
  

  

Abstract—We consider the management of electric vehicle 

(EV) loads within a market-based Electric Power System 

Control Area. EV load management achieves cost savings in 

both (i) EV battery charging and (ii) the provision of additional 

regulation service required by wind farm expansion. More 

specifically, we develop a decision support method for an EV 

Load Aggregator or Energy Service Company (ESCo) that 

controls the battery charging for a fleet of EVs. A hierarchical 

decision making methodology is proposed for hedging in the 

day-ahead market and for playing the real-time market in a 

manner that yields regulation service revenues and allows for 

negotiated discounts on the use of distribution network 

payments. Amongst several potential solutions that are 

available, we employ a rolling horizon look-ahead stochastic 

dynamic programming algorithm and report some typical 

computational experience. 

I. INTRODUCTION  

A. Wind Generation and EV Charging Synergies 

A sustainable energy future will have to rely beyond 

conservation and efficiency gains to (i) the conversion of 

transportation vehicles, responsible today for 30% of CO2 

emissions in the United States, to EVs and (ii) the 

commensurate adoption of now economically competitive 

[17] clean renewable energy generation. We address a 

decision support problem that is central to the realization of 

an important synergy between the management of EV battery 

charging and the alleviation of congestion in both the 

distribution network infrastructure and fast reserve capacity 

(regulation service). Indeed, wind generation’s intermittency 

requires additional reserve capacity, of the order of 10-20% 

of wind capacity [10]-[11], [14]. Given that regulation 

service, which is provided today by fast reserve capacity of 

the order of 1-2% of load, costs $40-$50 per MW per hour 

[23], a four to five fold increase will certainly raise its cost 

and hinder the adoption of renewable generation. At the 

same time, the advent of EVs will increase load substantially 

and, in the absence of smart charging, require costly 

distribution network investments that may easily become a 

show stopper for widespread EV adoption. We claim that 

EV battery charging can be managed so as to both increase 

the supply of regulation service thus controlling its cost and 

mitigate distribution network congestion. 
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In order to streamline our presentation, we assume that (i) 

an ESCo is selected by EV owners to manage EV charging; 

(ii) EVs are equipped with a smart interface that measures in 

real-time, the energy needed to fully charge the EV batteries, 

identifies the location of the outlet the EV is plugged-in, and 

accepts EV  owner input about the desired departure time; 

and (iii) the ESCo recovers information at will from each EV 

smart interface, controls battery charging in real-time, and 

communicates with the distribution network operator who 

provides information on low voltage feeder specific unused 

capacity available for EV battery charging.  

In this paper we propose a decision support methodology 

for the ESCo to manage EV battery charging while engaging 

in energy and reserve capacity transactions in the wholesale 

power market. Given the important role of the wholesale 

market in the ESCo costs and revenues, we describe next the 

framework that we assume to be in place. In contrast we do 

not go through the details of the retail market since we 

assume that related ESCo benefits derive from a long term 

contract subject to the ESCo observing feeder congestion 

constraints. 

B. Day-Ahead and Real-Time Wholesale Markets 

We assume an operative day-ahead and real-time power 

market framework similar to that used in the major USA 

power pools (PJM, NYISO, NEISO, MISO, ERCOT, 

California ISO) but somewhat simplified and stylized 

without loss of generality since the essential characteristics 

are retained. The actual PJM and NYISO market practice is 

presented in [18]-[22] while work by the authors on real-time 

pricing and power market design can be found in [2], [4]-[9], 

[16]. The products traded and cleared in the wholesale 

market include nodal energy injections and withdrawals 

needed to achieve real-time energy balance, and Independent 

System Operator (ISO) determined levels of area-specific 

capacity reserve requirements secured by the ISO from 

several participants, who also offer/demand energy using the 

same hardware. Capacity reserves consist of (i) frequency 

control, usually a fast reacting up/down band of capacity 

provided by real-time frequency deviation automatic 

generation control totaling today 0.1-0.3% of load with full 

deployment capability required in 30 seconds, (ii) regulation 

service, a similar up/down band of capacity that the ISO 

issues commands to every 5-8 seconds totaling today 1-2% 

of load, with full deployment capability required in 5 

minutes (iii) spinning or operating reserves that the ISO may 

call to provide energy within 15 minutes, totaling an 
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additional 3-6% of peak load or the size of the largest 

contingency, and (iv) slower reserves (0.5 to 2+ hour 

response). 

The day-ahead market closes at noon of the previous day 

and uses participant bids to determine an hourly schedule of 

energy and reserve products together with the corresponding 

clearing prices at each node of the transmission network. 

This is done by selecting hourly energy and reserve 

quantities that maximize consumer plus producer surplus 

subject to energy balance, transmission constraints, reserve 

requirement and other technical constraints such as ramp 

constraints, minimal generation, and down and up times. The 

usual methodology employed by the ISO is a mixed integer 

LP mathematical program. 

The real-time market allows adjustments relative to the 

day-ahead market clearing energy and reserve quantities and 

prices at the beginning of every 5 minute interval. Reserve 

requirement constraints are reinforced by re-dispatching net 

energy injections to return reserve capacity to its nominal 

operating levels. As a result, the diversions of regulation 

service in the seconds scale appear like white noise with 

minimal (close to zero) impact on the energy provided over 

time periods greater than 30 minutes. The usual methodology 

employed by the ISO is the solution of a rolling 1-2 hour 

horizon optimization model that determines the next 5 

minute quantity schedule and clearing prices while providing 

forecasts for the next few 10-15 minute periods. 

In order for a regulation service offer (in KW) 
R

t
Q  to be  

accepted, (i) the nominal consumption rate must be  
R

t
Q  so 

that it can be modulated at the ISO’s discretion in the 

interval [0,2
R

t
Q ], and (ii) the regulation service clearing 

price, 
R

t
P , must exceed the opportunity cost of consuming at 

R

t
Q  rather than at 0 or 2

R

t
Q  plus the price offered for 

engaging in the fast regulation service modulation, 
RC

t
u . In 

fact, denoting the energy clearing price by 
E

t
P and the energy 

price bid for consuming at the rate 
R

t
Q  by 

RE

t
u , we observe 

that the unit opportunity cost is |
E

t
P -

RE

t
u |. When 

E

t
P <

RE

t
u  

the opportunity cost of operating at 
R

t
Q  rather than at 2

R

t
Q  is 

(
RE

t
u -

E

t
P )

R

t
Q , while when 

E

t
P >

RE

t
u  the opportunity cost of 

operating at 
R

t
Q  rather than at 0 is (

E

t
P -

RE

t
u )

R

t
Q . In 

conclusion, the co-optimization of energy and reserve 

capacity results in the criterion that a regulation service offer 
R

t
Q  is accepted when |

E

t
P -

RE

t
u |+

RC

t
u ≤

R

t
P . 

C. ESCo Role in EV Battery Charging 

The ESCo is assumed to be a participant in the wholesale 

market where it hedges its energy costs by purchases in the 

day-ahead market, and then adjusts to its actual needs by 

buying excess or selling surplus in the real-time market. The 

ESCo offers regulation service in the real-time market under 

the usual obligation to respond to ISO for the corresponding 

consumption. The ESCo is assumed to receive information 

on the excess load capacity at each feeder line, and to be able 

to contract with the distribution network owner for discounts 

on the distribution fee, provided that EV battery charging 

does not impose loads that exceed the excess capacity of 

each feeder. The ESCo (i) incurs daily costs in the day-ahead 

market (ii) adjusted through purchases in the real-time 

market, (iii) enjoys revenues through real-time regulation 

service sales, and (iv) receives monthly distribution network 

fee discounts [5], [8]-[9], [25] provided it observes feeder 

excess capacity limitations in real-time. Decisions the ESCo 

must make at different time scales are: 

1. Daily, day-ahead market, noon of day before: bid 

energy quantities and prices for each of the 24 hours in the 

upcoming day. In some regions there are “rebalancing” 

markets that follow the day-ahead market to reschedule or 

adjust unit commitment after uncertainty is realized. 

2. Hour-to-5-minute, real-time market (at the beginning 

of each real-time market period): (i) request what we call 

“for sure” charging rate quantity, 
E

t
Q , accompanied by a 

high enough price bid, 
E

t
u ,  to assure the quantity  is 

accepted, and (ii) offer bidirectional regulation service 

capacity, 
R

t
Q , accompanied by a pair of price bids 

RE

t
u , 

RC

t
u for energy and capacity, respectively. In addition, the 

ESCo must follow market rules to make sure that its 

consumption rate bid and regulation service offer are 

realizable. This requires that the following two constraints on 

the maximal consumption rate (i.e. the requested 

consumption rate plus twice the offered regulation service): 

first there must be enough plugged-in EVs to absorb the 

maximal charging rate in the event all of the regulation 

service consumption capacity is required, and second the 

excess load capacity of each feeder should be sufficient to 

support the maximal consumption rate in that feeder.  

3. Seconds, operational level: Adjust the total charging 

rate in each feeder to satisfy regulation service commands 

without exceeding feeder capacity limits and distribute 

feeder charging rate to individual battery charger commands. 

A reasonable and probably near optimal policy for the latter 

is to do it by pursuing the target of equal charged level 

across batteries of all feeder connected EVs with the same 

departure time. This is a good strategy because on the one 

hand it maximizes the number of EVs that can provide 

positive regulation service load, while on the other it spreads 

equitably the risk that a large portion of a particular EV’s 

battery is uncharged at the time of departure. 

ThB15.3

4718



  

II. HOUR-TO-5-MINUTE FEEDER SUB-PROBLEM  

We start with rigorous definitions leading to a dynamic 

programming formulation of the feeder sub-problem. A short 

discussion of how the sub-problem fits in the overall 

problem is followed by brief commentary on alternative sub-

problem solution approaches. We propose a Finite Look-

Ahead Dynamic Programming approximation which we 

apply to explore various numerical solutions in Section III. 

We focus on the real-time market decisions over a finite 

horizon.  Without loss of generality we assume that (i) 

periods can be of variable length to take advantage of the 

fact that market and feeder conditions are occasionally 

similar over a number of hours; (ii) the battery charging rate 

for each vehicle can be switched at will between two discrete 

positions, 0 and a fixed rate (say 2KW); (iii) the ESCo 

receives feeder specific capacity forecasts; (iv) the ESCo has 

access to a joint probability distribution (jpd) of energy and 

regulation service clearing prices; (v) the ESCo has feeder 

specific forecasts of when EVs are expected to connect 

including their departure time; (vi) the ESCo is a price taker 

in the “for sure” energy market; and (vii) no cars un-plug 

from a feeder location before their declared departure time. 

The following lists develop the notation necessary for 

problem formulation. 

Random Variables, Density Functions, and Exogenous 

Estimates 

,t t∆ : Decision period t and its duration. 

* *ˆ ˆ, 
t t

t t
W Y : Wind output and system outage state during period 

t, as forecasted at t* ≤ t. 
max, *ˆ t

t
C : Feeder specific unused capacity available for EV 

battery charging at time t as forecasted at t* ≤ t. 

ˆ ˆ( *), ( *)
t t

n t x t
τ τ

∆ ∆ : Number of EVs and their uncharged 

energy expected to plug-in during period t with declared 

departure at the beginning of period τ, forecasted at t* ≤ t. 

*tE : Expectation operator conditional on information 

available at the beginning of period t* ≤ t. 

,
E R

t t
P P : Realized real-time market clearing prices during 

period t for energy and regulation service. 
* *

*
ˆ ˆ( , | , )

E R t t

t t t t t
f P P W Y : Jpd of energy and regulation service 

clearing prices given information available at t* ≤ t. 

State and Decision Variables 

,
t t

n x
τ τ

: Number of EVs and their uncharged energy 

plugged-in at the beginning of period t, with declared 

departure the beginning of period τ. 
*ˆt

t
θ : State augmentation with forecasts 

*ˆ t

t
W , 

*ˆ t

t
Y , and 

max, *ˆ t

t
C  available at t* ≤ t. 

( ), ( )
E R

t t
Q Qτ τ : Energy rate requested during period t, and 

regulation service capacity offered at time t, respectively. 

Related to charging EVs with battery space  
t

x
τ

. 

( ), ( )
RE RC

t t
u uτ τ : Energy and capacity price offered, 

respectively, for ( )
R

t
Q τ . 

Parameter Values 

c : Penalty per KWh of uncharged energy at time of EV 

departure. 

N
λ : Estimated marginal cost of charging 

1N

N
x

+
. 

r : The charging rate of each EV. 

The total expected costs includes the sum of the costs for 

each period t included in the finite look-ahead (1) and 

terminal costs (2). It is important to note that these values 

depend on 
*ˆt

t
θ . 

*
{ ( )

t E E

t t tt
cx P Q

τ

τ+ +∑E [ ] ( ) }( *)
E R R

t t t t
P P Q tt

τ
τ− Π ∆  (1) 

N

N
cx +

1N

N N
xλ

+
 (2) 

A. Dynamics and Allowable Decisions 

The dynamics and allowable decisions depend on the 

decisions ( )
RE

t
u τ , ( )

RC

t
u τ and the state augmentation 

*ˆt

t
θ . 

For all tτ > the energy state dynamics can be written using 

the unit function 
( ) accept

1
R

t
Q τ

 that equals 1 if ( )
R

t
Q τ is accepted, 

0 otherwise. 

The probability that a regulation service bid is accepted, 

which we will denote 
( ) accept

Pr(1 1)
R

t
Q τ

= ≜ ( *)
t

t
τ

Π , is obtained 

as noted from 
* *ˆ ˆ( , | , )

E R t t

t t t t t
f P P W Y  using the methodology 

described above. Therefore, the state dynamics can be 

expressed in (3)-(5). 

1

ˆ= + ( *)
t t t

n n n t
τ τ τ

+
∆  but for ( ),  0

t t
t n n t

τ τ

τ ≤ = ∆ =  (3) 

1 ( ) accept

ˆ ( ) [ ( ) 1 ( )]
R

t

E R

t t t t tQ
x x x t Q Q t

τ τ τ

τ
τ τ

+
= + ∆ − + ∆  (4) 

1 1 1 1

1 1 1 1max,ˆ ˆ ˆ[ , , ]ˆt t t t

t t t t
W Y Cθ

+ + + +

+ + + +
=  (5) 

Equations (6)-(8) present the feeder capacity constraints 

that guarantee the ability to provide the full regulation 

service if requested by the ISO. 
max, *ˆ[ ( )+ 2 ( )]

E R t

t t t
Q Q C

τ
τ τ ≤Σ  (6) 

( )+ 2 ( )
E R

t t t
Q Q rn

τ
τ τ ≤  (7) 

( )+ ( )
E R

t t t
Q Q xt

τ
τ τ ≤ ∆   (8) 

B. Hour-to-5-Minute Feeder Sub-Problem Formulation 

We formulate the hour-to-5-minute time scale feeder sub-

problem as a finite horizon stochastic dynamic programming 

problem (SDP). In the following formulation of the SDP (9), 
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decisions are made at the beginning of each period 

employing accurate estimates available at *t t= . 

{
( ), ( ), ( ), ( ), ,

{ ( )min
E R RC RE

t t t t

t E E

t t t t t

Q Q u u t

cx P Q
τ

τ τ τ τ τ

τ
∀

+ ΣΣ E  

} 1

( )
1 [ ] ( )}

R

E R R N N

t t t N N NQ accept
P P Q t cx x

τ
τ λ

+

+ − ∆ + +  

(9) 

Decisions are subject to the state dynamics t N∀ ≤  in (3)-

(5), allowable control constraints (6)-(8), and non-negativity 

constraints on the uncharged energy and energy rate bids. 

Note that ( )
E

t
Q τ  and ( )

R

t
Q τ equal 0 for all tτ ≤ . 

The problem formulated above is a sub-problem in the 

hour-to-5-minute time scale. Decisions at each feeder 

associated with the same time period t are coupled across 

feeders through hedging transactions in the day-ahead market 

that secure a certain quantity of energy at the corresponding 

hour’s day-ahead market clearing price. The day-ahead price 

provides an opportunity cost for real-time transactions which 

depends on the difference between the day ahead and real-

time prices. This opportunity cost reveals itself as the dual 

variable associated with the balance between the day ahead 

secured energy and the real-time energy consumption 

decision. This constraint has been left out in the current 

formulation but can be incorporated in a Lagrangian 

relaxation approach that combines a master problem solution 

at the day-ahead market time scale with multiple feeder 

specific sub-problems at the real-time market time scale. 

Extensive work in time scale decomposition approaches by 

the authors and others [1], [3], [12], [15] has shown that the 

frequency separation of decisions in the day-ahead and real-

time markets is sufficient to provide near optimal and rapidly 

converging formulations. 

The periodic infinite horizon issue is addressed through 

the inclusion of an extension period model reflected in the 

terminal cost approximation where uncharged batteries of 

EVs with declared departure after the end of the horizon 

( Nτ > ) are penalized by a fixed cost rate (
N

λ ) estimated 

to represent the marginal cost of charging them in the future. 

A better approximation would be to use departure time 

specific cost rates and to estimate these rates by running an 

explicit extension period model. 

III. SOLUTION APPROACH ADOPTED 

Obtaining the optimal solution of the proposed finite 
horizon SDP sub-problem is formidable in itself due to (i) 
the large state and control space, and (ii) the non-linearity 
introduced in the dynamics by the probability that regulation 
service offers will be accepted. Amongst the various 
tractable but potentially near optimal approximations 
proposed in the literature we consider conversion to a 
deterministic problem using robust arguments. We 
approximate the SDP with an optimal open loop feedback 
formulation that essentially coincides with a finite period 
look-ahead approach. This look-ahead approach increases 
the number of decision variables since they now depend on 

the forward trajectories that are created and defined above 
for each acceptance or rejection of the regulation service 
offer for each t and τ. We also have to keep track of these 
forward trajectories and associate all decisions and state 
variables at each time period t with each possible trajectory 
from time 0 to time t.  We define 

( ) ( ),1 ( ), ( ),,..., ,...,
k t k t k t k t t

S s s s
τ τ τ τ =  ℓ

 as a 1 t× vector with 

elements in { }0,1  corresponding to the rejection or 

acceptance of a regulation service offer. The counter ( )k t  

takes values in {1, 2, 3, ..., 2 }
t

 to span all possible 2
t
 

trajectories that state variables may evolve from period 0 to 
the beginning of period t forming an acyclic tree of network 

trajectories. ( )k tS
τ

 evolves according to a forward recursive 

relationship that depends on the acceptance or rejection of 
the regulation service offer for period t intended to charge 
EVs plugged-in prior to period t and planning to depart at 
the beginning of period tτ > . The recursion is based on the 

fact that each trajectory k(t) generates 2 trajectories k ′ and 

k ′′  at 1t +  through the concatenation of elements 

( 1), 1 ( 1), 1,
k t t k t t

s s′ ′′+ + + + , with assigned probabilities as known at 

* 0t = . Since state and decision variables, except for 

t
n

τ
and

0ˆ
t

θ , are now conditional upon the trajectory
( )k t

S
τ

, we 

must write 
( )

( )
t k t

x S
τ τ

, 
( )

( , )
R

t k t
Q S

τ

τ , 
( )

( , )
E

t k t
Q S

τ

τ , 
( )

( , )
RE

t k t
Su τ , 

and 
( )

( , )
RC

t k t
Su τ . Note that now acceptance probabilities 

are trajectory dependent, since the price offers are 

trajectory dependent. Letting 
( )

(0, )
j

t k t
SΠ be the probability 

that offer 
( )

( , )
R

t k t
Q S

τ
τ  is accepted, we have the trajectory 

probabilities recursion shown in (10)-(11). 

( 1) ( )
=[ , 0]

t k tkS S
τ τ

+′ , with 

( 1) ( ) ( )
PrTr( ) PrTr( )(1- (0, ))

t k t t k tk
S S S

τ τ τ

+′ Π≜  
(10) 

( 1) ( )
=[ ,1]

t k tkS S
τ τ

+′′ , with 

( 1) ( ) ( )
PrTr( ) PrTr( ) (0, )

t k t t k tk
S S S

τ τ τ

+′′ Π≜  
(11) 

and initial condition 
( 0 )

PrTr( )=1
k

S
τ

. Based on the knowledge 

of estimates at * 0t = , 
( )

(0, )
j

t k t
SΠ  is calculated from the 

known jpd 
0 0

0
ˆ ˆ( , | , )

E R

t t t t
f P P W Y , and period decisions are 

made for every ( )k t . The finite look-ahead dynamic 

problem (LADP) expressed in (12). Subject to state 

dynamics equations t N∀ ≤  presented in (3) and (13)-(14), 

the trajectory probabilities recursion presented in (10)-(11) 

with the initial condition 
( 0 )

PrTr( )=1
k

S
τ

, allowable control 

constraints in (15)-(17), and non-negativity constraints on 

the uncharged energy and energy rate bids. Note that 

( )
( , )

E

t k t
Q Sτ  and 

( )
( , )

R

t k t
Q Sτ equal 0 for all tτ ≤ . 
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{ , ( ) 0 ( )
, , ,

min PrTr( ) { ( , )
E R RC RE

t E E

t k k t t t k tt
Q Q u u

cx S P Q S
τ τ

τ
τ+ ΣΣ E  

}
( ) ( )

[ ] ( , ) (0, )}
E R R

t t t k t t k t
P P Q S S t

τ τ
τ− Π ∆+  

        
( ) ( )

Pr Tr( ) ( )
N N N

k N N k Nk
S cx S+Σ  

1 1 1

( ) ( )
Pr Tr( ) ( )

N N N

k k N N N k N
S x Sλ

+ + +
+Σ  

(12) 

1 ( 1) ( )

ˆ( ) ( , ) (0)
t k t t k t t

x S x S x
τ τ τ τ τ

τ′+ +
= + ∆

( )
( , )

E

t k t
Q S t

τ

τ− ∆  (13) 

1 ( 1) ( )

ˆ( ) ( ) (0)
t k t t k t t

x S x S x
τ τ τ τ τ

′′+ +
= + ∆

( ) ( )
[ ( ) ( )]

E R

t k t t k t
Q S Q S t

τ τ

− + ∆  (14) 

( ) ( )

max,0
+ ˆ[ ( , )  2 ( , )]

E R

t k t t k t t
Q S Q S Cτ τ τ ≤Σ  (15) 

( ) ( )
( , )+ 2 ( , )

E R

t k t t k t t
Q S Q S rn

τ
τ τ ≤  (16) 

( ) ( ) ( )
( , )+ ( , ) ( , )

E R

t k t t k t t k t
Q S Q S x St

τ τ
τ τ τ≤ ∆   (17) 

Based on robust arguments (i.e., worst case analysis) we 

use conservative but anticipatory estimates of feeder excess 

capacity and new EV arrivals. Whereas the joint probability 

of clearing prices the next 90 minutes is known with small 

variance, and the wind and system state estimates are also 

known well on an hour ahead basis, there is a higher forecast 

error for periods further in the future. This problem is 

somewhat mitigated by using an optimal open loop feedback 

approach and using only the decisions for 0t = , and then 

resolving at 1t = , etc. 

We select 
( )

( , )
RE

t k t
u S

τ
τ as the forecasted energy price and 

let 
( )

 ( , )
RC

t k t
u S

τ
τ  be zero, which allows us to stay within the 

convenience of linear programming. Therefore, the 
probability that the regulation service offer is accepted is 
maximized. In addition the probability a regulation service 
bid is accepted is no longer a function of τ. This 
simplification is consistent with the EV load aggregator 
being a price taker and results in a single trajectory set that 
applies to all EV groups. The look-ahead formulation results 
in a classic tree structure. 

IV. COMPUTATIONAL RESULTS 

We employed a four period look-ahead model, 

{ }0,1, 2,3t ∈  with extension period 4τ = . Each period was 

assumed to consist of 6 relatively homogeneous hours with 

0t =  corresponding to 6:00 P.M. The model input was 

calibrated to represent a low voltage residential feeder 

servicing approximately fifty households with an equal 

number of EVs in Texas where wind farm generation is 

already substantial and is likely to continue to develop at a 

rate amongst the fastest in the United States. Typical fall and 

summer residential consumption profiles and hourly 

wholesale market energy and regulation service prices were 

drawn from the ERCOT website. This information was 

complemented by reasonable assumptions on distribution 

capacity and residential EV battery charge demand patterns 

as shown in Fig. 1 and Tables I-II. 
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Fig. 1.  Non-EV load profiles. Hour 1 corresponds to 12:01 A.M. to 

1:00 A.M. The vertical lines in the graph show 
max,0ˆ
t

C . 

TABLE I 
EXPECTED EV BATTERY CHARGE DEMAND 

Values τ=1  τ=2 τ=3 τ=4 τ=4+ 

0
x

τ
 4 212 48 24 12 

0
n

τ
 1 20 5 2 1 

( )0
0x

τ
∆  n/a 220 0 20 0 

( )1
0x

τ
∆  n/a n/a 4 8 12 

( )2
0x

τ
∆  n/a n/a n/a 8 20 

( )3
0x

τ
∆  n/a n/a n/a n/a 300 

( )0
0n

τ
∆  n/a 20 0 2 0 

( )1
0n

τ
∆  n/a n/a 1 1 1 

( )2
0n

τ
∆  n/a n/a n/a 1 3 

( )3
0n

τ
∆  n/a n/a n/a n/a 29 

Selected for a residential community in a typical work day. 

TABLE II 
EXPECTED WHOLESALE MARKET CLEARING PRICES 

Fall Summer 
t 

[ ]
0

E

t
PE  [ ]

0

R

t
PE  Πt(0) [ ]

0

E

t
PE  [ ]

0

R

t
PE  Πt(0) 

0 0.048 0.020 0.90 0.102 0.033 0.88 
1 0.022 0.015 0.80 0.061 0.014 0.80 
2 0.040 0.017 0.85 0.075 0.019 0.83 
3 0.068 0.019 0.89 0.157 0.045 0.90 

$ per KWh. Пt(0) values correlated to expected clearing prices. 

Parameter Values Used 

c : $0.75 per KWh corresponds to $3 per gallon of gasoline. 

λ : Set equal to the average cost of charging energy during 

the control horizon. Since this average cost depends on the 

value of λ, several runs had to be made to assure 

convergence. 

r : 2 KW. 

Distribution losses were assumed to be 5%, 7.5% and 10% 

during low peak, intermediate and peak load conditions, 

respectively. Transmission and distribution usage fees were 

assumed to be of the order of $0.06 per KWh, and we 

considered that the ESCo will be able to negotiate a 
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reduction of $0.02 per KWh consumed in exchange for 

observing congestion constraints. 

The fall simulation resulted in all vehicles being charged 
prior to their terminal times in all sixteen possible 
trajectories. The expected average cost (for energy charged 
and extension period costs) was $0.0249 per KWh. Energy 
charged in the form of regulation service was expected to 
account for 17.2% of total EV daily load. Similarly, the 
summer simulation resulted in all vehicles being charged 
prior to their declared departure times in all of the sixteen 
possible trajectories. As one would guess, the expected 
average cost was significantly higher at $0.0760 per KWh.  
Energy charged in the form of regulation service was 
expected to account for 13.9% of total EV daily load. This 
value is lower due to the higher non-EV load during a typical 
summer day.  

Assuming the $0.02 per KWh reduction in distribution 
costs, and adding the benefit from low energy cost purchases 
and the sale of regulation service, in the fall scenario the 
ESCo managed EV battery charging will cost 26.2% less to 
the end consumer than the cost of charging the EV on 
demand (i.e., start charging immediately when the EV plugs-
in and until the battery is full), while in the summer scenario 
the savings is 15.6%. The lower percentage is a result of 
significantly higher energy prices during a typical summer 
day. 

We wish to emphasize that to obtain reliable results that 

simulate a high EV penetration future, a higher resolution 

model is needed (e.g., 12 time periods), multiple typical 

residential and commercial feeder data must be compiled and 

the coupled feeder problem must be solved. The purpose of 

the current paper is to provide a proof of concept that such 

emulation is possible and more importantly elaborate the 

order of magnitude of potential benefits that are achievable 

through EV battery charging coordination. 

V. CONCLUSION 

We developed and implemented a decision tool for the 

coordination of EV battery charging. Results support the 

notion that management of renewable generation 

intermittency, distribution network constraints, and EV 

charging requirements can result in cost savings, mitigate 

network and reserve capacity congestion, and remove 

barriers to the widespread adoption of EVs and renewable 

generation. Future research will focus on (i) better models of 

the cascading day ahead, rebalancing, and real-time markets 

that are able to deal with adaptation to uncertainty revelation 

such as intermittent generation forecast error and the 

resulting impact on reserve requirements; (ii) algorithmic 

improvements such as the integration of the hour-to-5-minute 

feeder sub-problem with the longer time scale day ahead 

hedging decision and the shorter time scale real-time 

operational decisions, and the exploration of feeder sub-

problem solutions including robust optimization and 

feature/state aggregation based approximations; and (iii) a 

more careful representation of distribution network costs as 

related to real-time state identification including line and 

transformer temperature and line losses. 
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