

The OpenCL Ecosystem: One Language, Many Devices

OpenCL generalizes over many types of devices:

- Multicore CPUs
- Various GPU architectures
- Accelerator boards

The OpenCL Ecosystem: One Language, Many Devices

OpenCL generalizes over many types of devices:

- Multicore CPUs
- Various GPU architectures
- Accelerator boards

Devices differ by

- Memory Types, Latencies, **Bandwidths**
- Vector Widths
- Units of Scheduling

The OpenCL Ecosystem: One Language, Many Devices

OpenCL generalizes over many types of devices:

- Multicore CPUs
- Various GPU architectures
- Accelerator boards

Devices differ by

- Memory Types, Latencies, Bandwidths
- Vector Widths
- Units of Scheduling

Optimally tuned code will (often) be different for each device

Metaprogramming

Metaprogramming

(Key: Code is data-it *wants* to be reasoned about at run time)

▶ 《 臣 ▶ 《 臣 ▶

Metaprogramming

(Key: Code is data-it *wants* to be reasoned about at run time)

□ ► < E ► < E ►</p>

Metaprogramming

(Key: Code is data-it *wants* to be reasoned about at run time)

□ ▶ 《 臣 ▶ 《 臣 ▶

Metaprogramming

Metaprogramming

< □ > < □ > < □ >

Metaprogramming

(1日) (日) (日)

Metaprogramming

(4 同) (4 日) (4 日)

Metaprogramming

(4 同) (4 日) (4 日)

Machine-generated Code

Why machine-generate code?

- Automated Tuning (cf. ATLAS, FFTW)
- Data types
- Specialize code for given problem
- Constants faster than variables (→ register pressure)
- Loop Unrolling

PyOpenCL: Support for Metaprogramming

Three (main) ways of generating code:

- Simple %-operator substitution
 - Combine with C preprocessor: simple, often sufficient
- Use a templating engine (Mako works very well)
- codepy:
 - Build C syntax trees from Python
 - Generates readable, indented C
- Many ways of evaluating code-most important one:
 - Exact device timing via events

同下 イヨト イヨト

How are High-Performance Codes constructed?

- "Traditional" Construction of High-Performance Codes:
 - C/C++/Fortran
 - Libraries
- "Alternative" Construction of High-Performance Codes:
 - Scripting for 'brains'
 - GPUs for 'inner loops'
- Play to the strengths of each programming environment.

Outline

- 2 Code writes Code
 - The Idea

RTCG in Action

- How can I do it?

pyopencl.array: Simple Linear Algebra

pyopencl.array.Array:

- Meant to look and feel just like numpy.
 - p.a.to_device(ctx, queue, numpy_array)
 - numpy_array = ary.get()
- \blacksquare +, -, *, /, fill, sin, arange, exp, rand, ...
- Mixed types (int32 + float32 = float64)
- print cl_array for debugging.
- Allows access to raw bits
 - Use as kernel arguments, memory maps

PyOpenCL Arrays: General Usage

Remember your first PyOpenCL program?

Abstraction is good:

```
1 import numpy
```

2 import pyopencl as cl

```
3 import pyopencl.array as cl_array
```

```
4
```

```
5 ctx = cl.create_some_context()
6 queue = cl.CommandQueue(ctx)
7
```

8 a_gpu = cl_array . to_device (9 ctx. queue. numpy.)

ctx, queue, numpy.random.randn(4,4).astype(numpy.float32))

```
10 a_doubled = (2*a_gpu).get()
```

11 print a_doubled

12 print a_gpu

| 4 同 ト 4 ヨ ト 4 ヨ ト

PyOpenCL Arrays: General Usage

Remember your first PyOpenCL program?

Abstraction is good:

```
import numpy
  2
          import pyopencl as cl
  3
          import pyopencl.array as cl_array
  4
  5
          ctx = cl.create_some_context()
          queue = cl.CommandQueue(ctx)
  6
  7
  8
          a_gpu = cl_array \cdot to_device(
                             ctx, queue, <a href="https://www.random.randn(4,4).astype">numpy.random.randn(4,4).astype</a>(<a href="https://www.random.randn(4,4).astype">numpy.random.randn(4,4).astype</a>(<a href="https://www.random.randn(4,4).astype">numpy.random.randn(4,4).astype</a>(<a href="https://www.random.randn(4,4).astype">numpy.random.randn(4,4).astype</a>(<a href="https://www.random.randn(4,4).astype">numpy.random.randn(4,4).astype</a>(<a href="https://www.random.randn(4,4).astype">numpy.random.randn(4,4).astype</a>
  9
                                    -(2u_{2}, a_{2})
10
11
              Why is code generation useful in the imple-
12
              mentation of the array type?
```

pyopencl.elementwise: Elementwise expressions

Avoiding extra store-fetch cycles for elementwise math:

```
n = 10000
a_gpu = cl_array \cdot to_device(
        ctx, queue, numpy.random.randn(n).astype(numpy.float32))
b_gpu = cl_array . to_device(
        ctx, queue, numpy.random.randn(n).astype(numpy.float32))
from pyopencl.elementwise import ElementwiseKernel
lin_comb = ElementwiseKernel(ctx,
        "float a, float *x, float b, float *y, float *z",
       "z[i] = a * x[i] + b * y[i]")
c_gpu = cl_array . empty_like(a_gpu)
lin_comb(5, a_gpu, 6, b_gpu, c_gpu)
import numpy.linalg as la
assert la.norm((c_gpu - (5*a_gpu+6*b_gpu)).get()) < 1e-5
```

pyopencl.reduction: Reduction made easy

Example: A dot product calculation

from pyopencl.reduction import ReductionKernel $dot = ReductionKernel(ctx, dtype_out=numpy.float32, neutral="0",$ $reduce_expr = "a+b", map_expr = "x[i]*y[i]",$ arguments="__global const float *x, __global const float *y")

```
import pyopencl.clrandom as cl_rand
x = cl_rand.rand(ctx, queue, (1000*1000), dtype=numpy.float32)
y = cl_rand.rand(ctx, queue, (1000*1000), dtype=numpy.float32)
```

```
x_dot_y = dot(x, y).get()
x_dot_v_cpu = numpy.dot(x.get(), y.get())
```

・ロト ・ 同 ト ・ ヨ ト ・ 日 ト

Outline

- 2 Code writes Code
 - The Idea RTCG in Action
 - How can I do it?

RTCG via Substitution

```
source = ("""
    __kernel void %(name)s(%(arguments)s)
      unsigned lid = get_local_id(0);
      unsigned gsize = get_global_size (0);
      unsigned work_item_start = get_local_size (0) * get_group_id (0);
      for (unsigned i = work_item_start + lid; i < n; i += gsize)
        %(operation)s;
   ····· % {
        "arguments": ", ". join (arg. declarator () for arg in arguments),
        "operation": operation,
        "name": name.
        "loop_prep": loop_prep,
        })
prg = cl.Program(ctx, source).build()
```

(4 同) ト (ヨ) (ヨ)
RTCG via Templates

```
from make.template import Template
tpl = Template("""
    __kernel void add(
             __global ${ type_name } *tgt,
             __global const ${ type_name } *op1,
             __global const ${ type_name } *op2)
      int idx = get_local_id(0)
        + ${ local_size } * ${ thread_strides }
        * get_group_id (0);
      % for i in range( thread_strides ):
          <\% offset = i* local_size \%>
           tgt[idx +  offset ] =
            op1[idx +  offset \}]
            + \text{ op2[idx} + \$\{ \text{ offset } \} ];
      % endfor
    }""")
rendered_tpl = tpl.render(type_name="float",
     local_size = local_size , thread_strides = thread_strides )
```

RTCG via AST Generation

```
from codepy.cgen import *
from codepy.cgen.opencl import \
        CLKernel, CLGlobal, CLRequiredWorkGroupSize
mod = Module([
    FunctionBody(
        CLKernel(CLRequiredWorkGroupSize((local_size,),
            FunctionDeclaration (Value("void", "twice"),
            arg_decls = [CLGlobal(Pointer(Const(POD(dtype, "tgt"))))]))),
        Block([
             Initializer (POD(numpy.int32, "idx"),
                " get_local_id (0) + %d * get_group_id(0)"
                % ( local_size * thread_strides ))
            ]+[
            Statement("tgt[idx+\%d] = 2" % (o*local_size))
            for o in range( thread_strides )]
             ))])
knl = cl. Program(ctx, str(mod)).build(). twice
```

(1日) (日) (日)

Outline

1 Leftovers

2 Code writes Code

- 3 Case Study: Generic OpenCL Reduction
- 4 Reasoning about Generated Code
- 5 Automatic GPU Programming

Reduction

$$y = f(\cdots f(f(x_1, x_2), x_3), \ldots, x_N)$$

where N is the input size.

Also known as...

- Lisp/Python function reduce (Scheme: fold)
- C++ STL std::accumulate

Reduction: Graph

- 4 回 ト - 4 回 ト - 4 回 ト

Reduction: Graph

Reduction: A Better Graph

Mapping Reduction to the GPU

- Obvious: Want to use tree-based approach.
- Problem: Two scales, Work group and Grid
 - Need to occupy both to make good use of the machine.
- In particular, need synchronization after each tree stage.

Mapping Reduction to the GPU

- Obvious: Want to use tree-based approach.
- Problem: Two scales, Work group and Grid
 - Need to occupy both to make good use of the machine.
- In particular, need synchronization after each tree stage.
- Solution: Use a two-scale algorithm.

In particular: Use multiple grid invocations to achieve inter-group synchronization.

Kernel V1

```
__kernel void reduce0( __global T *g_idata, __global T *g_odata,
   unsigned int n, __local T* ldata)
   unsigned int \text{lid} = \text{get_local_id}(0);
   unsigned int i = get_global_id(0);
     |\text{data}[\text{lid}] = (i < n) ? g_{\text{idata}}[i] : 0; 
    barrier (CLK_LOCAL_MEM_FENCE);
    for (unsigned int s=1; s < get_local_size (0); s *= 2)
        if ((\text{lid } \% (2*s)) == 0)
             Idata[Iid] += Idata[Iid + s];
        barrier (CLK_LOCAL_MEM_FENCE);
    if (lid == 0) g_odata[get_group_id(0)] = ldata [0];
```

(1日) (日) (日)

Interleaved Addressing

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Interleaved Addressing

Issue: Slow modulo, Divergence

イロト イポト イヨト イヨト

Kernel V2

```
__kernel void reduce2( __global T *g_idata, __global T *g_odata,
   unsigned int n, __local T* ldata)
   unsigned int \text{lid} = \text{get_local_id}(0);
   unsigned int i = get_global_id(0);
     |\text{data}[\text{lid}] = (i < n) ? g_{\text{idata}}[i] : 0; 
    barrier (CLK_LOCAL_MEM_FENCE);
   for (unsigned int s = get_local_size (0)/2; s>0; s>>=1)
        if (lid < s)
            Idata[Iid] += Idata[Iid + s];
        barrier (CLK_LOCAL_MEM_FENCE);
    if (lid == 0) g_odata[get_local_size (0)] = ldata [0];
```

(1日) (日) (日)

Sequential Addressing

・ロト ・回ト ・モト ・モト

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Sequential Addressing

Better! But still not "efficient".

Only half of all work items after first round With material by M. Harris (Nvidia Corp.)

Thinking about Parallel Complexity

Distinguish:

- Time on T processors: T_P
- Step Complexity/Span *T*_∞: Minimum number of steps taken if an infinite number of processors are available
- Work per step S_t
- Work Complexity/Work T₁ = ∑^T_∞ S_t: Total number of operations performed
- Parallelism T₁/T_∞: average amount of work along span
 P > T₁/T_∞ doesn't make sense.

Algorithm-specific!

イロト イポト イヨト イヨト

Thinking about Parallel Complexity

Distinguish:

- Time on T processors: T_P
- **Step Complexity/Span** *T*_∞: Minimum number of steps taken if an infinite number of processors are available
- Work per step S_t
- Work Complexity/Work T₁ = ∑^T_∞ S_t: Total number of operations performed
- **Parallelism** T_1/T_∞ : average amount of work along span ■ $P > T_1/T_\infty$ d

Algorithm-specific!

How parallel is our current version?

A (1) < (2)</p>

Can we improve it?

Kernel V3 Part 1

```
__kernel void reduce6( __global T *g_idata, __global T *g_odata,
   unsigned int n, volatile __local T* ldata)
   unsigned int \text{lid} = \text{get_local_id}(0);
   unsigned int i = get_group_id(0)*(
        get_local_size (0)*2) + get_local_id (0);
   unsigned int gridSize = GROUP_SIZE*2*get_num_groups(0);
   |data[lid] = 0;
   while (i < n)
       |data[lid] += g_idata[i];
       if (i + GROUP_SIZE < n)
            Idata[Iid] += g_idata[i+GROUP_SIZE];
        i += gridSize;
    barrier (CLK_LOCAL_MEM_FENCE);
```

(4 同) (ヨ) (ヨ)

Kernel V3 Part 2

```
if (GROUP_SIZE >= 512)
  if (lid < 256) { ldata[lid] += ldata[lid + 256]; }
  barrier (CLK_LOCAL_MEM_FENCE);
}
// ...
if (GROUP_SIZE >= 128)
{ /* ... */ }
if (lid < 32)
    if (GROUP\_SIZE \ge 64) { Idata[Iid] += Idata[Iid + 32]; }
    if (GROUP_SIZE \ge 32) { Idata[Iid] += Idata[Iid + 16]; }
   // ...
    if (GROUP_SIZE \ge 2) { Idata[Iid] += Idata[Iid + 1]; }
if (lid == 0) g_odata[get_group_id(0)] = ldata [0];
```

Performance Comparison

Generic CL Reduction: Preparation

```
#define GROUP_SIZE ${group_size}
#define READ_AND_MAP(i) (${map_expr})
#define REDUCE(a, b) (${reduce_expr})
```

% if double_support: #pragma OPENCL EXTENSION cl_khr_fp64: enable % endif

```
typedef ${out_type} out_type;
```

```
${preamble}
```

・ 同 ト ・ ヨ ト ・ ヨ ト

CL Reduction: Sequential Part

```
__kernel void ${name}(
  __global out_type *out, ${arguments},
 unsigned int seq_count, unsigned int n)
    __local out_type Idata [GROUP_SIZE];
   unsigned int \text{lid} = \text{get_local_id}(0);
   unsigned int i = get_group_id(0)*GROUP_SIZE*seq_count + lid;
   out_type acc = \{neutral\};
   for (unsigned s = 0; s < seq\_count; ++s)
     if (i \ge n) break;
     acc = REDUCE(acc, READ_AND_MAP(i));
     i += GROUP_SIZE;
```

CL Reduction: Explicitly Synchronized Part

```
|data[lid] = acc;
<% cur_size = group_size %>
% while cur_size > no_sync_size:
    barrier (CLK_LOCAL_MEM_FENCE);
    <%
    new_size = cur_size // 2
    assert new_size * 2 == cur_size
    %>
    if (lid < \{new\_size\})
    {
        Idata[Iid] = REDUCE(
          Idata [ lid ],
          Idata[Iid + \{new_size\}]);
    }
    <\% cur size = new size \%>
```

% endwhile

}

CL Reduction: Implicitly Synchronized Part

```
% if cur size > 1:
    barrier (CLK_LOCAL_MEM_FENCE);
    if (lid < ${no_sync_size})</pre>
        __local volatile out_type *lvdata = ldata;
        % while cur_size > 1:
            <%
            new_size = cur_size // 2
            assert new_size * 2 == cur_size
            %>
            lvdata[lid] = REDUCE(
              lvdata [ lid ],
              lvdata [lid + {new_size}]);
            <\% cur_size = new_size \%>
        % endwhile
% endif
if (Iid == 0) out[get_group_id(0)] = Idata[0];
```

イロト イポト イヨト イヨト

Outline

1 Leftovers

- 2 Code writes Code
- 3 Case Study: Generic OpenCL Reduction

4 Reasoning about Generated Code

5 Automatic GPU Programming

Judging Code Quality

Possible information sources for judging code quality/desirability:

- Heuristics (e.g. Occupancy, Flops/Byte, ...?)
- OpenCL Event profiling
 - Makes comp. synchronous on Nvidia!
- Wall time (!)
- Compiler build log
- Vendor Profiler

Search Strategies

Possible search strategies:

- Exhaustive
- Exhaustive + Heuristics
- Grouped Orthogonal Search
- Genetic Algorithms
- (your invention here)

Compiler cache makes repeated searches fast.

GAOS: Adrian Tate, Cray, Inc.

Define groups

GAOS: Adrian Tate, Cray, Inc.

Choose group

GAOS: Adrian Tate, Cray, Inc.

Andreas Klöckner

Map admissible options

GAOS: Adrian Tate, Cray, Inc.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

<.∃⇒

Group-wide exhaustive search

GAOS: Adrian Tate, Cray, Inc.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

- - ∃ →

Start over with best result \rightarrow pick new group...

GAOS: Adrian Tate, Cray, Inc.

Using the Nvidia profiler in-process

```
# enable profiler
 1
 2
    import os
 3
    os.environ ["COMPUTE_PROFILE"] = "1"
 4
    with open("/tmp/myprg-prof-config", "w") as prof_config:
 5
         prof_config . write ("\n".join (events))
6
    os.environ["COMPUTE_PROFILE_CONFIG"] = "/tmp/myprg-prof-config"
7
8
    # obtain timing data
9
     prof_f = open(" opencl_profile_0 . log", "r")
     gain_count = 0
10
11
12
    while gain_count < 2:
13
         # run kernel here
14
         prof_output = prof_f \cdot readlines ()
15
         if prof_output:
             print "gained %d lines" % len(prof_output)
16
17
             gain_count += 1
18
             if gain\_count == 2:
19
                 print "".join (| for | in prof_output[1:-1]
20
                         if kernel_name in 1)
```


イロト イポト イヨト イヨト

Using the Nvidia profiler in-process

```
# enable profiler
 1
 2
     import os
     os.environ ["COMPUTE_PROFILE"] = "1"
 3
 4
     with open("/tmp/myprg-prof-config", "w") as prof_config:
 5
          prof_config . write ("\n".join (events))
6
     os.environ ["COMPUTE_PROFILE_CONFIG"] = "/tmp/myprg-prof-config"
 7
8
     # obtain timing data
 9
     prof_f = open("opencl_profile_0.log", "r")
10
     gain_count = 0
11
12
     while gain_count
13
         # run
                     Sample output:
14
          prof_ou
15
          if
             prof
                     method=[ matvec ]
                                     gputime=[ 7218.048 ] cputime=[ 12.000 ]
                                                                         occupancy=[ 1.000
16
              pri
                     method=[ matvec ] gputime=[ 7267.456 ] cputime=[ 14.000 ] occupancy=[ 1.000
17
                     method=[ matvec ] gputime=[ 7264.640 ] cputime=[ 12.000 ] occupancy=[ 1.000
              gai
                     method=[ matvec ]
                                      gputime=[ 7270.048 ] cputime=[ 15.000 ] occupancy=[ 1.000
              if
18
                     method=[ matvec ]
                                      gputime=[ 7262.976 ]
                                                         cputime=[ 12.000 ]
                                                                         occupancy=[ 1.000 ]
19
                                                                         occupancy=[ 1.000 ]
                     method=[ matvec ]
                                     gputime=[ 7237.152 ] cputime=[ 23.000 ]
20
                                                                 <ロト <同ト < ヨト < ヨ
```

Nvidia GPU Profiler: Events

 $\mathsf{gld_request}$: Number of executed global load instructions per warp in a SM

 $\mathsf{gst_request}$: Number of executed global store instructions per warp in a SM

divergent_branch : Number of unique branches that diverge

- instructions : Instructions executed
- warp_serialized : Number of SIMD groups that serialize on address conflicts to local memory

And many more: see (root of CUDA toolkit)/(doc/Compute_Profiler_VERSION.txt (Careful: CUDA terminology)

(4 同) 4 ヨ) 4 ヨ)
Outline

1 Leftovers

- 2 Code writes Code
- 3 Case Study: Generic OpenCL Reduction
- 4 Reasoning about Generated Code
- 5 Automatic GPU Programming

Automating GPU Programming

GPU programming can be time-consuming, unintuitive and error-prone.

- Obvious idea: Let the computer do it.
- One way: Smart compilers

Automating GPU Programming

GPU programming can be time-consuming, unintuitive and error-prone.

- Obvious idea: Let the computer do it.
- One way: Smart compilers
 - GPU programming requires complex tradeoffs
 - Tradeoffs require heuristics
 - Heuristics are fragile

Automating GPU Programming

GPU programming can be time-consuming, unintuitive and error-prone.

- Obvious idea: Let the computer do it.
- One way: Smart compilers
 - GPU programming requires complex tradeoffs
 - Tradeoffs require heuristics
 - Heuristics are fragile
- Another way: Dumb enumeration
 - Enumerate loop slicings
 - Enumerate prefetch options
 - Choose by running resulting code on actual hardware

| 4 同 ト 4 ヨ ト 4 ヨ ト

Loo.py Example

Empirical GPU loop optimization:

```
a, b, c, i, j, k = [var(s) for s in "abcijk"]
n = 500
k = make_loop_kernel([
    LoopDimension("i", n),
    LoopDimension("j", n),
    LoopDimension("k", n),
    ], [
    (c[i+n*j], a[i+n*k]*b[k+n*j])
])
gen_kwargs = {
    "min_threads": 128,
    "min_blocks": 32,
    }
```


伺 ト イヨト イヨト

 \rightarrow Ideal case: Finds 160 GF/s kernel without human intervention.

Loo.py Status

Limited scope:

- Require input/output separation
- Kernels must be expressible using "loopy" model
 - (i.e. indices decompose into "output" and "reduction")
- Enough for DG, LA, FD, ...

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Loo.py Status

- Limited scope:
 - Require input/output separation
 - Kernels must be expressible using "loopy" model
 - (i.e. indices decompose into "output" and "reduction")
 - Enough for DG, LA, FD, ...
- Kernel compilation limits trial rate
- Non-Goal: Peak performance
- Good results currently for dense linear algebra and (some) DG subkernels

Questions?

?

Image Credits

- Garbage Truck: sxc.hu/mzacha
- Nvidia logo: Nvidia Corporation
- Apple logo: Apple Corporation
- AMD logo: AMD Corporation
- Apples and Oranges: Mike Johnson TheBusyBrain.com co
- Machine: flickr.com/13521837@N00 co
- Adding Machine: flickr.com/thomashawk co
- Clock: sxc.hu/cema
- Magnifying glass: sxc.hu/topfer