
  

   

Abstract—Building on our previous work in plug-in-hybrid 
electric vehicle (PHEV) charging, we study the potential 
benefits of demand participating in precisely quantified quality 
of service trades. Given the equivalency of demand and 
generation modulation in effecting power system cost and 
stability, we consider demand and generation as market 
participants with equal rights who engage in a mix of energy 
and reserve market transactions that clear simultaneously. 
Using existing market practice in the clearing of energy and 
reserves, we formulate the optimal bidding strategy of a load 
aggregator responsible for the battery charging of a fleet of 
PHEVs as the solution to a stochastic dynamic program (SDP). 
We show that optimal PHEV energy and regulation service 
bids lower PHEV charging costs, mitigate local distribution 
network congestion constraints, and increase system-wide 
supply of regulation service and thus contribute to the efficient 
expansion of intermittent clean generation. We propose and 
implement a tractable approximate SDP solution and report on 
computational experience using ERCOT and CAISO data. 

I. INTRODUCTION 

The burden of intermittent renewable generation on power 
system security and stability costs has been a topic of 
increasing debate over the past decade [14], [22]. The 
inability to dispatch wind generation and its variability over 
time-scales of minutes are likely to increase the reserves 
required to safeguard system stability including regulation 
service (5 minute time-scale) and operating reserves (10 
minute time-scale). Consequently, although wind energy can 
be generated at competitive prices, large-scale adoption may 
place a costly burden on regulation service reserves. 
Currently, such reserves are provided by flexible generation; 
however, we argue that efficient load-side provided reserves 
can help mitigate this problem. 

A. Wind Generation Integration 

Recent studies as well as empirical evidence [6], [7], [12], 
[13] indicate that the increased market penetration of wind 
generation will result in significant increases in regulation 
service reserve requirements. Although preliminary reports 
by the California Energy Commission in 2007 [18] 
concluded only modest increases in regulation service due to 
substantial wind generation expansion, in 2009, Makarov et 
al. [12] reported that for a 4,100 MW increment of wind 
farm nameplate capacity in California, a maximum increase 
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of 230 MW (5.6%) of regulation-service-down and 500 MW 
(12.2%) of regulation-service-up would be required. In 
addition, areas with high wind penetration have experienced 
sudden losses of wind power. In Texas, ERCOT reported 
wind output during certain hours in 2007 that was 2,000 
MW short of the forecast while in 2008 wind output 
unexpectedly dropped 1,300 MW in three hours [6]. In 
Europe (e.g., Spain), similar system stability issues due to 
wind have been experienced [4], [7]. 

B. PHEV Charging Synergies 

Significant adoption of wind generation could increase 
regulation service clearing prices which today fall in the 
$10-$60 per MWh range. Thus, under a business-as-usual 
scenario, regulation service costs may pose a serious barrier 
to renewable generation expansion. However, since 
generation and demand will be market participants with 
equal rights, it is of paramount importance to investigate 
demand-side contributions that ease the price pressure on 
reserve procurement. This paper does exactly this by 
proposing a decision support algorithm for optimal PHEV 
market bidding that promises to realize the technical 
capabilities of PHEV loads [9], [10]. Furthermore, since 
PHEV charging will draw power from the distribution 
network, we incorporate local distribution congestion [2], 
[11] in the optimal PHEV market bidding strategies. 
Implementation of our algorithm using ERCOT and CAISO 
data shows strong positive synergies between wind 
generation and flexible PHEV loads. 

C. Power Market Structure and Participation Rules 

Smith et al. stated that “operating experience from around 
the world has shown that a deep, liquid, real-time market is 
the most economical approach to providing the balancing 
energy required by variable-output wind plants [22].” In the 
US, day-ahead, adjustment, and real-time power markets 
have been operating since the mid 1990s (i.e., CAISO, 
ERCOT, MISO, PJM, NEISO, NYISO, and SPP). As a 
result of FERC Order 719, each independent system operator 
has a demand response program in some stage of 
development. For example, PJM has allowed demand 
response by end-use customers, through curtailment service 
providers, to participate alongside generation in offering 
capacity reserves to the market since 2006 [17], [19]. At 
around the same time NEISO implemented Real-Time Price 
Response and Day-Ahead Load Response Programs. The 
NYISO has four demand response programs, including a 
Demand-Side Ancillary Services Program. The CAISO will 
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begin in 2010 to offer a Proxy Demand Response product, 
which is a load or aggregation of loads that can submit bids 
into the wholesale day-ahead and real-time markets and 
respond to dispatches at the direction of the CAISO.  

In this paper, we assume a power market structure similar 
to those currently existing in the US, but allowing for 
symmetry in the generation- and load-side participation, 
which we assume will become feasible with the advent of 
the SmartGrid [9]. In particular, for each scheduling period, 
t, supply- and demand-side market participants submit bids 
for energy. In addition, they make capacity reserve offers for 
primary, secondary (regulation service), and tertiary 
(operating) reserves. Primary, regulation service, and 
operating reserve offers represent standby capacity that must 
be deliverable in 30 sec, 5 min, and 15 min, respectively. 
Primary and secondary reserves must respond to frequency 
tolerances and centralized control commands to maintain the 
market’s real-time energy balance. Moreover, they involve a 
symmetric band of up-and-down capacity (i.e., increment or 
decrement) in the amount of capacity offered. Hence 
frequency control and regulation service reserve bids include 
an energy and a capacity standby price. 

To elaborate by example, consider a Load Aggregator or 
Energy Service Company (ESCo) purchasing energy and 
offering regulation service in decision period t. For the 
energy bid, the ESCo submits a quantity (or rate KW) and a 
price bid ($ per KWh), 

and  E E
t tQ u . 

The regulation service bid consists of a quantity and two 
prices, 

and, ,  R RE RC
t t tQ u u . 

Again, the two prices included in the regulation service 
bid correspond respectively to the energy reservation price 
and the cost of modulating consumption (or generation) in 
real-time to respond to centralized control commands. For 
example, if an ESCo is scheduled by the clearing of the 
market to provide regulation service it will (i) start the 

period consuming at the rate of 
t

RQ  and be charged at the 

market energy clearing price; (ii) be credited at the market 
regulation service clearing price; and (iii) respond to market 
operator commands to consume at any level in the interval 

0, 2 R

t
Q   , moving towards the level that the operator 

indicates at the rate of R
t

Q /5 KW per min. 

The market operator receives bids and offers from all 
market participants and clears the market to minimize costs 
over one (real-time) or more (day-ahead) time period(s). For 
each period, market-wide prices are obtained and individual 
participant energy and reserve bids and offers are scheduled. 
We assume competitive conditions and symmetric 
availability of information represented by the joint 
probability distribution (jpd) of clearing prices conditional 
upon the current state of the system. 

The jpd allows each market participant to evaluate the 
probability of four key events described in (1), (2), (3), and 
(4). It is important to note that the probability of these 
events, 

k
tp  for 0 1 2 3, , ,k e e e e= , 

is a function of the bid prices of the market participant. The 
energy bid is accepted according to (1). 

0Event : E E
t te u P≥ ɶ  (1) 

The expected cost of the energy bid is the product of the 
probability of acceptance, the conditional expected clearing 
price, and the bid quantity, 

0

0

|

E

t

tP e

e E
t t tp QE P  
ɶ

ɶ . 

The regulation service offer can be accepted (2), rejected 
but the energy component scheduled (3) or both the 
regulation service and its energy component can both be 
rejected (4).  

1Event : E RE RC R
t t t te P u u P− + ≤ɶ ɶ  (2) 

2Event and : E RE RC R RE E
t t t t t te P u u P u P− + > ≥ɶ ɶ ɶ  (3) 

3Event and : E RE RC R RE E
t t t t t te P u u P u P− + > <ɶ ɶ ɶ  (4) 

Since events e1 and e2 are disjoint, the expected cost of the 
regulation service bid is 

2
1

1 2

||

R R

t tR
tt

P eP e

e eE R E
t t t t t tp pQ QE P P E P   − +   ɶ
ɶ

ɶ ɶ ɶ . 

D. Day-Ahead, Adjustment, and Real-Time Markets 

There are several related short-term markets that clear in 
the course of a day. The day-ahead market closes to bids and 
offers at noon of the day before the operating day. It 
schedules simultaneously bids and offers and determines 
clearing prices for each of the 24 hours in the operating day. 
This market performs short-term planning (e.g., hedging, 
unit commitment, reserve scheduling) functions. Adjustment 
markets allow market response to significant events such as 
major equipment failures or forecast revisions that occur 
after the day-ahead market closes. They are qualitatively the 
same as the day-ahead market. The real-time market 
typically closes 45 minutes before time the operating time 
schedules bids and offers for the next 5, 10, or 15 minutes. It 
performs the final adjustments when essentially all 
uncertainty has been realized and feasible operational 
decisions can be made. Its basic difference from the day-
ahead and adjustment markets is that it schedules a single as 
opposed to multiple periods. 

As we have mentioned, it is reasonable to assume that 
demand-side market participants will be Load Aggregators 
or Energy Service Companies (ESCos) that take advantage 
of pooling, decision support intelligence, and information 
gathering. These companies typically have regionally 
specific names, such as Curtailment Service Providers in 
PJM and Enrolling Participant in NEISO. For example, an 
ESCo may be handling PHEVs plugging into outlets on one 



  

or more residential feeders or commercial facilities. The 
ESCo will participate in the cascaded markets described 
above, making hedging purchases of energy and sales of 
regulation service in the day-ahead market with the view 
that it will be able to adjust in the real-time market. The 
coupling of decisions in the sequential cascaded markets is 
considered in [3] where we argue that the main building 
block for the coordinated decision making across markets is 
the real-time market. We present next the real-time market 
problem and propose a tractable solution algorithm.   

II. REAL-TIME MARKET SINGLE FEEDER PROBLEM 

During each real-time market time period, the ESCo bids 
for energy and offers regulation service, while charging a 
fleet of PHEVs. These PHEVs are located in different parts 
of the distribution network; however, distribution network 
constraints force us to group the PHEVs according to a 
specific distribution network capacity (e.g., feeder or 
transformer capacity). Decisions for all distribution network 
capacity constraints would be aggregated in order to 
determine the total bidding policy of the ESCo. We present 
below the problem of charging a fleet of PHEVs constrained 
by a single feeder capacity. Although we model a 24 hour 
horizon, we approximate an infinite horizon by estimating 
the marginal cost of charging PHEVs plugged-in within the 
modeled horizon but intending to depart outside the horizon. 

A. Indices 

, tt ∆  Market decision period and its duration. 

τ  Index of plugged-in PHEV departure classes. 

B. Problem Parameters 

N  Number of time periods in the finite horizon. 
c  Penalty of uncharged energy at time of PHEV 

departure ($ per KWh). 
r  Charging rate of each PHEV (KW). 

maxˆ
tC
 

Feeder specific unused capacity available for PHEV 
battery charging (KW). 

N
τλ  Marginal costs of charging PHEVs with departure 

class outside of the modeled horizon (i.e., τ > N) ($ 
per KWh). 

C. State and Decision Variables 

tnτ  Number of PHEVs plugged-in at the beginning of 
period t, in departure class τ. 

txτ  Uncharged energy of PHEVs plugged-in at the 
beginning of period t, in departure class τ (KWh). 

( )E

t
Q τ  Energy rate bid for period decision period t. 

Intended for charging txτ  (KW). 

( )R

t
Q τ  Regulation service capacity offered, for decision 

period t. Intended for charging txτ  (KW). 

( )E
tu τ  Energy bid price for ( )E

t
Q τ  ($ per KWh). 

( )RE

t
u τ  Energy price offered for ( )R

t
Q τ  ($ per KWh). 

( )RC

t
u τ  Capacity price offered for ( )R

t
Q τ ($ per KWh). 

tu  A vector containing all decision variables for 
decision period t.  

tI  Relevant information or state vector for decision 
period t. This includes joint probability 
distributions of future PHEV demand, line 
capacities, and market clearing prices. In addition, 
it contains results of cleared markets and up-to-
date power system information. Finally, it consists 

of maxˆ , ,t tC nτ  and txτ . 

D.  Random Variables and Density Functions 

tE  Expectation operator. 
E

tPɶ  Real-time market energy clearing price 
during period t ($ per KWh). 

R

tPɶ  Real-time market regulation service 
clearing price during period t ($ per KWh). 

tnτ∆ɶ  Number of PHEVs that plug-in during 
period t in departure class τ. 

txτ∆ɶ  Uncharged energy of PHEVs that plug-in 
during period t in departure class τ (KWh). 

( )k
tp τ  The probability of events k = e0, e1, e1, e3 

for bids ( )E

tQ τ  and ( )R

tQ τ . 

( )E1 t
τ uɶ  Indicator function which takes the value of 

one if ( )E

tQ τ  is accepted. This occurs with 

probability ( )0e
tp τ . 

( )RS1 t
τ uɶ  Indicator function which takes the value of 

one if ( )R

tQ τ  is accepted in some form. 

This occurs with probability ( ) ( )1 2e e
tp τ∪

. 

E. System Dynamics 

The dynamics of the number of PHEVs plugged-in is 
presented in (5). Up-and-down reserves, including regulation 
service, are exercised by the market operator so that over a 
period of a half hour or longer energy neutrality is 
maintained; therefore, the uncharged capacity dynamics can 
be expressed as in (6). Finally, all PHEVs are assumed to 
un-plug at their scheduled departure time (7). 

1= +t t tn n nτ τ τ
+ ∆ɶ  tτ∀ >  (5) 

( )
( )1

E

RS

1

1

( )

( )

E

t

t t t R

tt

t
t

Q
x x x

Q

τ τ τ

τ

τ

τ

τ
+

+
= + ∆ − ∆

 
 
  

u

u

ɶ

ɶ

ɶ  tτ∀ >  (6) 

0t tn xτ τ= =  tτ∀ ≤  (7) 

F. Allowable Decisions 

The ESCo must follow market rules to insure that its 
energy bid and regulation service offer are realizable. This 
requires that two constraints on the maximal consumption 
rate (i.e., the requested energy rate plus twice the offered 
regulation service). First, the excess feeder capacity should 
be sufficient to support the maximal consumption rate (8). 



  

Second, there must be enough plugged-in PHEVs to absorb 
the maximal charging rate (9). Constraint (10) does not 
allow more energy to be charged then the current uncharged 
capacity. Note that (8) couples the departure classes. In 
addition, the allowable control set includes non-negativity 
constraints on all the state and decision variables. 

maxˆ[ ( )+ 2 ( )]
E R

t t t
Q Q Cτ τ τ ≤Σ  (8) 

( )+ 2 ( )
E R

t t t
Q Q rn

ττ τ ≤  tτ∀ >  (9) 

( )+ ( )
E R

t t ttQ Q x
ττ τ ≤ ∆   tτ∀ >  (10) 

G. Bellman Equation 

Decisions are made for each decision period t based on 
the available information at the time the market closes. The 
Bellman Equation is presented in (11). 

( ) ( )
( )

( )1 1

, , , ,
min

t t t

E R

t t t t t

t t tU

t t

g P P t
J E

J
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+ +

=
+

 
 
  

u I

I u
I

I
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With boundary condition, 

( ) N

N N t N t N N
N

J cx xτ τ τ

τ

λ=
= =

>

= +∑I . 

Where   ( ), , , ,E R
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III.  SOLUTION APPROACH ADOPTED 

A full backward recursion solution of the proposed finite 
horizon SDP problem is not tractable for any real system. In 
addition to overall complexity, the SDP problem is 
formidable due to (i) uncountable state and control spaces 
and (ii) the non-linearity and associated non-convexity 
introduced by regulation service bid price decisions. In order 
to deal with the non-convexity issue, we implement a price-
takers bidding policy shown in (12)-(14). 

( ) , ,E E
t t tu E P tτ τ >> ∀ ∀ 

ɶ  (12) 

( ) , ,RE E
t t tu E P tτ τ = ∀ ∀ 

ɶ  (13) 

( ) 0, ,RC
tu tτ τ= ∀ ∀  (14) 

As a result, the energy bid is accepted almost certainly, 
and we maximize the probability the regulation service bid 
is accepted. In addition, note that the probability of the four 
key events is now the same for all τ, so we can write,  

( ) , ,k k
t tp p tτ τ= ∀ ∀ , and 

( ) ( )RS RS1 1 , ,t t tτ τ= ∀ ∀u uɶ ɶ . 

The most significant uncertainty in the state variables is 
the binary realization of whether each regulation service 

offer is accepted or rejected. Therefore, we propose to model 
the evolution of these uncertainties by implementing a 
limited look-ahead SDP algorithm that uses a Multistage 
Stochastic Programming (MSP) formulation [20]. MSP 
formulations have proved useful in capacity planning [8], 
[21], as well as power generation scheduling in the day-
ahead electricity market [25]. A MSP model approximates 
the SDP cost-to-go with a limited look-ahead that explicitly 
represents and prepares for many possible states of the 
system with the objective to minimize expected costs. In 
addition, the formulation allows for the revision of charging 
decisions in each time stage based on the uncertainty 
realized so far (i.e., an optimal open loop feedback 
formulation). Whereas we replace certain random variables 
by their expected values (e.g., PHEV demand pattern), we 
develop the scenario tree based on sequential regulation 
service bids being accepted or rejected. More precisely, we 
build the scenario trees based on all possible realizations of 

( )RS
1 tuɶ . 

The number of state and decision variables for the finite 
horizon MSP can be computed according to (15). Therefore, 
the inclusion of all possible scenarios would result in a 
model of intractable size. As a result, we consider a limited 
look-ahead for a portion of the horizon combined with a 
certainty equivalent for the remaining horizon. The scenario 
tree branches according to the regulation service indicator 
function at each time period t = 0,1,…b where b is large 
enough to capture the benefit of look-ahead while avoiding 
an intractable number of decision variables. This is a 
reasonable approach since rejected regulation service offers 
to charge PHEVs with distant departure times can be 
compensated for with future bids while bids intended to 
charge PHEVs whose departure time is close can benefit 
from the more accurate look-ahead formulation. A similar 
effort to minimize the number of selected scenarios is 
included in [25].  

( )1

0
3 2 2 2

N i i

i
N i N

−

=
− +∑  (15) 

We denote the scenario tree by T , and let N  be the set 
of nodes inT . Since multiple nodes are associated with the 
same time period we denote by tn the time period associated 
with node n ∈ N . We also use pn to denote the probability 
associated with visiting node n. All nodes, except for the 

root node (tn=0, pn=1), have a unique parent,( )nΠ , and a 

recursive algorithm can be defined for determining pn.  
For the remainder of the paper we use the pair of 

subscripts, (node, time period) to denote state and decision 

variables associated with each node. For example , nn tu will 

denote the vector of all decision variables for node n 
associated with time period tn.  

Each node n is born from its parent as a result of either 
 

( ) ( )( )RS ,1
nn tΠΠuɶ = 1 or ( ) ( )( )RS ,1

nn tΠΠuɶ = 0. 



  

For illustrative purposes, consider a node n born from 

( ) ( )( )RS ,1
nn tΠΠuɶ =1. In this case, 

( ) ( ) ( )

( )1 2

, n

e e
n n n tp p p

Π

∪
Π Π= . 

A depiction of scenario treeT  is shown in Fig.1. 

 
Fig. 1. Graphical depiction of MSP model. The look-ahead portion is 
indicated by the dotted line and the certainty equivalent by the dashed. 

By considering the system dynamics as constraints, the 
SDP can now be approximated by linear programming 
problem in (16). 

( ) ( )
, ,

, ,, , , ,min
n n n n n nn t n tn n
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N
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(16) 

Each node includes capacity constraints analogous to (8)-
(10), non-negativity constraints, and system dynamic 
analogous to (5) and (7). However, the system dynamics 
with regards to the uncharged battery capacity are now 
explicitly modeled and thus (6) is reformulated in (17)-(18). 

, 1 , , ,
ˆ [ ( ) ( )]

n

E R

n t n t t n t n t tn n n n n
x x x Q Qτ τ τ τ τ+ ∆= + ∆ − +  

n ∈
a

N  

ntτ >  
(17) 

, 1 , ,
ˆ ( )E

n t n t t n tn n n n nt
x x x Qτ τ τ τ+ = + ∆ − ∆  

n ∈
r

N  

ntτ >  
(18) 

Note that we divide the set of nodes N  into two subsets 

a
N  and 

r
N , where 

a
N  contains all nodes such that, 

( ) ( )( )RS ,1
nn tΠΠuɶ = 1, and 

r
N contains all nodes such that  

( ) ( )( )RS ,1
nn tΠΠuɶ = 0. 

This formulation introduces equality constraints whose 

dual variables provide an estimate of N
τλ  for τ > N. The 

constraints corresponding to the initial distribution of 1,0xτ  

for τ > N will have associated with them dual variables that 
represent the marginal cost of having one additional KWh of 
capacity for departure class τ at t = 0. Assuming that the 
modeled day is not drastically different from the subsequent 
day, these values should correspond to the marginal costs 

N
τλ . Computational experience has shown that these dual 

variables converge in one iteration except for extreme cases 
of distribution network congestion. 

IV. COMPUTATIONAL EXPERIENCE 

We employed a 24 time period horizon model with an 
equal number of explicit extension periods to incorporate 
departures scheduled outside of the modeled horizon. The 
first five time periods (b=5) comprise the look-ahead portion 
of the MSP horizon, while the remaining 19 time periods 
make up the certainty equivalent portion. The model begins 
at 12pm on Day 1 (i.e., t = 0), incorporates an estimated 
demand pattern, calculates charging decisions through 12pm 
(Day 2), and estimates uncharged energy with departure 
times from 1pm (Day 2) through 12pm (Day 3).  

The LP solved contains approximately 70K state and 
decision variables, and an equal number of constraints. Data 
for the model inputs were derived from ERCOT (i.e., Texas) 
and CAISO (i.e., California), where wind farm generation is 
substantial and likely to develop at a rate amongst the fastest 
in the United States. The model was implemented in 
MATLAB codes, and the simulation platform was 
MATLAB 7.8.0 (R2009a). The implementation used 
MATLAB routines to run CPLEX 112 features in the 
MATLAB environment [15].  

A. Model Inputs 

Inputs were calibrated to represent a low voltage 
residential feeder servicing approximately fifty households. 
Using total number of household trips, trip type, trip length, 
and vehicle ownership data from the 2009 National 
Household Travel Survey [24], we developed an expected 
demand pattern for a neighborhood PHEV fleet. For 
simplicity, we defined five vehicle types based on their 
primary usage, as shown in Table I, and assumed a 
weekday-to-weekday scenario, meaning that the demand 
pattern was not expected to change significantly between 
Days 1, 2, and 3. Therefore, all PHEVs, except for the 
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“Extended Trip” type, have the same expected usage on both 
days. 

TABLE I 
EXPECTED PHEV DEMAND PATTERN 

Vehicle 
Type 

# 
Arrival 
Times 

Departure 
Times 

Req. Ch. 
(KWh) 

Work A 45 3pm – 6pm 6am – 9am 5.36 
Work B 46 6pm – 9pm 6am – 9am 8.39 

Non-Work A 12 

7am – 10am 
10am – 1pm 
1pm – 4pm 
4pm – 7pm 

9am – 12pm 
12pm – 3pm 
3pm – 6pm 
6am – 9am 

2 
2 
2 
2 

Non-Work B 11 
7am – 10am 
10am – 1pm 
1pm – 4pm 

9am – 12pm 
12pm – 3pm 
3pm – 6pm 

2 
2 
2 

Extended 
Trip 

5 
10am 

(Day 2) 
6am 

(Day 3) 
12 

Probability distributions of hourly real-time wholesale 
market energy and regulation service clearing prices were 
estimated using ERCOT [5] and CAISO [1] data. We 
estimated ERCOT and CAISO energy and regulation service 
clearing price pdfs as 3-σ truncated normal distributions, 
with the parameters shown in Figs. 2 and 3. By properly 
integrating over the joint range spaces of these random 
variables, we computed the probability e1 and e2 for 
t=0,…,N. 
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Fig. 2. ERCOT Pricing information and Non-PHEV load profile. 
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Fig. 3. CAISO Pricing information and Non-PHEV load profile. 

Currently, ERCOT does not incorporate some of the more 
advanced market features found in other market operators 
(e.g., spot and day-ahead energy markets). Instead ERCOT 
uses the day-ahead load forecast to determine quantities of 
ancillary services, which can either be arranged through 
bilateral transactions or purchased in the day-ahead market. 
Subsequently, zonal balancing occurs by deploying 
balancing energy bids in real-time. For our analysis, we used 
day-ahead ancillary service data as a proxy for real-time 

market reserve clearing prices. In addition, since ERCOT 
clears regulation service up and down separately, we 
summed the regulation service up and down clearing prices 
to estimate the clearing prices for an up-and-down band of 
regulation service capacity. Finally, we assumed our feeder 
location to be in the North Zone. 

For CAISO, we used hour-ahead regulation service prices 
and aggregated hourly energy prices from CAISO’s real-
time market. We assumed our feeder to be located in the NP-
15 Region. It is interesting to note that CAISO’s maximum 
regulation service regulation price occurred in the early 
morning (i.e., between 12am and 8am) in 2008, while the 
peak energy price occurs at approximately 6pm. This shift 
occurred between 2007 and 2008; however, the reason for 
this shift is beyond the scope of this paper. 

We modeled three distribution network congestion 
scenarios, corresponding to non-PHEV load during the peak 
hour of 80%, 90%, and 100% of the total feeder capacity. A 
typical summer residential consumption profile was drawn 
from data available from the Southern California Edison 
website [23]. 

B. Parameter Values 

Uncharged capacity at the requested time of departure was 
penalized at $0.75 per KWh (c), corresponding to a $3 
gallon of gasoline. A 2 KW charging rate (r) was assumed. 
Marginal distribution hourly losses in the distribution 
network were estimated for non-PHEV loads to range from 
8% to 22%, and 1.08 to 1.22 multipliers were applied to 
wholesale market clearing prices in order to approximate 
retail prices. A transmission and distribution usage fee 
($0.04 per KWh) was computed by assuming that generation 
is responsible for 60% of end user energy costs. 

The marginal cost of charging PHEVs with departure 

class outside of the modeled horizon, N
τλ  for τ = N+1,…, 

2N, was first set equal to c for all departure classes. After an 

initial solution of the model, N
τλ was updated to equal the 

dual variables associated with the initial distribution of 
PHEVs scheduled to depart within the first 24 hours. To 
capture the impact of an infinite horizon, the model is 

resolved until N
τλ  converges. The rate of convergence is a 

function of distribution line congestion, but did not require 
more than three iterations for the inputs used. 

C. Computational Results 

Each distribution network congestion scenario was run 
twice; first for smart-charging with regulation service, and 
second for smart-charging without regulation service. It was 
assumed that the ESCo will be able to negotiate a 50% 
reduction in the transmission and distribution usage fee in 
exchange for observing congestion constraints. Different 
discount rates can be easily explored. In addition, the cost of 
‘dump-charging,’ namely the cost of charging immediately 
upon plugging-in, is calculated using time dependant 
electricity costs but no discount in the transmission and 



  

distribution usage charges. Results are shown in Fig. 4. 
Decreasing the available distribution network capacity at 
peak from 20% to 10% did not impact the optimal charging 
decisions; however, decreasing to 0% resulted in a 6-9% 
increase in costs for both smart-charging strategies. Smart-
charging without regulation service resulted in an average 
cost savings of 41% in ERCOT and 35% in CAISO when 
compared to dump-charging, while smart-charging with 
regulation service reduced costs by 50% in ERCOT and 56% 
in CAISO. 
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Fig. 4. Expected Cost by Charging Strategy: (i) smart-charging with 
regulation service, (ii) smart-charging without regulation service, and 
(iii) dump-charging, respectively. 

Figs. 5 and 6 show the load profile for our ‘neighborhood’ 
under the different charging strategies for the ERCOT and 
CAISO model runs. If PHEV charging is not managed (i.e., 
dump-charging) then the peak energy consumption will 
increase and extend several additional hours. Smart-charging 
without regulation service will shift the charging to times of 
low distribution network congestion; however, charging will 
gravitate to a few hours resulting in a second peak in the 
load profile including the PHEV load. Smart-charging with 
regulation service offers the best option for load smoothing. 

We finally discuss the implication of our computational 
results on the potential synergy of PHEV charging loads, 
wind generation intermittency and the often high wind 
potential during the night hours that pushes energy prices to 
very low levels [16]. Responding to high market clearing 
prices for regulation service and low clearing prices for 
energy, our proposed optimal PHEV battery charging 
methodology adapts to system wide costs addressing 
intermittency and high nighttime wind potential. Note first 
that we assume a household-outlet-compatible 2 KW (i.e., 
Level 1) charging rate. Our results show that in the ERCOT 
and CAISO model runs a minimum of 75% of the energy 
used to charge PHEV batteries correspond to regulation 
service. Assuming further that PHEVs will be plugged in 2/3 
of the time and recognizing that (i) PHEVs should not 
provide regulation service whenever they are plugged-in, but 
only when there are proper market incentives; and (ii) local 
transmission capacity constraints may restrict PHEV 
regulation service provision during the day and early 
evening hours (see Fig. 3), a fact that we model by an 
additional factor of 60%, we conclude that each PHEV 
responding optimally to market signals can provide on the 
average 

2 KW x 2/3 x 0.75 x 0.6 ≈ 0.5 KW 
of regulation service.  

The 0.5 KW or regulation service per PHEV is a 
conservative estimate based on no vehicle-to-grid 
capabilities, a practice that with today’s battery technology 
will severely decrease the useful life. With future 
technological breakthroughs and infrastructure that may 
allow higher charging rates (i.e., Levels 2 and 3) a 20 fold 
increase to 10 KW per PHEV may be possible [10]. 

If the Obama Administration achieves its target of 1 
million PHEVs by 2015, KEMA et al. [9] estimate that 
42,769 will ‘live’ in the ERCOT balancing area and 267,654 
in CAISO. Based on our conservative estimate of 0.5 KW 
per PHEV, fleets of this size can provide 21 MW and 133 
MW of regulation service, sufficient to support 420 MW and 
2660 MW of installed wind capacity, respectively; using the 
Makarov et al. [12] estimate that wind farms will require 
additional regulation service equal to 5% of their installed 
capacity. 
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Fig. 5. ERCOT load profile by PHEV charging strategy. 
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Fig. 6. CAISO load profile by PHEV charging strategy. 

V. CONCLUSION AND FUTURE WORK 

We developed a decision support tool for optimal PHEV 
market bidding policy. Computational results show that the 
resulting regulation service offered by PHEV charging loads 
can mitigate renewable generation intermittency costs. 
Moreover, optimal PHEV charging can render distribution 
network infrastructure resilient to new PHEV loads and 
deliver significant cost savings to PHEV operation. 

In addition, the PHEV paradigm of a responsive load with 
linear dynamics generalizes to other important loads, for 
example, consider heating and cooling systems with the 
following parameters. 



  

inside
tT  The inside temperature at the beginning of 

decision period t. 
outside

tT  The forecasted outside temperature during 
decision period t. 

min

tT , max

tT  Building occupant preferences during decision 
period t. 

iK  Known building constants for i = 1, 2. 

,HC E
tQ  Energy rate bid for decision period t. Intended 

for inside
tT . 

,HC R
tQ  Regulation service capacity offered for 

decision period t. Intended for inside
tT . 

,HC Capacity

tQ  Capacity of the HVAC system during decision 
period t.  

The heating and cooling system dynamics and allowable 
control sets are perfectly analogous to PHEV dynamics and 
constraints as shown in (19)-(21). Other examples include 
dimmable lighting loads with a preferred lumen range as 
well as the load of smart appliances. 

, ,

1 1 2
( ) ( )inside inside outside inside HC E HC R

t t t t t t
T T K T T K Q Q+ = − − + +  (19) 

, , ,max2 ˆmin( , )HC E HC R HC Capacity

t t ttQ Q QC+ ≤  (20) 

min maxinside

t t t
T TT ≤ ≤  (21) 
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