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Discovery of Dynamic Locational Prices on Power Distribution Networks:
Efficient and Robust Distributed Algorithms in the Presence of Binding
Voltage Constraints

Elli Ntakou and Michael Caramanis™

Abstract- Distribution network electricity mar-
kets can evaluate and consequently integrate Dis-
tributed Energy Resources (DERs), including elec-
tric vehicles, PV, storage and storage-like flexible
loads. Fully distributed algorithms (FDA) proposed
so far have been shown to handle full AC load flow
modeling and complex DER preferences and ca-
pabilities and overcome insurmountable computa-
tional limitations of centralized models. Neverthe-
less, even fully distributed algorithms become im-
practical and slow under binding voltage constraint
situations. This paper addresses Distribution Net-
work Locational Marginal Price (DLMP) discov-
ery under binding voltage constraints by proposing
(i) a penalty that replaces hard voltage constraints
and (ii) an iterative, partially distributed algorithm
(PDA) where DERs adapt to DLMP estimates by
solving individual benefit maximization problems in
parallel, followed by a centralized AC Load Flow so-
lution. The proposed algorithm is shown to be ro-
bust and significantly faster than a fully distributed
algorithm (FDA). Further, the PDA algorithm with
voltage penalties is implemented on a realistic 800
bus distribution network and is shown to discover
robustly and tractably DLMPs for a 24 hour day
ahead market clearing problem.

I. INTRODUCTION

Increasing penetration of Distributed Energy Re-
sources (DER) has sparked interest in the distribution
side of the electricity grid. Advances in computation
and communication are making it possible to extend
wholesale power markets to distribution network con-
nected DERs, as a means of efficient DER integration
and valuation.

Much like transmission power markets discover
Locational Marginal Prices (LMP) of real power, the
proposed distribution power markets may discover Dis-
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tribution Locational Marginal Prices (DLMPs) of real
and reactive power.

Previous work , [1] and [2] amongst others, has
used centralized models for distribution power market
clearing. Because of the tree structure of typical distri-
bution networks, there is a unique primal solution [3],
paired with a unique dual solution. The dual prices of
the real and reactive energy balance constraints at the
optimal solution are the real and reactive power DLMP
respectively. The problem formulation in these papers
reveals the huge computational burden of the central-
ized formulation caused by:

1. Non-convexities in the alternating current (AC)
power flow constraints

2. Market participants like electric vehicles and
HVAC devices exhibit time coupled constraints

3. Market participants number in the order of hun-
dreds of thousands.

Therefore, relevant literature has moved towards
decentralized methods for distribution power market
clearing [4], [5]. Our previous work in this direction [6]
and [7] extends [4]. In a fully distributed algorithm
(FDA) framework, each device (load, generator, DER
etc) and each distribution network element (line, trans-
former) solve an individual problem that optimizes their
preferences. This optimization problem takes into ac-
count the relevant capabilities as well as messages re-
ceived from the bus(es) each element is connected to.
Generators, loads etc., connected to a single bus, re-
ceive such messages from a single bus, while lines and
transformers receive messages from the two buses they
are connected to. Messages are nothing more and noth-
ing less than tentative DLMP estimates reflecting the
imbalance of real power, reactive power and voltage
consistency at the relevant bus(es). After the optimiza-
tion problems of devices and line/transformer have been
computed, the results are passed on to the connected
bus(es) for the latter to update the prices. This loop re-
peats until the imbalances are below a threshold.
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The abovementioned price messages should con-
verge to the DLMPs of real and reactive power, as the
iteration count increases and DERs adapt to succes-
sive DLMP estimates. [2] and [7] showed the effect
that binding voltage magnitude constraints have on the
real and reactive power DLMPs. [7] discovered that in
cases where voltage levels are persistently binding even
in a small subset of busses, convergence to the optimal
DLMPs is very slow when fully distributed algorithms
are employed. [7] proposes a filter to speed up conver-
gence in both voltage shadow prices as well as real and
reactive power prices. In essence, this filter is imposing
the system-wide power flow constraints.

Motivated mostly by the shortcomings discussed
in [7], this paper proposes a new model that relies on
decentralized DER decision making followed by cen-
tralized ex-post DLMP calculations. We call this model
Partially Distributed Algorithm (PDA). More specif-
ically, DERs solve sub-problems individually aiming
at minimizing their costs (or maximizing their bene-
fit) conditional upon DLMP estimates at their connec-
tion bus. DLMP estimates and flows on all distribution
network resources (lines, transformers, etc.,) are eval-
uated centrally. This is done by solving an AC load
flow and its associated sensitivities that imply ex-post
DLMP estimates using the DLMP price decomposition
reported in [8]. Equivalently, we can solve a mock cen-
tralized market clearing problem with fixed DER be-
havior whose primal solution are the network flows and
dual variables of nodal balances the ex-post DLMPs.

We draw attention to an additional difficulty by not-
ing that, despite the existence of a slack bus, upper and
lower voltage magnitude constraints can result in the
centralized load flow with fixed DER behavior being in-
feasible. We therefore propose to replace hard voltage
constraints by adding convex penalty terms in the ob-
jective function. These terms are practically zero in the
feasible range and increase steeply as the desirable volt-
age bounds are exceeded. Under the soft voltage con-
straint formulation, PDA algorithms are able to over-
come infeasibility issues. If we also augment the fully
distributed algorithms (FDA) of [7], [6] in this fashion
by adding the same cost terms to line sub-problems, we
can replace hard voltage constraints in the FDA as well.
We compare FDA and PDA algorithms relative to con-
vergence speed. They both speed up when hard volt-
age constraints are replaced by appropriately designed
penalties. The speed-up is more significant when volt-
age levels are binding in at least some buses. We ob-
serve that PDA algorithms converge to the centralized
market clearing solution benchmark (i.e., for problem
sizes that the centralized problem is tractable) signifi-
cantly faster than FDA algorithms.

The remainder of this paper is organized as fol-
lows: Section II defines notation, Section III defines
and compares the different market clearing algorithms.
Section IV presents simulation results, while Section V
concludes.

II. NOMENCLATURE

Lagrange Multipliers
ﬁ:’i Tentative price of real power at bus

b at iteration i

ﬁbQ’i Tentative price of reactive power at
bus b at iteration i

écé.b/ Tentative price of voltage magni-
' tude consistency at end b of line
(b,b')iteration i

7r,f Optimal shadow price of real power
balance of bus b

7er Optimal shadow price of reactive
power balance of bus b

— A symbol used to associate a
shadow price to an equality or in-
equality constraint.

Functions

f(e) Convex cost function (or negative
utility)

H(eo) Heaviside function, whose value is
H(e>0)=ccand H(e <0)=0

Parameters

|Ap| Number of devices & connected to
bus b

|Hp| Number of lines (b,5’) connected to
bus b, i.e. degree of node b.

noc Opportunity cost per kW of substa-
tion bus auxiliary generator disabled
from producing real power or re-
serves in order to compensate for re-
active power Q.

nt Real Power Locational Marginal
Price (LMP) at the substation bus

i Iteration Count

ke Constant

T b s Xb 1y Resistance and reactance respec-

tively of line or transformer con-
necting buses b and b’
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Subscripts and Sets

(b,b) Subscript denoting a line or trans-
former connecting bus b to b'.

a Subscript denoting a specific device
that connects to some network bus
b. The notation & € G means that
device « is a generator and that o ¢
D,E F

oo Subscript denoting the substation
bus

b,b' Subscripts denoting a typical distri-
bution bus

G,D,E, F Set of all network generators, loads,
distributed energy resources and ca-

pacitors respectively

Gy, Dy, Ep, F, Set of generators, loads, DERs and
capacitors respectively connected to

bus b

H Set of all network lines or trans-
formers

H, H, CH Set of all lines/transformers con-

nected to bus b

Ap = GpUD, UE, UF;, Set of all devices connected to
bus b

Distribution Variables

Ipy Current squared on line or trans-
former connecting buses b and b’

Py, O Real and reactive power respec-
tively of device a. Negative val-
ues denote generation, while posi-
tive values denote consumption.

Py 1, Op 1 5Sp 1 Real, reactive and apparent power
flow respectively on line (b,5’).

Vp Voltage magnitude squared of bus b

Vpp Voltage magnitude squared at end b

of line or transformer (b,5’)

III. DISTRIBUTION MARKET CLEARING
FORMULATIONS

A. Centralized, Fully Distributed, and Partially
Distributed Algorithms

First, we repeat a higher level version of the
centralized formulation of [2], C-OPT with reference
to hours omitted for notational convenience. In this
formulation, a Distribution System Market Operator

with access to all requisite information (network topol-
ogy, resources, individual participants, etc.,) solves the
following problem:

Centralized Formulation C-OPT

minimize Y f(Py, Q¢) )
Po,Qaveo G
P}, +07,
subject to [,y = —22 24 2
: Vo
vy =Vp—2(ry Py +Xp 10 - Op i) + (’%,b’ +xi,b/) Iy
(3
Yy Po+Y Py =0—7f )
a,0€GLUE,UD, b
)y Qut+Y Opy =01 (5
a,0eGLUER,UDLUF, b

Py + Py, =rpplppy (6)
Oppy +Opp=Xpprlppy 7N
Vp Svp SVp = My = — (3)
DER capability constraints C)]

The objective function is the sum of the costs (or
negative benefit) of all devices, the minimization of
which is performed subject to power flow constraints,
namely (2)-(8) as well as device capability constraints
(generators, loads, capacitors, DERs). The nodal prices
of real power (or DLMP) is the dual variable of the
real energy balance constraint (4), 7tf,D , and similarly the
nodal prices of reactive power (i.e. DLMP of reactive
power) are the lagrange multipliers of the reactive en-
ergy balance constraint (5), n;‘? .

The fully distributed, iterative algorithm of [6]
and [7], FDA-OPT, is described in a high level below.
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Fully Distributed Formulation FDA-OPT
1. Initialize i < 1.
2. For ¢ € D,G,E,F solve:

P AP Py + 29
minimize f(Po, Qo) +7, P77 O (10)
Po.Qa +penalty terms
subject to DER capacity constraints 1)

3. For (b,b") € H solve:

~Pi 0, 2

By Poy + 1 Qb + 8y Vo
pi 0 4

7, Py + 7T,,Q/'l “Op b+ 8y Vb

+penalty terms

minimize
Py s Op s Vi bt
Py s Q1 s Vi
(12)
subject to Power flow constraints (2)-(8) (13)

4. For all buses update:
Lo p)eH, Vool

VbP'Zl ‘I;b'l 1, APi

~Pi+1 _ aPi+1 /AP

m =m0 (B, Pa,acay,s Poy (b1)eh,)
0.+l

_ 20+l 200
R =R (R Qaacay Qb (b4 eH,)
Pitl _ Pi+l pi
bb Ch,h/ (Cl;b/7vb7b/,(h,h/)€Hb)
5. If tolerance criterion satisfied, terminate.

Else, i <— i+ 1 and go to 2.

Previous work of the authors [7] has revealed the
difficulty of algorithm FDA-OPT to reach the optimal
solution of C-OPT, when voltage constraints (8) are
binding. The same work [7] proposed a convergence
enhancement filter that corrects the prices that FDA-
OPT approaches, ﬁ:lf”,i — oo and ﬁ:l?”,i — oo, using first
order optimality conditions of problem C-OPT. These
conditions allow us to relate the optimal dual variables
of C-OPT to the sensitivities of the primal, dependent
variables of C-OPT at the optimal solution.

The filter imposes in essence system-wide power
flow constraints to correct the real and reactive
power prices. Motivated by the filter’s effective-
ness, we propose here a new formulation, where a
single agent calculates the system wide power flow
and devices o € D,G,E,F self-schedule based on
price signals they receive. We call this formulation
partially distributed algorithm (PDA) or PDA-OPT
for short and describe the corresponding algorithm.

Partially Distributed Formulation PDA-OPT
1. Initialize i < 1.
2. Fora € D,G,E,F solve:

minimizef(Py, Qo) + 1" - Py + #2100 (14)

oZa

subject to DER capacity constraints (15)

3. The Distribution System Operator calculates the

power flow:
minimize 0
subject to Power flow constraints (2)-(8) — 77:5 , ﬂ:bQ
' (16)
4. Convergence check: if maxb(ﬁf” —nl’) < tolerance

and maxb(ﬁbe’i — 77:bQ ) < tolerance, break.

5. DLMP estimate update mindful of oscillation avoid-
ance and convergence:

AP = (1= h(i)) - 20 + k(i) - 7} and

A2 = (1= n(i)) - 22+ h(i) - 2.
6.i<i+1andgoto?2.

Aside from the obvious difference of treating lines
in parallel or centrally, PDA-OPT and FDA-OPT dif-
fer in the device objective functions, with FDA-OPT
including penalties for the purpose of avoiding oscilla-
tions that are not present in PDA-OPT. Although PDA-
OPT requires oscillation avoidance provision as well,
this assistance is provided in step 5 of the PDA-OPT
where DLMP estimates are updated with decreasing
step size adaptation to ex-post DLMPs. In short, oscil-
lation avoidance is provided in different, though equiv-
alent ways.

The following table summarizes a comparison of
the differences of the market clearing formulations de-
scribed above:

Name Long Name DER Scheduling | Power Flow Calculation

C-OPT Fully Centralized Centalized Centralized
FDA-OPT Fully Distributed Distributed Distributed
PDA-OPT Partially Distributed Distributed Centralized

Table 1: Comparison of C-OPT, FDA-OPT and PDA-OPT

B. Voltage Magnitude Constraints replaced by
Penalties

From the formulation of PDA-OPT described
above, it is easy to notice that despite the existence of
a slack bus with the requisite real and reactive power
providing generators attached to it, the existence of the
hard voltage constraints (8) could still lead to the power
flow problem being infeasible. To avert this, we replace
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hard voltage constraints with voltage related penalties
added to the objective function.

The hard voltage constraints are equivalent to
penalty terms like f(v) = H(v —v) + H (v — ¥), where
H is the Heaviside function. Since these constraints
are non-differentiable, we use constraints of the type
f) =ki-(exp(ky- (v =) +exp(ks - (v —v))). We
tune k; to control the contribution of this term to the
objective function. In fine tuning parameters kp,k3,
we choose ky >> and k3 >> for the resulting curve
to be as close to a square wave as is practical. Such a
choice of large enough ky,k3 will also ensure that the
new optimal solution will be close to the true optimal
solution. This modifies PDA-OPT to the following,
that we name PDA-SVC, standing for Soft Voltage
Constraints.:

Soft Voltage Constrained Partially Distributed For-
mulation PDA-SVC

1. Initialize i < 1.

2. For a € D,G,E,F solve:

minimize (Pa, Qa) + A Pyt 20 (17)
subject to DER capacity constraints (18)

3. The Distribution System Operator calculates the
power flow:

mlmmlzez kip-(exp(kap- (vp — 7))+ (exp(ksy- (v —)

Voo

(19)
subject to Power flow constraints (2)-(7) — 71,'11; , 7tbQ
' (20)
4. Convergence check: if maxb(ﬁf;" —nl’) < tolerance

and maxb(ﬁbQ’i - 7er) < tolerance, break.

5. DLMP estimate update mindful of oscillation avoid-
ance 1amd convergence:

APi+ . ~Pi

7, (1—h(i)) - &," +h(i)- “b and

~0,i+1

T,

= (1= h(i)) - A"+ h(i) - 7

6.i+i+1and goto 2.

The fully centralized formulation, with soft voltage
constraints, referred to as C-SVC, is similarly modified
as follows:

Soft Voltage Constrained Centralized Formulation
C-SvC

o Ya f(Pas Q)+
minimize _
Pu.Qave | Ypkip- (expkop - (vp — 7)) + (exp(ksp - (v
(21)
subject to Power flow constraints (2)-(7)
DER capability constraints

"))

Lastly, we present FDA-SVC, i.e. the fully dis-
tributed formulation as augmented in the presence of
soft voltage constraints:

Soft Voltage Constrained Fully Distributed Formu-
lation FDA-SVC

1. Initialize i < 1.

2. For o € D,G,E,F solve:

AP A Qi
P TPy + 77
minimize 7 F0 Q) VB Pk B Qo)
Po,Qa | +penalty terms
subject to DER capacity constraints (23)

3. For (b,b') € H solve !:

" Py + s Qv + &l vow
+7z§=’ Py 7" O+ &l v
+ﬁ (exp(kap - (Vo — 7))+
(exp(ksp- (Y= vpir)))
(el (= 9)+

(exp(kspy - (v =viyp)))
+penalty terms

minimize
Py s Op /s Vit
Py 1, O b>Viy 1

(24)

subject to Power flow constraints (2)-(7) (25)

4. For all buses update:

_ Yppen, Voi

b= |Hp|

7%,‘:’“ = ﬁf'“(ﬁ:',f’a aerys Pyt (b)eH,)
AQ!H = AQ!H( Qa aeAb»be’ bb’)eHb)
Cfb} C;, b (Cb b Vb (b, b/)eH,,)

5. If tolerance criterion satisfied, terminate.
Else, i+ i+ 1 and go to 2.

To conclude this section, we provide a comparison
table of all OPT and SVC formulations:

'Note the change in the multiplier of the exponential voltage
penalty terms. We divide by the degree of each bus b (i.e. the number
of lines entering or exiting bus b), since in FDA-SVC this term is used
for each line, rather than each bus as in C-SCV and PDA-SVC.
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Name DER Scheduling | Power Flow Calculation Voltage Constrain
C-OPT Centralized Centralized Hard 0.962
C-SVC Centralized Centralized Soft . - = =C-OPT
FDA-OPT Distributed Distributed Hard 0.96 I Cc-svVe
FDA-SVC Distributed Distributed Soft : "
PDA-OPT Distributed Centralized Hard ‘-g { !
PDA-SVC Distributed Centralized Soft 3 0.958 { !
g ‘ !
= { 1
Table 2: Comparison of OPT vs SVC formulations L 0956 { {
2 { 1
IV. NUMERICAL RESULTS B ooeal | Vs
. [ I
E i \\" 3
. . . . (=4 [
This section includes numerical results on a real- £ o052 {
.. .. . . ] - AN
istic 47 bus distribution feeder from Southern Califor- = ] T Ny
nia Edison, that was first presented in [9]. That is the s =4 ==
same network we used in our past paper [7]. To be 001

able to draw comparisons, we use the same parameters.
Specifically, we are focusing on an edge case where dis-
tributed real and reactive power provision is disabled,
and there are curtailable loads with utility loss functions
~Ag Py +Bg P2, Ag > 0,By > 0. (This is referred to
as case B2 in [7]).

The centralized formulation with hard voltage con-
straints C-OPT is used as a benchmark. This result will
be the true optimal solution of the market clearing prob-
lem.

The following two figures illustrate the closeness
of the solution obtained by the relaxation of the central-
ized problem, C-SVC, as compared to C-OPT. Figure 1
does so by means of illustrating the total cost for real
power service paid by the curtailable loads, while Fig-
ure 2 shows the voltage magnitudes at all load buses. In
C-SVC voltages are at most 0.04% away from their true
optimal values in C-OPT.

45

11121416 1821 22 2526 28 29 30 31 3233 34 36 38 3940 414243 44 45
Load Bus

Figure 2: Voltage magnitude of load buses (per unit)

We proceed by concentrating now on the fully dis-
tributed algorithms, FDA-OPT and FDA-SVC. We re-
mind the interested reader that we have individually
shown convergence results of FDA-OPT in our past
work [7], but we will be repeating them here to easily
contrast them to the improvements achieved by FDA-
SVC.

With the proposed relaxation regarding the voltage
magnitude constraints, the fully distributed algorithm is
able to converge fully (accuracy of 0.1% error in the
prices) to the centralized benchmark after 7500 itera-
tions. The previous version proposed in [7] is unable to
reach this level of accuracy even after 50000 iterations.
Therefore, the computational effort improvement of the
proposed realxation is at least 6 times.

Figures 3 and 4 show the convergence of the two

- - -COPT variations of the fully distributed algorithm via the av-
40 1 . .. .
i c-sve erage and maximum deviation of the prices from the
? 3 optimal benchmark respectively.
-‘3 30
-
o
w25 6
8 —— FDA-OPT
= 20 = = =FDA-SVC
Z L ST
o 15 "‘I 4 Yo
™ "‘. A ‘A ) #
£ 10 A i % Y4 1
[ N/ TN VA
Y - / =
5 I s

0
11121416 1821 22 2526 28 29 30 31 32 33 34 36 38 39 40 41 4243 4445
Load Bus

Figure 1: Real Power Costs to Curtailable Loads ($)

Awerage Error in Real Power DLMPs (%)

0
100 2100 4100 6100 8100 10100 12100 14100 16100 18100 20000
lterations

Figure 3: Fully Distributed Algorithms, Average Error in Real power
DLMPs per iteration (%)
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—— FDA-OPT
—— FDA-SVC

Maximum Error in Real Power DLMPs (%)

0
100 2100 4100 6100 8100 10100 12100 14100 16100 18100 20000
Iterations

Figure 4: Fully Distributed Algorithms, Maximum Error in Real
power DLMPs per iteration (%)

We note that the errors in prices depicted above are
not relative to the same value. Errors of FDA-OPT are
based on the benchmark values of C-OPT and errors of
FDA-SVC are based on the benchmark vales of C-SVC.

The results section continues with the partially dis-
tributed (PDA) models. First, we note the inability
of PDA-OPT to solve this instance, as the power flow
problem returns infeasibility. We continue by showing
the convergence of our newly proposed model, PDA-
SVC. The figures that follow show the convergence of
the average error in the real and reactive power prices,
as well as voltage magnitudes. Exact converge is ob-
served after about 400 iterations only.

o
=}
=]

)

.
o0
=

400

350

300

250

200

150

100

Average Error in Real Power DLMPs (%

o0
=

100 150 200 250 300 350 400 450
lterations

Figure 5: Partially Distributed Algorithm PDA-SVC, Average Error
in the real DLMPs per iteration (%)
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Average Error in Reactive Power DLMPs (%)
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Figure 6: Partially Distributed Algorithm PDA-SVC, Average Error
in the reactive DLMPs per iteration (%)
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&
o

Average Error in Voltage Magnitudes (%)
i8]
o

o
o

100 150 200 250 300 350 400 450
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Figure 7: Partially Distributed Algorithm PDA-SVC, Average Error
in voltage magnitudes per iteration (%)

The behavior of the convergence curves of the real
and reactive prices is a result of the DLMP estimate
update that we perform after the solution of the power
flow problem (namely step 5 of PDA-SVC in section III
above). The decline in prices is steeper in the first iter-
ations since we use a decreasing stepsize per iteration,
specifically (i) = 10/i.

Last but not least, we conclude this section by eval-
uating the overall improvement achieved in this work
compared to our previous work in [7]. This is done
graphically, by showing the first 500 iterations of the
proposed PDA-SVC, that are actually adequate for ab-
solute convergence to the benchmark, together with the
first 500 iterations of the fully distributed algorithms
FDA-OPT and FDA-SVC. It can be seen that there is
an overall benefit of more than 100 times.
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Name Iterations to Convergence | Computation Reduction
FDA-OPT >50000 -
FDA-SVC 7500 >6
PDA-SVC 400 >100

Table 3: Comparison of FDA-OPT, FDA-SVC and PDA-SVC

Average Error in Real Power DLMPs (%)

lterations

Figure 8: Comparison of Average Error in Real power DLMPs during
500 first iterations (%)

We refer the reader to [10] for a discussion on com-
munication costs and associated security issues of dis-
tributed approaches.

Finally, we apply our proposed algorithm, PDA-
SVC, to solve a 24 hour day ahead market for an 800
bus realistic distribution feeder. The feeder, adapted
from PNNL data, includes PVs, electric vehicles,
HVAC loads as well as voltage-sensitive loads. Com-
plete information on the DERs and the network can be
found in [8]. Although we use a cold starting point, with
careful fine tuning of the DLMP estimate updates, we
are able to achieve reasonable convergence in a much
smaller number of iterations, namely about 1% devia-
tion in the prices after 20 iterations. The convergence
speed in the results reported for the smaller network
above is much slower because our intention was to ana-
lyze the relative convergence of various algorithms. As
such, the DLMP update step was not as fine tuned.

V. CONCLUSIONS

This paper is motivated by the shortcomings of ex-
isting distribution electricity market clearing models:
the intractability of centralized models and the inabil-
ity of fully distributed algorithms to handle hard voltage
constraints efficiently. We propose (a) the replacement
of hard voltage magnitude constraints with soft penalty
constraints, introduced as cost components in the ob-
jective function, to speed up convergence of the fully
distributed algorithm models, and (b) a Partially Dis-

tributed Algorithm (PDA) model that distributes DER
scheduling but estimates ex-post locational marginal
costs centrally. This new formulation exhibits robust-
ness and superior convergence performance. We finally
present results from the PDA with Soft Voltage Con-
straints on a 24 hour Day Ahead, 800 bus distribution
network that demonstrate the applicability of the new
algorithm to real size markets.

References

[1] E. Ntakou and M. Caramanis, “Price discovery in dy-
namic power markets with low-voltage distribution-
network participants,” in 2014 IEEE PES T D Confer-
ence and Exposition, April 2014, pp. 1-5.

[2] ——, “Distribution network spatiotemporal marginal
cost of reactive power,” in 2015 IEEE Power Energy So-
ciety General Meeting, July 2015, pp. 1-5.

[3] M. E. Baran and F. F. Wu, “Optimal capacitor placement
on radial distribution systems,” IEEE Transactions on
Power Delivery, vol. 4, no. 1, pp. 725-734, Jan 1989.

[4] M. Kraning, E. Chu, J. Lavaei, and S. Boyd,
“Dynamic network energy management via proximal
message passing,” Found. Trends Optim., vol. 1,
no. 2, pp. 73-126, Jan. 2014. [Online]. Available:
http://dx.doi.org/10.1561/2400000002

[5] Q. Peng and S. H. Low, “Distributed algorithm for opti-
mal power flow on a radial network,” in 53rd IEEE Con-
ference on Decision and Control, Dec 2014, pp. 167—
172.

[6] E. Ntakou and M. Caramanis, “Distribution network
electricity market clearing: Parallelized pmp algorithms
with minimal coordination,” in 53rd IEEE Conference
on Decision and Control, Dec 2014, pp. 1687-1694.

[71 ——, “Enhanced convergence rate of inequality con-
straint shadow prices in pmp algorithm cleared distri-
bution power markets,” in 2016 American Control Con-
ference (ACC), July 2016, pp. 1433-1439.

[8] E. Ntakou, “Spatiotemporal marginal-cost-based retail
electricity markets: Efficiency, structure and feasibility,”
http://bu.edu/pcms/caramanis/ElliDistr.pdf, 2015.

[9] M. Farivar, C. R. Clarke, S. H. Low, and K. M. Chandy,
“Inverter var control for distribution systems with re-
newables,” in Smart Grid Communications (SmartGrid-
Comm), 2011 IEEE International Conference on, Oct
2011, pp. 457-462.

[10] M. Caramanis, E. Ntakou, W. W. Hogan,
A. Chakrabortty, and J. Schoene, “Co-optimization
of power and reserves in dynamic t amp;d power
markets with nondispatchable renewable generation and
distributed energy resources,” Proceedings of the IEEE,
vol. 104, no. 4, pp. 807-836, April 2016.

Preprint submitted to 2017 American Control Conference.
Received September 20, 2016.



