
Leftovers Code writes Code Case Study Reasoning Loo.py

Easy, Effective, Efficient:
GPU Programming in Python
with PyOpenCL and PyCUDA

Andreas Klöckner

Courant Institute of Mathematical Sciences
New York University

PASI: The Challenge of Massive Parallelism
Lecture 3 · January 7, 2011

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Outline

1 Leftovers

2 Code writes Code

3 Case Study: Generic OpenCL Reduction

4 Reasoning about Generated Code

5 Automatic GPU Programming

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Implementations

Outline

1 Leftovers
OpenCL implementations

2 Code writes Code

3 Case Study: Generic OpenCL Reduction

4 Reasoning about Generated Code

5 Automatic GPU Programming

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Implementations

Ahem. . .

Show the spec!

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Implementations

Well. . .

Thank you!

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Implementations

Can’t say this often enough

If you are performing asynchronous
transfers, . . .

. . .beware of Python’s big yellow
garbage truck.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Implementations

Kernel Attributes

kernel attribute ((...))
void foo(global float4 ∗p) { }

Implicit ↔ explicit SIMD
Example:

kernel attribute ((vec type hint (float4)))
void foo(global float4 ∗p) { }

Autovectorize assuming float4 as the basic computation
width.

Enforcing work group sizes

attribute ((reqd work group size (X, Y, Z)))

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Implementations

Outline

1 Leftovers
OpenCL implementations

2 Code writes Code

3 Case Study: Generic OpenCL Reduction

4 Reasoning about Generated Code

5 Automatic GPU Programming

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Implementations

The Nvidia CL implementation

Targets only GPUs

Notes:

Nearly identical to CUDA

No native C-level JIT in CUDA (→
PyCUDA)

Page-locked memory:
Use CL MEM ALLOC HOST PTR.

Careful: double meaning
Need page-locked memory for genuinely
overlapped transfers.

No linear memory texturing

CUDA device emulation mode deprecated
→ Use AMD CPU CL (faster, too!)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Implementations

The Apple CL implementation

Targets CPUs and GPUs

General notes:

Different header name
OpenCL/cl.h instead of CL/cl.h
Use -framework OpenCL for C
access.

Beware of imperfect compiler cache
implementation
(ignores include files)

CPU notes:

One work item per processor

GPU similar to hardware vendor
implementation.
(New: Intel w/ Sandy Bridge)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Implementations

The AMD CL implementation

Targets CPUs and GPUs (from both AMD and Nvidia)

GPU notes:

Wide SIMD groups (64)

Native 4/5-wide vectors

But: very flop-heavy machine, may ignore vectors
for memory-bound workloads

→ Both implicit and explicit SIMD

CPU notes:

Many work items per processor (emulated)

General:

cl amd printf

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

Outline

1 Leftovers

2 Code writes Code
The Idea
RTCG in Action
How can I do it?

3 Case Study: Generic OpenCL Reduction

4 Reasoning about Generated Code

5 Automatic GPU Programming

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

Outline

1 Leftovers

2 Code writes Code
The Idea
RTCG in Action
How can I do it?

3 Case Study: Generic OpenCL Reduction

4 Reasoning about Generated Code

5 Automatic GPU Programming

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

The OpenCL Ecosystem: One Language, Many Devices

OpenCL generalizes over many types of devices:

Multicore CPUs

Various GPU architectures

Accelerator boards

Devices differ by

Memory Types, Latencies,
Bandwidths

Vector Widths

Units of Scheduling

Optimally tuned code will (often)
be different for each device

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

The OpenCL Ecosystem: One Language, Many Devices

OpenCL generalizes over many types of devices:

Multicore CPUs

Various GPU architectures

Accelerator boards

Devices differ by

Memory Types, Latencies,
Bandwidths

Vector Widths

Units of Scheduling

Optimally tuned code will (often)
be different for each device

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

The OpenCL Ecosystem: One Language, Many Devices

OpenCL generalizes over many types of devices:

Multicore CPUs

Various GPU architectures

Accelerator boards

Devices differ by

Memory Types, Latencies,
Bandwidths

Vector Widths

Units of Scheduling

Optimally tuned code will (often)
be different for each device

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

Metaprogramming

Idea

Python Code

GPU Code

GPU Compiler

GPU Binary

GPU

Result

Machine

Human

In GPU scripting,
GPU code does
not need to be
a compile-time

constant.

(Key: Code is data–it wants to be
reasoned about at run time)

Good for code
generation

PyCUDAPyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

Metaprogramming

Idea

Python Code

GPU Code

GPU Compiler

GPU Binary

GPU

Result

Machine

Human

In GPU scripting,
GPU code does
not need to be
a compile-time

constant.

(Key: Code is data–it wants to be
reasoned about at run time)

Good for code
generation

PyCUDAPyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

Metaprogramming

Idea

Python Code

GPU Code

GPU Compiler

GPU Binary

GPU

Result

Machine

Human

In GPU scripting,
GPU code does
not need to be
a compile-time

constant.

(Key: Code is data–it wants to be
reasoned about at run time)

Good for code
generation

PyCUDAPyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

Metaprogramming

Idea

Python Code

GPU Code

GPU Compiler

GPU Binary

GPU

Result

Machine

Human

In GPU scripting,
GPU code does
not need to be
a compile-time

constant.

(Key: Code is data–it wants to be
reasoned about at run time)

Good for code
generation

PyCUDAPyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

Metaprogramming

Idea

Python Code

GPU Code

GPU Compiler

GPU Binary

GPU

Result

Machine

Human

In GPU scripting,
GPU code does
not need to be
a compile-time

constant.

(Key: Code is data–it wants to be
reasoned about at run time)

Good for code
generation

PyCUDAPyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

Metaprogramming

Idea

Python Code

GPU Code

GPU Compiler

GPU Binary

GPU

Result

Machine

Human In GPU scripting,
GPU code does
not need to be
a compile-time

constant.

(Key: Code is data–it wants to be
reasoned about at run time)

Good for code
generation

PyCUDAPyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

Metaprogramming

Idea

Python Code

GPU Code

GPU Compiler

GPU Binary

GPU

Result

Machine

Human

In GPU scripting,
GPU code does
not need to be
a compile-time

constant.

(Key: Code is data–it wants to be
reasoned about at run time)

Good for code
generation

PyCUDAPyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

Metaprogramming

Idea

Python Code

GPU Code

GPU Compiler

GPU Binary

GPU

Result

Machine

Human

In GPU scripting,
GPU code does
not need to be
a compile-time

constant.

(Key: Code is data–it wants to be
reasoned about at run time)

Good for code
generation

PyCUDA

PyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

Metaprogramming

Idea

Python Code

GPU Code

GPU Compiler

GPU Binary

GPU

Result

Machine

Human

In GPU scripting,
GPU code does
not need to be
a compile-time

constant.

(Key: Code is data–it wants to be
reasoned about at run time)

Good for code
generation

PyCUDAPyOpenCL

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

Machine-generated Code

Why machine-generate code?

Automated Tuning
(cf. ATLAS, FFTW)

Data types

Specialize code for given problem

Constants faster than variables
(→ register pressure)

Loop Unrolling

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

PyOpenCL: Support for Metaprogramming

Three (main) ways of generating code:

Simple %-operator substitution

Combine with C preprocessor: simple, often sufficient

Use a templating engine (Mako works very well)

codepy:

Build C syntax trees from Python
Generates readable, indented C

Many ways of evaluating code–most important one:

Exact device timing via events

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

How are High-Performance Codes constructed?

“Traditional” Construction of
High-Performance Codes:

C/C++/Fortran
Libraries

“Alternative” Construction of
High-Performance Codes:

Scripting for ‘brains’
GPUs for ‘inner loops’

Play to the strengths of each
programming environment.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

Outline

1 Leftovers

2 Code writes Code
The Idea
RTCG in Action
How can I do it?

3 Case Study: Generic OpenCL Reduction

4 Reasoning about Generated Code

5 Automatic GPU Programming

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

pyopencl.array: Simple Linear Algebra

pyopencl.array.Array:

Meant to look and feel just like numpy.

p.a.to device(ctx, queue, numpy array)

numpy array = ary.get()

+, -, ∗, /, fill, sin, arange, exp, rand, . . .

Mixed types (int32 + float32 = float64)

print cl array for debugging.

Allows access to raw bits

Use as kernel arguments, memory maps

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

PyOpenCL Arrays: General Usage

Remember your first PyOpenCL program?

Abstraction is good:

1 import numpy
2 import pyopencl as cl
3 import pyopencl.array as cl array
4
5 ctx = cl. create some context()
6 queue = cl.CommandQueue(ctx)
7
8 a gpu = cl array . to device (
9 ctx , queue, numpy.random.randn(4,4).astype(numpy.float32))

10 a doubled = (2∗a gpu).get()
11 print a doubled
12 print a gpu

Why is code generation useful in the imple-
mentation of the array type?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

PyOpenCL Arrays: General Usage

Remember your first PyOpenCL program?

Abstraction is good:

1 import numpy
2 import pyopencl as cl
3 import pyopencl.array as cl array
4
5 ctx = cl. create some context()
6 queue = cl.CommandQueue(ctx)
7
8 a gpu = cl array . to device (
9 ctx , queue, numpy.random.randn(4,4).astype(numpy.float32))

10 a doubled = (2∗a gpu).get()
11 print a doubled
12 print a gpu

Why is code generation useful in the imple-
mentation of the array type?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

pyopencl.elementwise: Elementwise expressions

Avoiding extra store-fetch cycles for elementwise math:

n = 10000
a gpu = cl array . to device (

ctx , queue, numpy.random.randn(n).astype(numpy.float32))
b gpu = cl array . to device (

ctx , queue, numpy.random.randn(n).astype(numpy.float32))

from pyopencl.elementwise import ElementwiseKernel
lin comb = ElementwiseKernel(ctx,

” float a, float ∗x, float b, float ∗y, float ∗z”,
”z[i] = a∗x[i] + b∗y[i]”)

c gpu = cl array . empty like (a gpu)
lin comb(5, a gpu, 6, b gpu, c gpu)

import numpy.linalg as la
assert la .norm((c gpu − (5∗a gpu+6∗b gpu)).get()) < 1e−5

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

pyopencl.reduction: Reduction made easy

Example: A dot product calculation

from pyopencl.reduction import ReductionKernel
dot = ReductionKernel(ctx, dtype out=numpy.float32, neutral=”0”,

reduce expr=”a+b”, map expr=”x[i]∗y[i]”,
arguments=” global const float ∗x, global const float ∗y”)

import pyopencl.clrandom as cl rand
x = cl rand.rand(ctx , queue, (1000∗1000), dtype=numpy.float32)
y = cl rand.rand(ctx , queue, (1000∗1000), dtype=numpy.float32)

x dot y = dot(x, y). get()
x dot y cpu = numpy.dot(x.get(), y.get())

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

Outline

1 Leftovers

2 Code writes Code
The Idea
RTCG in Action
How can I do it?

3 Case Study: Generic OpenCL Reduction

4 Reasoning about Generated Code

5 Automatic GPU Programming

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

RTCG via Substitution

source = (”””
kernel void %(name)s(%(arguments)s)
{

unsigned lid = get local id (0);
unsigned gsize = get global size (0);
unsigned work item start = get local size (0)∗get group id (0);

for (unsigned i = work item start + lid ; i < n; i += gsize)
{

%(operation)s;
}
}
””” % {

”arguments”: ”, ”. join (arg . declarator () for arg in arguments),
”operation”: operation ,
”name”: name,
”loop prep”: loop prep ,
})

prg = cl.Program(ctx, source). build ()

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

RTCG via Templates

from mako.template import Template

tpl = Template(”””
kernel void add(

global ${ type name } ∗tgt,
global const ${ type name } ∗op1,
global const ${ type name } ∗op2)

{
int idx = get local id (0)

+ ${ local size } ∗ ${ thread strides }
∗ get group id (0);

% for i in range(thread strides):
<% offset = i∗ local size %>
tgt [idx + ${ offset }] =

op1[idx + ${ offset }]
+ op2[idx + ${ offset }];

% endfor
}”””)

rendered tpl = tpl . render(type name=”float”,
local size = local size , thread strides = thread strides)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py Idea RTCG in Action How?

RTCG via AST Generation

from codepy.cgen import ∗
from codepy.cgen.opencl import \

CLKernel, CLGlobal, CLRequiredWorkGroupSize

mod = Module([
FunctionBody(

CLKernel(CLRequiredWorkGroupSize((local size,),
FunctionDeclaration(Value(”void”, ”twice”),
arg decls =[CLGlobal(Pointer(Const(POD(dtype, ”tgt”))))]))),

Block([
Initializer (POD(numpy.int32, ”idx”),

” get local id (0) + %d ∗ get group id(0)”
% (local size ∗ thread strides))

]+[
Statement(”tgt[idx+%d] ∗= 2” % (o∗local size))
for o in range(thread strides)]
))])

knl = cl.Program(ctx, str (mod)).build (). twice

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Outline

1 Leftovers

2 Code writes Code

3 Case Study: Generic OpenCL Reduction

4 Reasoning about Generated Code

5 Automatic GPU Programming

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Reduction

y = f (· · · f (f (x1, x2),
x3), . . . , xN)

where N is the input size.

Also known as. . .

Lisp/Python function reduce (Scheme: fold)

C++ STL std::accumulate

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Reduction: Graph

y

x1 x2

x3

x4

x5

x6

Painful! Not parallelizable.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Reduction: Graph

y

x1 x2

x3

x4

x5

x6

Painful! Not parallelizable.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Reduction: A Better Graph

y

x0 x1 x2 x3 x4 x5 x6 x7

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Mapping Reduction to the GPU

Obvious: Want to use tree-based approach.

Problem: Two scales, Work group and Grid

Need to occupy both to make good use of the machine.

In particular, need synchronization after each tree stage.

Solution: Use a two-scale algorithm.

5

Solution: Kernel DecompositionSolution: Kernel Decomposition

Avoid global sync by decomposing computation
into multiple kernel invocations

In the case of reductions, code for all levels is the
same

Recursive kernel invocation

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

Level 0:

8 blocks

Level 1:

1 block

In particular: Use multiple grid invocations
to achieve inter-group synchronization.

With material by M. Harris
(Nvidia Corp.)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Mapping Reduction to the GPU

Obvious: Want to use tree-based approach.

Problem: Two scales, Work group and Grid

Need to occupy both to make good use of the machine.

In particular, need synchronization after each tree stage.

Solution: Use a two-scale algorithm.

5

Solution: Kernel DecompositionSolution: Kernel Decomposition

Avoid global sync by decomposing computation
into multiple kernel invocations

In the case of reductions, code for all levels is the
same

Recursive kernel invocation

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

Level 0:

8 blocks

Level 1:

1 block

In particular: Use multiple grid invocations
to achieve inter-group synchronization.

With material by M. Harris
(Nvidia Corp.)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Kernel V1

kernel void reduce0(global T ∗g idata , global T ∗g odata,
unsigned int n, local T∗ ldata)

{
unsigned int lid = get local id (0);
unsigned int i = get global id (0);

ldata [lid] = (i < n) ? g idata [i] : 0;
barrier (CLK LOCAL MEM FENCE);

for(unsigned int s=1; s < get local size (0); s ∗= 2)
{

if ((lid % (2∗s)) == 0)
ldata [lid] += ldata[lid + s];

barrier (CLK LOCAL MEM FENCE);
}

if (lid == 0) g odata[get group id(0)] = ldata [0];
}

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Interleaved Addressing

8

Parallel Reduction: Interleaved AddressingParallel Reduction: Interleaved Addressing

2011072-3-253-20-18110Values (shared memory)

0 2 4 6 8 10 12 14

22111179-3-558-2-2-17111Values

0 4 8 12

22111379-3458-26-17118Values

0 8

22111379-31758-26-17124Values

0

22111379-31758-26-17141Values

Thread

IDs

Step 1

Stride 1

Step 2
Stride 2

Step 3

Stride 4

Step 4
Stride 8

Thread
IDs

Thread

IDs

Thread
IDs

Issue: Slow modulo, Divergence

With material by M. Harris
(Nvidia Corp.)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Interleaved Addressing

8

Parallel Reduction: Interleaved AddressingParallel Reduction: Interleaved Addressing

2011072-3-253-20-18110Values (shared memory)

0 2 4 6 8 10 12 14

22111179-3-558-2-2-17111Values

0 4 8 12

22111379-3458-26-17118Values

0 8

22111379-31758-26-17124Values

0

22111379-31758-26-17141Values

Thread

IDs

Step 1

Stride 1

Step 2
Stride 2

Step 3

Stride 4

Step 4
Stride 8

Thread
IDs

Thread

IDs

Thread
IDs

Issue: Slow modulo, Divergence
With material by M. Harris
(Nvidia Corp.)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Kernel V2

kernel void reduce2(global T ∗g idata , global T ∗g odata,
unsigned int n, local T∗ ldata)

{
unsigned int lid = get local id (0);
unsigned int i = get global id (0);

ldata [lid] = (i < n) ? g idata [i] : 0;
barrier (CLK LOCAL MEM FENCE);

for(unsigned int s= get local size (0)/2; s>0; s>>=1)
{

if (lid < s)
ldata [lid] += ldata[lid + s];

barrier (CLK LOCAL MEM FENCE);
}

if (lid == 0) g odata[get local size (0)] = ldata [0];
}

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Sequential Addressing

14

Parallel Reduction: Sequential AddressingParallel Reduction: Sequential Addressing

2011072-3-253-20-18110Values (shared memory)

0 1 2 3 4 5 6 7

2011072-3-27390610-28Values

0 1 2 3

2011072-3-27390131378Values

0 1

2011072-3-2739013132021Values

0

2011072-3-2739013132041Values

Thread
IDs

Step 1
Stride 8

Step 2
Stride 4

Step 3

Stride 2

Step 4
Stride 1

Thread
IDs

Thread
IDs

Thread
IDs

Sequential addressing is conflict free

Better! But still not “efficient”.

Only half of all work items after first round,
then a quarter, . . .

With material by M. Harris
(Nvidia Corp.)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Sequential Addressing

14

Parallel Reduction: Sequential AddressingParallel Reduction: Sequential Addressing

2011072-3-253-20-18110Values (shared memory)

0 1 2 3 4 5 6 7

2011072-3-27390610-28Values

0 1 2 3

2011072-3-27390131378Values

0 1

2011072-3-2739013132021Values

0

2011072-3-2739013132041Values

Thread
IDs

Step 1
Stride 8

Step 2
Stride 4

Step 3

Stride 2

Step 4
Stride 1

Thread
IDs

Thread
IDs

Thread
IDs

Sequential addressing is conflict freeBetter! But still not “efficient”.

Only half of all work items after first round,
then a quarter, . . .

With material by M. Harris
(Nvidia Corp.)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Thinking about Parallel Complexity

Distinguish:

Time on T processors: TP

Step Complexity/Span T∞: Minimum number of steps
taken if an infinite number of processors are available

Work per step St

Work Complexity/Work T1 =
∑T∞

t=1 St : Total number of
operations performed

Parallelism T1/T∞: average amount of work along span

P > T1/T∞ doesn’t make sense.

Algorithm-specific!

How parallel is our current version?

Can we improve it?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Thinking about Parallel Complexity

Distinguish:

Time on T processors: TP

Step Complexity/Span T∞: Minimum number of steps
taken if an infinite number of processors are available

Work per step St

Work Complexity/Work T1 =
∑T∞

t=1 St : Total number of
operations performed

Parallelism T1/T∞: average amount of work along span

P > T1/T∞ doesn’t make sense.

Algorithm-specific! How parallel is our current version?

Can we improve it?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Kernel V3 Part 1

kernel void reduce6(global T ∗g idata , global T ∗g odata,
unsigned int n, volatile local T∗ ldata)

{
unsigned int lid = get local id (0);
unsigned int i = get group id(0)∗(

get local size (0)∗2) + get local id (0);
unsigned int gridSize = GROUP SIZE∗2∗get num groups(0);
ldata [lid] = 0;

while (i < n)
{

ldata [lid] += g idata[i];
if (i + GROUP SIZE < n)

ldata [lid] += g idata[i+GROUP SIZE];
i += gridSize;

}
barrier (CLK LOCAL MEM FENCE);

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Kernel V3 Part 2

if (GROUP SIZE >= 512)
{

if (lid < 256) { ldata[lid] += ldata[lid + 256]; }
barrier (CLK LOCAL MEM FENCE);

}
// ...
if (GROUP SIZE >= 128)
{ /∗ ... ∗/ }

if (lid < 32)
{

if (GROUP SIZE >= 64) { ldata[lid] += ldata[lid + 32]; }
if (GROUP SIZE >= 32) { ldata[lid] += ldata[lid + 16]; }
// ...
if (GROUP SIZE >= 2) { ldata[lid] += ldata[lid + 1]; }

}

if (lid == 0) g odata[get group id(0)] = ldata [0];
}

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Performance Comparison

36

Performance ComparisonPerformance Comparison

0.01

0.1

1

10

131072

262144

524288

1048576

2097152

4194304

8388608

16777216

33554432

Elements

T
im

e
 (

m
s

)

1: Interleaved Addressing:

Divergent Branches

2: Interleaved Addressing:

Bank Conflicts

3: Sequential Addressing

4: First add during global

load

5: Unroll last warp

6: Completely unroll

7: Multiple elements per

thread (max 64 blocks)

With material by M. Harris
(Nvidia Corp.)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Generic CL Reduction: Preparation

#define GROUP SIZE ${group size}
#define READ AND MAP(i) (${map expr})
#define REDUCE(a, b) (${reduce expr})

% if double support :
#pragma OPENCL EXTENSION cl khr fp64: enable

% endif

typedef ${out type} out type ;

${preamble}

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

CL Reduction: Sequential Part

kernel void ${name}(
global out type ∗out, ${arguments},

unsigned int seq count, unsigned int n)
{

local out type ldata [GROUP SIZE];
unsigned int lid = get local id (0);
unsigned int i = get group id(0)∗GROUP SIZE∗seq count + lid;

out type acc = ${neutral};
for (unsigned s = 0; s < seq count; ++s)
{

if (i >= n) break;
acc = REDUCE(acc, READ AND MAP(i));
i += GROUP SIZE;

}

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

CL Reduction: Explicitly Synchronized Part

ldata [lid] = acc;

<% cur size = group size %>

% while cur size > no sync size :
barrier (CLK LOCAL MEM FENCE);

<%
new size = cur size // 2
assert new size ∗ 2 == cur size
%>

if (lid < ${new size})
{

ldata [lid] = REDUCE(
ldata [lid],
ldata [lid + ${new size}]);

}

<% cur size = new size %>

% endwhile

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

CL Reduction: Implicitly Synchronized Part

% if cur size > 1:
barrier (CLK LOCAL MEM FENCE);

if (lid < ${no sync size})
{

local volatile out type ∗lvdata = ldata;
% while cur size > 1:

<%
new size = cur size // 2
assert new size ∗ 2 == cur size
%>
lvdata [lid] = REDUCE(

lvdata [lid],
lvdata [lid + ${new size}]);

<% cur size = new size %>
% endwhile

}
% endif

if (lid == 0) out[get group id(0)] = ldata [0];
}

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Outline

1 Leftovers

2 Code writes Code

3 Case Study: Generic OpenCL Reduction

4 Reasoning about Generated Code

5 Automatic GPU Programming

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Judging Code Quality

Possible information sources for judging
code quality/desirability:

Heuristics (e.g. Occupancy,
Flops/Byte, . . . ?)

OpenCL Event profiling

Makes comp. synchronous on
Nvidia!

Wall time (!)

Compiler build log

Vendor Profiler

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Search Strategies

Possible search strategies:

Exhaustive

Exhaustive + Heuristics

Grouped Orthogonal Search

Genetic Algorithms

(your invention here)

Compiler cache makes repeated
searches fast.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Grouped Orthogonal Search

Define groupsChoose groupMap admissible optionsGroup-wide exhaustive searchStart over with best result → pick new group. . .

Group 1

Group 2

Group 3

GAOS: Adrian Tate, Cray, Inc.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Grouped Orthogonal Search

Define groups

Choose groupMap admissible optionsGroup-wide exhaustive searchStart over with best result → pick new group. . .

Group 1

Group 2

Group 3

GAOS: Adrian Tate, Cray, Inc.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Grouped Orthogonal Search

Define groups

Choose group

Map admissible optionsGroup-wide exhaustive searchStart over with best result → pick new group. . .

Group 1

Group 2

Group 3

GAOS: Adrian Tate, Cray, Inc.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Grouped Orthogonal Search

Define groupsChoose group

Map admissible options

Group-wide exhaustive searchStart over with best result → pick new group. . .

Group 1

Group 2

Group 3

GAOS: Adrian Tate, Cray, Inc.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Grouped Orthogonal Search

Define groupsChoose groupMap admissible options

Group-wide exhaustive search

Start over with best result → pick new group. . .

Group 1

Group 2

Group 3

GAOS: Adrian Tate, Cray, Inc.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Grouped Orthogonal Search

Define groupsChoose groupMap admissible optionsGroup-wide exhaustive search

Start over with best result → pick new group. . .

Group 1

Group 2

Group 3

GAOS: Adrian Tate, Cray, Inc.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Using the Nvidia profiler in-process

1 # enable profiler
2 import os
3 os. environ [”COMPUTE PROFILE”] = ”1”
4 with open(”/tmp/myprg−prof−config”, ”w”) as prof config:
5 prof config . write (”\n”. join (events))
6 os. environ [”COMPUTE PROFILE CONFIG”] = ”/tmp/myprg−prof−config”
7
8 # obtain timing data
9 prof f = open(” opencl profile 0 . log”, ”r”)

10 gain count = 0
11
12 while gain count < 2:
13 # run kernel here
14 prof output = prof f . readlines ()
15 if prof output :
16 print ”gained %d lines” % len(prof output)
17 gain count += 1
18 if gain count == 2:
19 print ””. join (l for l in prof output [1:−1]
20 if kernel name in l)

Sample output:
method=[matvec] gputime=[7218.048] cputime=[12.000] occupancy=[1.000]
method=[matvec] gputime=[7267.456] cputime=[14.000] occupancy=[1.000]
method=[matvec] gputime=[7264.640] cputime=[12.000] occupancy=[1.000]
method=[matvec] gputime=[7270.048] cputime=[15.000] occupancy=[1.000]
method=[matvec] gputime=[7262.976] cputime=[12.000] occupancy=[1.000]
method=[matvec] gputime=[7237.152] cputime=[23.000] occupancy=[1.000]

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Using the Nvidia profiler in-process

1 # enable profiler
2 import os
3 os. environ [”COMPUTE PROFILE”] = ”1”
4 with open(”/tmp/myprg−prof−config”, ”w”) as prof config:
5 prof config . write (”\n”. join (events))
6 os. environ [”COMPUTE PROFILE CONFIG”] = ”/tmp/myprg−prof−config”
7
8 # obtain timing data
9 prof f = open(” opencl profile 0 . log”, ”r”)

10 gain count = 0
11
12 while gain count < 2:
13 # run kernel here
14 prof output = prof f . readlines ()
15 if prof output :
16 print ”gained %d lines” % len(prof output)
17 gain count += 1
18 if gain count == 2:
19 print ””. join (l for l in prof output [1:−1]
20 if kernel name in l)

Sample output:
method=[matvec] gputime=[7218.048] cputime=[12.000] occupancy=[1.000]
method=[matvec] gputime=[7267.456] cputime=[14.000] occupancy=[1.000]
method=[matvec] gputime=[7264.640] cputime=[12.000] occupancy=[1.000]
method=[matvec] gputime=[7270.048] cputime=[15.000] occupancy=[1.000]
method=[matvec] gputime=[7262.976] cputime=[12.000] occupancy=[1.000]
method=[matvec] gputime=[7237.152] cputime=[23.000] occupancy=[1.000]

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Nvidia GPU Profiler: Events

gld request : Number of executed global load instructions per
warp in a SM

gst request : Number of executed global store instructions per
warp in a SM

divergent branch : Number of unique branches that diverge

instructions : Instructions executed

warp serialized : Number of SIMD groups that serialize on address
conflicts to local memory

And many more: see (root of CUDA
toolkit)/(doc/Compute Profiler VERSION.txt

(Careful: CUDA terminology)

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Outline

1 Leftovers

2 Code writes Code

3 Case Study: Generic OpenCL Reduction

4 Reasoning about Generated Code

5 Automatic GPU Programming

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Automating GPU Programming

GPU programming can be time-consuming, unintuitive and
error-prone.

Obvious idea: Let the computer do it.

One way: Smart compilers

GPU programming requires complex tradeoffs
Tradeoffs require heuristics
Heuristics are fragile

Another way: Dumb enumeration

Enumerate loop slicings
Enumerate prefetch options
Choose by running resulting code on actual hardware

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Automating GPU Programming

GPU programming can be time-consuming, unintuitive and
error-prone.

Obvious idea: Let the computer do it.

One way: Smart compilers

GPU programming requires complex tradeoffs
Tradeoffs require heuristics
Heuristics are fragile

Another way: Dumb enumeration

Enumerate loop slicings
Enumerate prefetch options
Choose by running resulting code on actual hardware

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Automating GPU Programming

GPU programming can be time-consuming, unintuitive and
error-prone.

Obvious idea: Let the computer do it.

One way: Smart compilers

GPU programming requires complex tradeoffs
Tradeoffs require heuristics
Heuristics are fragile

Another way: Dumb enumeration

Enumerate loop slicings
Enumerate prefetch options
Choose by running resulting code on actual hardware

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Loo.py Example

Empirical GPU loop optimization:

a, b, c, i , j , k = [var(s) for s in ”abcijk”]
n = 500
k = make loop kernel([

LoopDimension(”i”, n),
LoopDimension(”j”, n),
LoopDimension(”k”, n),
], [
(c[i+n∗j], a[i+n∗k]∗b[k+n∗j])
])

gen kwargs = {
”min threads”: 128,
”min blocks”: 32,
}

→ Ideal case: Finds 160 GF/s kernel
without human intervention.

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Loo.py Status

Limited scope:

Require input/output separation
Kernels must be expressible using
“loopy” model
(i.e. indices decompose into “output”
and “reduction”)
Enough for DG, LA, FD, . . .

Kernel compilation limits trial rate

Non-Goal: Peak performance

Good results currently for dense linear
algebra and (some) DG subkernels

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Loo.py Status

Limited scope:

Require input/output separation
Kernels must be expressible using
“loopy” model
(i.e. indices decompose into “output”
and “reduction”)
Enough for DG, LA, FD, . . .

Kernel compilation limits trial rate

Non-Goal: Peak performance

Good results currently for dense linear
algebra and (some) DG subkernels

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Questions?

?

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

Leftovers Code writes Code Case Study Reasoning Loo.py

Image Credits

Garbage Truck: sxc.hu/mzacha
Nvidia logo: Nvidia Corporation
Apple logo: Apple Corporation
AMD logo: AMD Corporation
Apples and Oranges: Mike Johnson - TheBusyBrain.com

Machine: flickr.com/13521837@N00

Adding Machine: flickr.com/thomashawk
Clock: sxc.hu/cema
Magnifying glass: sxc.hu/topfer

Andreas Klöckner GPU-Python with PyOpenCL and PyCUDA

	Leftovers
	OpenCL implementations

	Code writes Code
	The Idea
	RTCG in Action
	How can I do it?

	Case Study: Generic OpenCL Reduction
	Reasoning about Generated Code
	Automatic GPU Programming

