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Abstract—Building on our previous work in plug-in-hybrid
electric vehicle (PHEV) charging, we study the potgial
benefits of demand participating in precisely quanfied quality
of service trades. Given the equivalency of demandnd
generation modulation in effecting power system cosand
stability, we consider demand and generation as mket
participants with equal rights who engage in a mixof energy
and reserve market transactions that clear simultaaously.
Using existing market practice in the clearing of eergy and
reserves, we formulate the optimal bidding strategyof a load
aggregator responsible for the battery charging ofa fleet of
PHEVs as the solution to a stochastic dynamic progm (SDP).
We show that optimal PHEV energy and regulation serice
bids lower PHEV charging costs, mitigate local distbution
network congestion constraints, and increase systewide
supply of regulation service and thus contribute tahe efficient
expansion of intermittent clean generation. We propse and
implement a tractable approximate SDP solution andeport on
computational experience using ERCOT and CAISO data

I. INTRODUCTION

The burden of intermittent renewable generatiopawer
system security and stability costs has been ac topi
increasing debate over the past decade [14], [ZBp
inability to dispatch wind generation and its vhiiiédy over
time-scales of minutes are likely to increase tbserves
required to safeguard system stability includingutation
service (5 minute time-scale) and operating reserfl®
minute time-scale). Consequently, although windgnean
be generated at competitive prices, large-scalptamomay

of 230 MW (5.6%) of regulation-service-down and 30%/
(12.2%) of regulation-service-up would be requirdd.
addition, areas with high wind penetration haveesigmced
sudden losses of wind power. In Texas, ERCOT report
wind output during certain hours in 2007 that waB80R
MW short of the forecast while in 2008 wind output
unexpectedly dropped 1,300 MW in three hours [@]. |
Europe (e.g., Spain), similar system stability éssaue to
wind have been experienced [4], [7].

B. PHEV Charging Synergies

Significant adoption of wind generation could irase
regulation service clearing prices which today fallthe
$10-$60 per MWh range. Thus, under a business+ze-us
scenario, regulation service costs may pose auseharrier
to renewable generation expansion. However, since
generation and demand will be market participantth w
equal rights, it is of paramount importance to Btigate
demand-side contributions that ease the price pressn
reserve procurement. This paper does exactly this b
proposing a decision support algorithm for optirR{EV
market bidding that promises to realize the tednic
capabilities of PHEV loads [9], [10]. Furthermorgince
PHEV charging will draw power from the distribution
network, we incorporate local distribution congesti[2],
[11] in the optimal PHEV market bidding strategies.
Implementation of our algorithm using ERCOT and 6@l
data shows strong positive synergies between wind

place a costly burden on regulation service reservegeneration and flexible PHEV loads.

Currently, such reserves are provided by flexildaayation;
however, we argue that efficient load-side provideskrves
can help mitigate this problem.

A. Wind Generation Integration

Recent studies as well as empirical evidence 18),[12],
[13] indicate that the increased market penetratibmwind
generation will result in significant increasesregulation
service reserve requirements. Although preliminaports

C. Power Market Sructure and Participation Rules

Smith et al. stated that “operating experience fesound
the world has shown that a deep, liquid, real-tmegket is
the most economical approach to providing the lwaten
energy required by variable-output wind plants [28) the
US, day-ahead, adjustment, and real-time power etsrk
have been operating since the mid 1990s (i.e., OAIS
ERCOT, MISO, PJM, NEISO, NYISO, and SPP). As a

by the California Energy Commission in 2007 [18]result of FERC Order 719, each independent syspeerator

concluded only modest increases in regulation sergtue to
substantial wind generation expansion, in 2009, &lak et
al. [12] reported that for a 4,100 MW incrementveihd
farm nameplate capacity in California, a maximumréase
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has a demand response program in some stage of
development. For example, PJM has allowed demand
response by end-use customers, through curtailsemice
providers, to participate alongside generation ffering
capacity reserves to the market since 2006 [14]. [At
around the same time NEISO implemented Real-TineePr
Response and Day-Ahead Load Response Programs. The
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begin in 2010 to offer a Proxy Demand Response yaipd
which is a load or aggregation of loads that camsubids
into the wholesale day-ahead and real-time markets
respond to dispatches at the direction of the CAISO

In this paper, we assume a power market structoméas
to those currently existing in the US, but allowifior
symmetry in the generation- and load-side partt@ipa
which we assume will become feasible with the atha#n
the SmartGrid [9]. In particular, for each schedglperiod,
t, supply- and demand-side market participants subids
for energy. In addition, they make capacity resaffers for

The jpd allows each market participant to evaluhie
probability of four key events described in (1)), (), and
(4). It is important to note that the probability these
events,

p for k =g,,€,6,,e,,
is a function of the bid prices of the market paptént. The
energy bid is accepted according to (1).

Evente, : u® > P* 1)
The expected cost of the energy bid is the prodfiche

primary, secondary (regulation service), and tertia price and the bid quantity,

(operating) reserves. Primary, regulation serviand
operating reserve offers represent standby captgEtymust
be deliverable in 30 sec, 5 min, and 15 min, rebypely.

Primary and secondary reserves must respond taeney
tolerances and centralized control commands to taiaithe
market's real-time energy balance. Moreover, tmeplve a
symmetric band of up-and-down capacity (i.e., imozat or

decrement) in the amount of capacity offered. Hence

frequency control and regulation service reserds biclude
anenergy and acapacity standby price.

To elaborqte by example, consider a Loaq Aggregator vente - |BE — ufEl+ 0
Energy Service Company (ESCo) purchasing energy ané &R t t

offering regulation service in decision periad For the
energy bid, the ESCo submits a quantity (or rate) &\l a
price bid ($ per Kwh),

QF andu.
The regulation service bid consists of a quantitg &wvo
prices,

R RE RC
Q" u ™ ,andy™ .

Again, the two prices included in the regulatiomvise
bid correspond respectively to the energy resamagpirice
and the cost of modulating consumption (or genamnatin
real-time to respond to centralized control comnsartebr
example, if an ESCo is scheduled by the clearinghef
market to provide regulation service it will) start the

probability of acceptance, the conditional expeatkgring
5E
e E [Pt

E[R" e
Rle

The regulation service offer can be accepted €&¢cted
but the energy component scheduled (3) or both
regulation service and its energy component cai et
rejected (4).

Evente, : ‘F?E —utRE‘+utRC < PR @)

Evente, : ‘F?E —utRE‘+utRC >PRandu™ = P"  (3)
SR RE SE

>R andu™ <R" (@)

the

Since evente, ande; are disjoint, the expected cost of the

regulation service bid is
5E SR 5E
o E[RT-RTJQr el B[R

Rle

D. Day-Ahead, Adjustment, and Real-Time Markets

There are several related short-term markets tleat
the course of a day. Thiay-ahead market closes to bids and
offers at noon of the day before the operating day.
schedules simultaneously bids and offers and dé&tesm
clearing prices for each of the 24 hours in theraiiegy day
This market performs short-term planning (e.g., dieg,
unit commitment, reserve scheduling) functiofdjustment
markets allow market response to significant events such

period consuming at the rate qR and be charged at the major equipment failures or forecast revisions thatur

market energy clearing pric€j) be credited at the market
regulation service clearing price; afid) respond to market

operator commands to consume at any level in tterval

[O, 2Q[R], moving towards the level that the operato

indicates at the rate @ /5 KW per min.

after the day-ahead market closes. They are qtinadita the
same as the day-ahead market. Tieal-time market
typically closes 45 minutes before time the oparatime
schedules bids and offers for the next 5, 10, amirfutes. It
performs the final adjustments when essentially

a

all

uncertainty has been realized and feasible opaaitio

decisions can be made. Its basic difference froenday-

The market operator receives bids and offers frdim aahead and adjustment markets is that it scheddesjla as

market participants and clears the market to mignuosts
over one (real-time) or more (day-ahead) time jpkKsp For
each period, market-wide prices are obtained adiyigual
participant energy and reserve bids and offerseneduled.
We assume competitive conditions and
availability of information represented by
probability distribution (jpd) of clearing price®mrditional
upon the current state of the system.

opposed tanultiple periods.

As we have mentioned, it is reasonable to assurae
demand-side market participants will be Load Aggters
or Energy Service Companies (ESCos) that take @adgean

symmetriof pooling, decision support intelligence, and mfiation
the join gathering. These companies typically have

specific names, such as Curtailment Service Prowidle
PJM and Enrolling Participant in NEISO. For examga
ESCo may be handling PHEVs plugging into outletona

th
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or more residential feeders or commercial facditi@he
ESCo will participate in the cascaded markets desdr

above, making hedging purchases of energy and sdles U;

regulation service in the day-ahead market with \theav
that it will be able to adjust in the real-time ket The
coupling of decisions in the sequential cascadetkets is
considered in [3] where we argue that the maindinudj
block for the coordinated decision making acrossketa is
the real-time market. We present next the real-tmaeket
problem and propose a tractable solution algorithm.

Il. REAL-TIME MARKET SINGLE FEEDERPROBLEM

During each real-time market time period, the E®ts
for energy and offers regulation service, whilergieg a
fleet of PHEVs. These PHEVs are located in diffengarts
of the distribution network; however, distributioretwork
constraints force us to group the PHEVs accordmgat
specific distribution network capacity (e.g., feeder
transformer capacity). Decisions for all distriloutinetwork
capacity constraints would be aggregated in order
determine the total bidding policy of the ESCo. Wesent
below the problem of charging a fleet of PHEVs ¢mised
by a single feeder capacity. Although we model ahadr
horizon, we approximate an infinite horizon by mstiing
the marginal cost of charging PHEVs plugged-in initthe
modeled horizon but intending to depart outsidehitiézon.

A. Indices

t,A, Market decision period and its duration.
T Index of plugged-in PHEV departure classes.

B. Problem Parameters

u™ (1)

Capacity price offered f@" (7) ($ per KwWh).

A vector containing all decision variables for
decision period.

I, Relevant information or state vector for decision

period t. This includes joint probability

distributions of future PHEV demand, line
capacities, and market clearing prices. In addition,
it contains results of cleared markets and up-to-
date power system information. Finally, it consists

of C™, 1, and X' .

Random Variables and Density Functions

E Expectation operator.

|StE Real-time market energy clearing price
during period ($ per Kwh).

|§R Real-time market regulation service
clearing price during period($ per Kwh).

An{ Number of PHEVs that plug-in during
periodt in departure class

AX{ Uncharged energy of PHEVs that plug-in

during period in departure class(KWh).
The probability of event& = e, e, €, &

for bids QF (7) and Q" (7).

ié (Ut) Indicator function which takes the value of
one if Q[E (T) is accepted. This occurs with
probability p;° (T) .

i;s(ut) Indicator function which takes the value of

one if QtR(r) is accepted in some form.

This occurs with probabilit]ot(elDQZ) (T) .

E. System Dynamics
The dynamics of the number of PHEVs plugged-in is

Feeder specific unused capacity available for PHER€SENted in (5). Up-and-down reserves, includinglegipn
service, are exercised by the market operator doothex a

period of a half hour or longer energy neutrality i

N  Number of time periods in the finite horizon.
C Penalty of uncharged energy at time of PHEV
departure ($ per KWh).
r Charging rate of each PHEV (KW).
émax
t
battery charging (KW).
Al

C. Sate and Decision Variables

A periodt, in departure class
X[r Uncharged energy of PHEVs plugged-in at the
beginning of period, in departure class(KWh).
Q (7) Energy rate bid for period decision peridd
Intended for charging (KW).
Q') :
periodt. Intended for chargingg (KW).
u”(7) Energy bid price folQ"(7) ($ per KWh).
u™(r) Energy price offered fa@"(r) ($ per KWh).

Marginal costs of charging PHEVs with departurgnintained: therefore, the uncharged capacity dyrsuran
class outside of the modeled horizon (i3 N) ($

be expressed as in (6). Finally, all PHEVs are asduibe
per KWh).

un-plug at their scheduled departure time (7).
=] +An Or>t ()
()@=
Lts(u ) Q'@
n=x=0
F. Allowable Decisions

Regulation service capacity offered, for decision The ESCo must follow market rules to insure that it
energy bid and regulation service offer are reblzaThis
requires that two constraints on the maximal corgion
rate (i.e., the requested energy rate plise the offered
regulation service)First, the excess feeder capacity should
be sufficient to support the maximal consumptiote rés).

Number of PHEVs plugged-in at the beginning of

><L1=><+5><.’{ }Al Or>t (6)

r<t @)



Second, there must be enough plugged-in PHEVs to absodffer is accepted or rejected. Therefore, we prepgosnodel

the maximal charging rate (9). Constraint (10) does
allow more energy to be charged then the currechanmged
capacity. Note that (8) couples the departure elsin
addition, the allowable control set includes nogatevity
constraints on all the state and decision variables

ZIQ(n+2Q" ()< C™ ©)
Q(N+2Q" ()< Or>t  (9)
[+ ] <X Or>t  (10)

G. Belman Equation

Decisions are made for each decision petidxhsed on
the available information at the time the markefsek. The
Bellman Equation is presented in (11).

. gt(lt,ut,éE’éRit)
‘]t (Il) = mlnutDU‘(I‘) EI |:
3 (1)
With boundary condition

I (1) =X+ x4

>N
where E[g,(1,u,.P%,5"1)]=

(11)

pP (7) E [PE]Q(r)+
ox, +Y. 1p2(r E[F?E P ]Q%(7) +
pe (7 Pl%[éE]Qf(

I1l. SOLUTION APPROACHADOPTED

A full backward recursion solution of the propodatte
horizon SDP problem is not tractable for any rgatam. In
addition to overall complexity, the SDP problem

s 3 "(2N-i)2+N2

formidable due tdi) uncountable state and control spaces

the evolution of these uncertainties by implemeantia
limited look-ahead SDP algorithm that uses a Midtje
Stochastic Programming (MSP) formulation [20]. MSP
formulations have proved useful in capacity plagnj8],
[21], as well as power generation scheduling in das-
ahead electricity market [25]. A MSP model approxies
the SDPcost-to-go with a limited look-ahead that explicitly
represents and prepares for many possible statetheof
system with the objective to minimize expected so&h
addition, the formulation allows for the revisiohaharging
decisions in each time stage based on the undsrtain
realized so far (i.e., an optimal open loop fee#lbac
formulation). Whereas we replace certain randoniabées
by their expected values (e.g., PHEV demand paiteva
develop the scenario tree based on sequential atigul
service bids being accepted or rejected. More pebci we
build the scenario trees based on all possiblézegains of

le (ut) .

The number of state and decision variables forfithite
horizon MSP can be computed according to (15). dfoee,
the inclusion of all possible scenarios would resol a
model of intractable size. As a result, we consadémited
look-ahead for a portion of the horizon combinedhwa
certainty equivalent for the remaining horizon. Hoenario
tree branches according to the regulation servicécator
function at each time period= 0,1,..b whereb is large
enough to capture the benefit of look-ahead whileiding
an intractable number of decision variables. Tlds ai
reasonable approach since rejected regulationceenffers
to charge PHEVs with distant departure times can be
compensated for with future bids while bids inteshde
charge PHEVs whose departure time is close canfibene
from the more accurate look-ahead formulation. #ilsir
effort to minimize the number of selected scenari®s
included in [25].

(15)

and (ii) the non-linearity and associated non-convexity We denote the scenario tree fiy, and let\" be the set

introduced by regulation service bid price decisidn order
to deal with the non-convexity issue, we implemaitrice-
takers bidding policy shown in (12)-(14).

us (7) >>E[[F}E], Ot, O7 (12)
utRE(r):E[[If{E], Ot, O7 (13)
u(r)=0, Ot,0Or (14)

As a result, the energy bid is accepted almostirdyt
and we maximize the probability the regulation g=bid
is accepted. In addition, note that the probabityhe four
key events is now the same foralso we can write,

pk(7)=pf, Ot, O7, and
i;s(ut) :iRS(ut)) Ot,dr.

The most significant uncertainty in the state JaBa is
the binary realization of whether each regulatiemvise

of nodes ifll’ . Since multiple nodes are associated with the
same time period we denote tthe time period associated
with node NJ % . We also use@, to denote the probability
associated with visiting node. All nodes, except for the

root node §=0, p,=1), have a unique parefit(n), and a

recursive algorithm can be defined for determirppg
For the remainder of the paper we use the pair of
subscripts, rfode, time period) to denote state and decision

variables associated with each node. For exartple will

denote the vector of all decision variables for enod

associated with time peridgd
Each node is born from its parent as a result of either

iRS(u[‘I ) tn(e) ) =1 OriRS(ul'l(n),tn(n) ) =0.



For illustrative purposes, consider a nodeborn from Note that we divide the set of nod€¥ into two subsets

iRS(ul'l(n)t =1. In this case, N, and N, where N, contains all nodes such that,
— a0e 1 (u )= 1, and %, contains all nodes such that
Pn = Prn) I('I(n),tzn)(n)' s\ Un(ogy
A icti f io t is sh in Fig.1. 1 -
deF)lc ion of scenario tréE is shown |rj—|_g_ _______ \ lRS(uI'I(n),tn(n))_

This formulation introduces equality constraints osé
dual variables provide an estimate df, for t > N. The

(a0e) 7
T (T W— ,( )

constraints corresponding to the initial distribuatiof Xlr o

for > N will have associated with them dual variables that
represent the marginal cost of having one additiiivgh of
capacity for departure clagsatt = 0. Assuming that the
modeled day is not drastically different from thibsequent
day, these values should correspond to the marginsts

/1,(‘. Computational experience has shown that these dual

variables converge in one iteration except foresre cases

Fig. 1. Graphical depiction of MSP model. The ladlead portion is of distribution network congestion.
indicated by the dotted line and the certainty eajeint by the dashed.

By considering the system dynamics as constrathts, V. COMPUTATIONAL EXPERIENCE
SDP can now be approximated by linear programming \we employed a 24 time period horizon model with an
problem in (16). equal number of explicit extension periods to ipooate
min Z E, [gt (|nt u, . ,|5tE,|5tR ,tn)} departures scheduled outside of the modeled harizba
tnin 1o ) N o o first five time periodsk{=5) comprise the look-ahead portion
Where fort. < N of the MSP horizon, while the remaining 19 time ipes
" ' o make up the certainty equivalent portion. The mdugins
E[" [gtn (I ng, U n]tn,F{nE,F{nR ,tn)} :Cpnx;'tn:, + at 12pm on Day 1 (i.et, = 0), incorporates an estimated

demand pattern, calculates charging decisions gtrd2pm
- (Day 2), and estimates uncharged energy with deart
EAE .
E. [F{n Qut, (T)] times from 1pm (Day 2) through 12pm (Day 3).
Rleo The LP solved contains approximately 70K state and
~c =R ~R decision variables, and an equal number of comgralData
pnz P, 1, |:Rn -k ]Q " (7) (16)  for the model inputs were derived from ERCOT (ikexas)
r il and CAISO (i.e., California), where wind farm geat@n is
[FN{E]QRI (T) substantial and likely to develop at a rate amotigsfastest
" in the United States. The model was implemented in
MATLAB codes, and the simulation platform was
Andfort, =N, MATLAB 7.8.0 (R2009a). The implementation used
9 (I u P MATLAB routines to run CPLEX 112 features in the
NATRNTERNTIN 2N MATLAB environment [15].

=N

P, (er:,tn:N + z X;,tn:N/‘nrlj A. Model Inputs |

>N Inputs were calibrated to represent a low voltage

Each node includes capacity constraints analogn(8)¢ residential feeder servicing approximately fiftyuseholds.

(10), non-negativity constraints, and system dycamiJsing total number of household trips, trip typé tength,
analogous to (5) and (7). However, the system dyecsamand vehicle ownership data from the 2009 National
with regards to the uncharged battery capacity roer Household Travel Survey [24], we developed an ebguec
explicitly modeled and thus (6) is reformulatedi)-(18). demand pattern for a neighborhood PHEV fleet. For

m
O
Pyl
z
p —
1

A nu N simplicity, we defined five vehicle types based their
X = X HOX ‘[Qf,tn(f)*'Qf,tn(T)]At * (7) primary usage, as shown in Table I, and assumed a
' t, weekday-to-weekday scenario, meaning that the dédman

Y% pattern was not expected to change significantliybéen

r

X0 =X, +Ax[’n _QnE,tn(T)Atn >t (18) Days 1, 2, and 3. Therefore, all PHEVs, except tfu

n



“Extended Trip” type, have the same expected usagaoth market reserve clearing prices. In addition, siBEG@COT

days. clears regulation service up and down separatelg, w
TABLE | summed the regulation service up and down clegriiges
: EXPECTEDPHEV DEMAND PATTERN to estimate the clearing prices for an up-and-dand of
Vehicle # Arrival Departure Req. Ch. lati . itv. Finall dfead
Type Times Times (KWh) regulation service capacity. Finally, we assumedfeader
Work A 45 3pm — 6pm 6am — 9am 5.36 location to be in the North Zone.
Work B 46 6pm — 9pm 6am — 9am 8.39 For CAISO, we used hour-ahead regulation serviaegr

7am — 10am 9am — 12pm
10am — 1pm 12pm — 3pm
1pm —4pm 3pm —6pm
4pm — 7pm 6am — 9am
7am — 10am 9am — 12pm
Non-Work B 11 10am - 1pm 12pm - 3pm

and aggregated hourly energy prices from CAISOa-re
time market. We assumed our feeder to be locatéukilNP-
15 Region. It is interesting to note that CAISO’aximum
regulation service regulation price occurred in #wrly
morning (i.e., between 12am and 8am) in 2008, withike
Extended lpTO;n‘}lpm 3p'2a_m6pm peak energy price occurs at approximately 6pm. Fhit

) 5 12 .

Trip (Day 2) (Day 3) occurred between 2007 and 2008; however, the refamson
this shift is beyond the scope of this paper.

Probability distributions of hourly real-time whekde We modeled three distribution network congestion
market energy and regulation service clearing prieere scenarios, corresponding to non-PHEV load durimgpibak
estimated using ERCOT [5] and CAISO [1] data. Weyour of 80%, 90%, and 100% of the total feeder cipaA
estimated ERCOT and CAISO energy and regulatioViGer ypica| summer residential consumption profile veaawn

clearing price pdfs as &-truncated normal distributions, from data available from the Southern Californiaisd
with the parameters shown in Figs. 2 and 3. By @igp \yepsite [23].

integrating over the joint range spaces of thesalam

variables, we computed the probabiligt and e, for B. Parameter Values

t=0,...N. Uncharged capacity at the requested time of degavwas
penalized at $0.75 per KWit)( corresponding to a $3

Non-Work A 12

NNDNNNNN

$120.00 S gallon of gasoline. A 2 KW charging ratd (vas assumed.
—_ —— RS - mu T8 . . . . . .
§ 5100009 | —m—£emu t7g Marginal distribution hourly losses in the distriioun
g seo00 | | Iizzfifome te € network were estimated for non-PHEV loads to rafigm
€ $60.00 | 75§ 8% to 22%, and 1.08 to 1.22 multipliers were agplie
S $40.00 | ::é wholesale market clearing prices in order to apjnake
£ 123 retail prices. A transmission and distribution esafge
g #20009 L1 ($0.04 per KWh) was computed by assuming that geioer
$- 0 is responsible for 60% of end user energy costs.
The marginal cost of charging PHEVs with departure
. . T
Fig. 2. ERCOT Pricing information and Non-PHEV |qafile. class outside of the modeled hOt‘IZOﬂN for o = N+1,...,
612000 . 2N, was first set equal for all departure classes. After an
18 initial solution of the model,x],f‘ was updated to equal the
= $100.00 | e —E.mu
g 650,00 | .—..—.Ei{gi%ﬂa :E dual variables associated with the initial disttibo of
2 P I PHEVs scheduled to depart within the first 24 hours
g %000 laz capture the impact of an infinite horizon, the mode
© $40.00 1 , 1379 ST .
g’ 123 resolved unt|l/lN converges. The rate of convergence is a
5 0 T function of distribution line congestion, but didtrrequire
> EEEEEEEEEEEEEEEEEEEEEEEE ° more than three iterations for the inputs used.
) ™ Hour o C. Computational Results
Fig. 3. CAISO Pricing information and Non-PHEV lopubfile. Each distribution network congestion scenario was r

Currently, ERCOT does not incorporate some of tiseem twice; first for smart-charging with regulation service, and
advanced market features found in other marketasper Second for smart-charging without regulation servicewts
(e.g., spot and day-ahead energy markets). InE&COT assumed that the ESCo will be able to negotiate0% 5
uses the day-ahead load forecast to determine ijgargf reduction in the transmission and distribution eséege in
ancillary services, which can either be arrangesugh €xchange for observing congestion constraints. efit
bilateral transactions or purchased in the day-cmearket. discount rates can be easily explored. In additioa,cost of
Subsequently, zonal balancing occurs by deployin§ump-charging,” namely the cost of charging imnatelly
balancing energy bids in real-time. For our analysie used UPon plugging-in, is calculated using time dependan
day-ahead ancillary service data as a proxy fol-thee electricity costs but no discount in the transnaissand



distribution usage charges. Results are shown @ &i 2 KW x 2/3x0.75x 0.6~ 0.5 KW

Decreasing the available distribution network cétyaat of regulation service.

peak from 20% to 10% did not impact the optimalrghvey The 0.5 KW or regulation service per PHEV is a
decisions; however, decreasing to 0% resulted %6 conservative estimate based on no vehicle-to-grid
increase in costs for both smart-charging stratedsnart- capabilities, a practice that with today’s battegghnology
charging without regulation service resulted inarage will severely decrease the useful life. With future
cost savings of 41% in ERCOT and 35% in CAISO whetechnological breakthroughs and infrastructure thety
compared to dump-charging, while smart-charginghwitallow higher charging rates (i.e., Levels 2 anca30 fold
regulation service reduced costs by 50% in ERCQIIs% increase to 10 KW per PHEV may be possible [10].

in CAISO. If the Obama Administration achieves its target lof
million PHEVs by 2015, KEMA et al. [9] estimate tha

$0.1200 —_— — —

_ 42,769 will ‘live’ in the ERCOT balancing area a2@7,654

3 o000 ERcoT 1 in CAISO. Based on our conservative estimate of K\/8

§$°'°8°°' = B per PHEV, fleets of this size can provide 21 MW a8

7 $0.0600 4 m MW of regulation service, sufficient to support 420V and

2 $0.0400 | - 2660 MW of installed wind capacity, respectivelging the

% $0.0200 | | Makarov et al. [12] estimate that wind farms wiquire

= $0.0000 | ‘ ‘ additional regulation service equal to 5% of thestalled

80% 90% 100% capacity.
Distribution Network Congestion 500
Fig. 4. Expected Cost by Charging Strate¢y: smart-charging with 450 1
regulation service(ii) smart-charging without regulation service, and 400 1
(iif) dump-charging, respectively. 350
< 300

Figs. 5 and 6 show the load profile for our ‘neigtinod’ 2 250 ]

under the different charging strategies for the BRGand 2 200
: ; 3 150 A
CAISO modgl runs. If PHEV charging is not managngd,( 100 T Gument Load, ks
dump-charging) then the peak energy consumption wi ] o UpdatedLoadwo RS
increase and extend several additional hours. Stharging 0 — e —

. . . . . . . EEEEEEEEEEEEEE%%%%EE%%EE
without regulation service will shift the chargitmtimes of §5883888885333d883888a88¢83
low distribution network congestion; however, chiaggwill Time Period
gravitate to a few hours resulting in a second peathe Fig. 5. ERCOT load profile by PHEV charging strateg
load profile including the PHEV load. Smart-chaggiwith 500
regulation service offers the best option for Isatbothing. 4507

. . . . . . 400

We finally discuss the implication of our compubaial 250 |
results on the potential synergy of PHEV chargingds, £ o0
wind generation intermittency and the often highnavi 5 21
potential during the night hours that pushes eneriges to ~ ~ 2oc |

. . 1 = Current Load
very low levels [16]. Responding to high marketatieg 100 | —¢— Updated Load wRs

. . . . . —ll— ate oad wlo
prices for regulation service and low clearing esicfor 501 2o Updated Load wiump

0 — —

energy, our proposed optimal PHEV battery charging
methodology adapts to system wide costs addressit
intermittency and high nighttime wind potential. tidirst
that we assume a household-outlet-compatible 2 K/, ( 719
Level 1) charging rate. Our results show that m BHRCOT

and CAISO model runs a minimum of 75% of the energy V. CONCLUSION AND FUTUREWORK

used to charge PHEV batteries correspond to regolat We developed a decision support tool for optimaERH
service. Assuming further that PHEVs will be pludge 2/3 market bidding policy. Computational results shdattthe
of the time and recognizing thgt) PHEVs should not resulting regulation service offered by PHEV chaggioads
provide regulation service whenever they are pldggebut can mitigate renewable generation intermittency tscos
only when there are proper market incentives; @jdocal Moreover, optimal PHEV charging can render distiitru
transmission capacity constraints may restrict PHEWetwork infrastructure resilient to new PHEV loadsd
regulation service provision during the day andlyeardeliver significant cost savings to PHEV operation.
evening hours (see Fig. 3), a fact that we modelaby In addition, the PHEV paradigm of a responsive loétth
additional factor of 60%, we conclude that each RHElinear dynamics generalizes to other important soddr
responding optimally to market signals can provitethe example, consider heating and cooling systems with
average following parameters.

11am |

12pm
1pm
2pm
3pm
4pm
5pm |
6pm |
7pm
8pm
9pm
10pm
10am |

. 6. CAISO load profile by PHEV charging strateg



T, inside The inside temperature at the beginning of
! decision period.
T, outside The forecasted outside temperature during
! decision period. [14]
-Rmin T Bui!ding occupant preferences during decision
periodt.
K, Known building constants far= 1, 2. [15]
QHC,E Energy rate bid for decision periddntended
t for Tinsde [16]
t .
QtHC'R Regulation service capacity offered for
decision period. Intended forT, ™. (17]
Qe Cavecly Capacity of the HVAC system during decision
t

periodt.

[13] M. Milligan and B. Kirby, “Analysis of Sub-Hourly &mping Impacts

(18]

The heating and cooling system dynamics and allavab
control sets are perfectly analogous to PHEV dyeamnd
constraints as shown in (19)-(21). Other examphetude
dimmable lighting loads with a preferred lumen raras

t+1

well as the load of smart appliances.
T =T (T ST 4K (QTF +QF)  (19)
Q“F+2Q™" < min(étmax,q“c'cm"y) (20)
T T T (21)

(1]

[2

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]
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