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a b s t r a c t

This paper addresses the task of coordinated planning of a supply chain (SC). Work in process (WIP)
in each facility participating in the SC, finished goods inventory, and backlogged demand costs are
minimized over the planning horizon. In addition to the usual modeling of linear material flow balance
equations, variable lead time (LT) requirements, resulting from the increasing incremental WIP as a
facility’s utilization increases, are also modeled. In recognition of the emerging significance of quality
of service (QoS), that is, control of stockout probability to meet demand on time, maximum stockout
probability constraints are also modeled explicitly. Lead time and QoS modeling require incorporation
of nonlinear constraints in the production planning optimization process. The quantification of these
nonlinear constraints must capture statistics of the stochastic behavior of production facilities revealed
during a time scale far shorter than the customary weekly time scale of the planning process. The
apparent computational complexity of planning production against variable LT and QoS constraints
has long resulted in MRP-based scheduling practices that ignore the LT and QoS impact to the plan’s
detriment. The computational complexity challenge was overcome by proposing and adopting a time-
scale decomposition approach to production planning, where short-time-scale stochastic dynamics are
modeled in multiple facility-specific subproblems that receive tentative targets from a deterministic
master problem and return statistics to it. A converging and scalable iterative methodology is
implemented, providing evidence that significantly lower cost production plans are achievable in a
computationally tractable manner.

© 2008 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivation and objectives

Modern manufacturing enterprises are becoming more global
than ever. They encompass owned or contract manufacturing
and transportation facilities, suppliers, distributors, and customer
service centers scattered over the globe. Manufacturers are no
longer the sole drivers of the supply chain (SC). A shift from
a ‘‘push’’ to a ‘‘pull’’ environment is well on its way. Customer
needs and preferences influence the SC’s inner workings: product
functionality, quality, speed of production, timeliness of deliver-
ies, flexibility in adjusting to demand changes. In today’s highly
competitive marketplace, companies are challenged with achiev-
ing shorter order-to-delivery times while allowing customers to
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customize their orders. Manufacturers recognize the significance
of short lead times (LT) and high quality of service (QoS) pro-
visioning for control of stockout probability. Furthermore, time-
based competition has had a significant impact on the design of
production facilities (product cells) and their operation (just in
time, zero in-process inventory, lean manufacturing, and so on).
Finally, supplier–consumer information sharing has been looked
on as a means to reduce inventories needed to provide a desired
service level. Although these efforts, togetherwith thewider use of
enterprise-wide transactions databases, have achieved remarkable
productivity gains, further improvements in global SC lead times
andQoS are critically required. The revolution in computational in-
telligence and communication capabilities, assisted more recently
by the emergence of sensor networks with dynamically reconfig-
urable topology, has brought these improvements within reach.

The lead time at each link of a SC contains information that is
critical for effective coordination. Lead times change across weeks
in the planning horizon. In fact, they vary nonlinearly with load,
production mix, lot sizes, detailed scheduling, and other opera-
tional practices adopted during each week of the planning hori-
zon. Nevertheless, widely used material requirements planning
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(MRP) systems assume that lead times are constant across the
whole planning horizon to avoid the task of estimating and com-
municating variable lead time information. The use of limited
information in the current state-of-the-art industrial practice is
responsible for inefficient planning and often chaotic and unsta-
ble operations hampered by chronic backlogs and widely oscillat-
ing inventories. Twomajor barriers preventingmore extensive use
of information are (i) the cost of collecting, processing, and com-
municating the requisite information and (ii) computational and
algorithmic challenges in using this information to plan and man-
age SCs optimally. A time-scale decomposition and information
communication architecture framework is proposed that is capa-
ble of exploiting sensor networks, and overcome the communica-
tion barrier. An iterative decentralized coordination algorithm is
also proposed that provides proof of the concept that the compu-
tational barrier can be overcome as well.

1.2. Current industry practice

Whereas capacity is ignored and dynamics aremodeled by con-
stant lead times in the ‘‘vanilla’’ version of materials requirement
planning (MRP) models [1], advanced planning system (APS) ap-
proaches include adequate representation ofmaterial flowdynam-
ics and detailed representation of effective (or expected) capacity.
APS models rely on mathematical programming techniques and
hierarchical decomposition [2,3] to overcome combinatorial com-
plexity explosion barriers while capturing the details of capac-
ity restrictions. This task is particularly onerous in the face of
discrete part integrality and complex production rules and con-
straints, which together with uncertainty, render stochastic inte-
ger programming formulations computationally intractable.

Past approaches employed to bypass these hurdles include the
theory of constraints, scheduling algorithms, and fluid model ap-
proximations. The theory of constraints [4–6] approximates the
model of the production system by a small number of bottleneck
components that are modeled in great detail; production is sched-
uled around those components through constraint propagation
over time. Twomain shortcomings of the theory of constraints ap-
proach are: first, the difficulty in identifying and modeling bottle-
neck components, and second, the fact that delays or lead time
dynamics along part routes are nonlinear and difficult to model.
The systematic modeling of individual facilities could be possibly
used to alleviate the first shortcoming. However, it is very diffi-
cult to overcome the second shortcoming. A variety of schedul-
ing algorithms ranging from mathematical programming and
Lagrangian relaxation to genetic algorithms have been used, of-
ten effectively [7–15]. Fluid model approximations have also been
used extensively and with considerable success [16–21] but have
not adequately addressed dynamic lead timemodeling. Systemdy-
namics simulation models have been proposed [22] that capture
nonlinearly increasing lead times as functions of the production fa-
cility utilization. It has been shown that deterministic fluid model
approximations of stochastic discrete production networks can be
employed to predict the qualitative nature of optimal scheduling
rules [8,9,16,18] and to determine the stability and robustness of
the approximated stochastic discrete networks [23–26]. The pro-
posed algorithm exploits this line of research with particular em-
phasis on extending fluid network approximations to improve the
dynamic lead time modeling capabilities.

Past efforts tomodel lead time in production planning are note-
worthy [27,28] but are limited to static lead times estimated for
average or typical production conditions. Incorporating dynamic
lead times into production planning poses modeling analysis and
computational difficulties leading to deliberate choices on simpli-
fying approximations and relaxations. Amixed-integer production
planning model has been proposed [29] that employs piecewise-
linear functions to capture the effect of alternative routings and
subcontractors on load-dependent lead times. The quantitative re-
lationships betweenwork in process and production are estimated
via Monte Carlo simulation and used as constraints in a nonlin-
ear production planning model [30] solved through linearization.
The effect of inventory on the quality of service has been also
studied in an uncapacitated single-productmulti-class-QoS supply
chain through queuing approximations [31] and in amulti-product
single-facility fixed lead time setup [32]. A recent literature sur-
vey [33] provides an extensive overview of dynamic lead time
modeling in production planning and points out the use of the
aforementioned nonlinear relationship in supply chain production
planning. This paper explores further in that direction.

1.3. Overview of the proposed approach

The time-scale-driven decentralized information estimation
and communication architecture that are proposed in Section 2
enable coordination, planning, and operational decisions of
manufacturing cells, transportation activities, inventory, and
distribution facilities in a SC. It is shown that this can be achieved
through optimal and consistent production targets and safety-
stock levels scheduled for each part type produced by each SC
facility. Proposed is a framework of iterative information exchange
between three decision-making/performance-evaluation layers
that is indeed capable of achieving this coordination. The
framework consists of a centralized planning coordination layer,
a centralized QoS coordination layer, and finally a decentralized
performance evaluation and demand information layer. The
planning layer determines facility-specific production targets
using performance and sensitivity information it receives from
the decentralized performance evaluation and information layer.
The QoS layer combines interacting facility production capabilities
and requirements (that is, targets) to determine hedging inventory
requirements that achieve exogenously specified QoS levels. The
decentralized performance evaluation and demand information
layer analyze short-term (hourly) stochastic dynamics of each
facility to derive expected (weekly) work-in-process and safety-
stock inventory for each facility and their sensitivityw.r.t. planning
level targets.

The major objective of the proposed framework is to capture
second-order effects of the steady-state cell dynamics in order to
model dynamic lead time effectively at the coarse (varyingweekly)
production planning dynamics layer. Weekly time averages are
a statistic with relatively low variance due to the law of
large numbers effects, and they can be effectively modeled as
deterministic quantities within the planning layer. Furthermore,
detailed information on machine-specific queue and setup states
is not globally available, hence, it is practical to share state
information that is (i) time averaged to the coarse time scale and
(ii) grouped by facility. To this end, capacity, work-in-process,
and production requirements are facility-specific aggregates.
Production planning dynamics are thus constrained to satisfy
minimum weekly average lead time requirements. Note that
although facility lead times and interfacility hedging inventory
requirements are averages over the fine (hourly) time-scale
dynamics modeled at the decentralized performance evaluation
layer, they are dynamic relative to the coarse (weekly) time
scale of the planning layer. Lead times and hedging inventory
requirements are modeled as functions of production planning
decisions (loading and mix). This constitutes the second-order
information that has been shown can be used [34] to significantly
decrease inventory and backlog costs. The planning coordination
layer employs an iterative interaction of a single production
planning master problem on the one hand with the hedging
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policy QoS layer and the performance evaluation layer’s multiple
decentralized facility-specific subproblems on the other.

The effectiveness of our planning layermodel depends crucially
on the quality with which the operational dynamics of the
production facilities are modeled in the performance evaluation
and information layer. To this end, the framework relies on the
following two building blocks:

1. Dynamic lead time modeling: Performance analysis results
for stochastic queuing networks are used to accurately estimate
average weekly lead times as functions of capacity utilization,
productionmix, production policies, and distributions of stochastic
disturbances such as failure and repair times. This provides
delivery requirements to upstream facilities and available supply
to downstream facilities, which are necessary for efficient planning
of production over a multi-week horizon. These nonlinear lead
time functions, denoted by ḡ (·), are incorporated as weekly
constraints on decision variables in production scheduling.

2. Provisioning of quality of service (QoS) guarantees: Constraints
are introduced that bound the probability of backlog at a SC
facility. It is believed that probabilistic constraints reflect customer
satisfaction considerations and follow closely the industry practice
of providing QoS guarantees. These guarantees are modeled as
nonlinear constraints in the production scheduling framework,
denoted by h̄ (·).

Themain purpose of this article is to demonstrate that dynamic
lead times and hedging inventory requirements can be modeled
and included in the tractable determination of faster SC production
plans while maintaining the desired quality of service guarantees.
The aim is to provide a proof of concept regarding the feasibility
of modeling dynamic lead times and quality of service guarantees
as part of the production planning process. Through a variety
of numerical examples, the potential cost savings achievable by
the proposed approach are studied relative to traditional constant
lead time based production planning approaches that represent
the bulk of today’s industry practice. The comparison supports
the viability of implementing the approach in real life provided
that the cost of estimating and processing the required lead time
information is affordable. It is not claimed that the proposedmodel
is a perfect model of reality, particularly as far as the decentralized
queuing network subproblem model is concerned. More general
and accurate models have been developed in the queuing network
and simulation literature, and undoubtedly further extensions are
forthcoming from the formidable and research-active community
studying these topics. Moreover, the adoption of radio frequency
identification tag (RFID) and sensor network technologies will also
contribute to the affordability of dynamic lead time information.
This contribution is for showing how this information can be used
in a tractable, computationally efficient, and robust production
planning algorithm.

The demonstration of significant reduction in inventory costs
when the nonlinear relationship of facility lead times ismodeled in
the SC production planning process is not the major contribution
of this paper. Most practitioners will argue from experience that
this is hardly surprising given the widely observed inadequacy of
MRP-based production schedules that rely on the constant lead
time assumption. The major contribution of this paper is in its
proposal and implementation of a practical, efficient, tractable, and
robust algorithm capable of actually achieving these cost savings.
The aim is to prove the concept that SC production planning on
constant lead times is not a necessary evil imposed by the incorrect
presumption of insurmountable computational complexity. In fact,
it is claimed that SC planning no longer has to live with the
undesirable consequences of the constant lead time assumption
impeding today’s industry practice. This contribution supports the
notion that detailed production facility models and/or adoption
of RFID technologies can provide additional value added through
their ability to extract reliable, albeit affordable, dynamic lead
time information andmake it available to the production planning
optimization process.

The next section introduces the proposed time-scale-driven
data communication architecture. The SC problem and the
performance evaluation, QoS, and planning layers are then
described, following by computational experience that shows
the value of dynamic lead time and probabilistic QoS constraint
information in the determination of a SC’s coordinated production
schedule. A three-facility SC producing five different part types
is used to develop various representative examples of SCs.
Comparison to production schedules that are characteristic of
current industry practice indicates that substantial improvements
are possible.

2. Time-scale-driven decentralized data communication and
decision support architecture

The multitude of strategic, planning, and operational decisions
made routinely by SC participants are far too complex and the
requisite information is far too large to handle in a centralized
manner. Decentralized decision making has therefore been the
norm. However, since the consequences of various decisions
are interdependent, it follows that appropriate coordination can
foster desirable efficiencies. Consider a decentralized decision-
making agent as ‘‘a decision node’’ in a network of communicating
decision nodes. A key determinant of successful coordination is
the systematic conversion of data available at a certain decision-
making node i to a compact representation of information
‘‘relevant’’ to the decision-making process at node j. Relevant is
construed here to mean incorporating all information about the
state, dynamics, and decision policies in node i that may contribute
to efficient decision making in node j. Compact representations
of relevant information may take, for example, the form of a
statistic: the time-averaged lead time in a production system, the
probability distribution and autocorrelation of a demand process,
or a performance target, such as the desired weekly output of a
manufacturing process. These compact representations provide
key enabling efficiencies in both the estimation of the relevant
information (which can be done in a decentralized distributed
manner) as well as in its communication (the transmission of a
statistic requires less bandwidth and energy than the time series
it describes). Although several issues are still to be resolved,
intelligent communicating mobile sensor networks have the
potential to both estimate and communicate relevant information
in ways that are superior to conventional alternatives in terms of
cost, flexibility, and reliability.

Proposed is a time-scale-driven assignment of SC decisions to
nodes that is suggestive of the ‘‘relevant’’ information exchange
architecture. The idea of time-scale-driven decomposition is not
new. In fact, it has been widely used to great advantage in control
theory [35]. The main idea here is the fact that decisions are
characterized by a characteristic frequency and its corresponding
time scale. For example, while machine operating decisions are
made every few minutes, major resource acquisition decisions
are made every few months or years. It is further noticed that
supply chain decisions characterized by functionality (for example,
resource allocation, planning, sequencing) and scope (for example,
enterprise, plant, cell, process) are associated with a decreasing
time scale as the scope narrows and the functionality changes
from resource allocation to sequencing. Table 1 provides such a
classification example where time scales decrease as the decision
of interest moves to the southeast.

The SC planning algorithm proposed here employs a decen-
tralized decision-making and information exchange architecture



O.M. Anli et al. / Journal of Manufacturing Systems 26 (2007) 116–134 119
Table 1
Example of time-scale-driven classification
that is an instantiation of the time-scale-driven approach of
Table 1. Fig. 1 presents the information exchange architecture that
supports factory-scope production planning decisions, cell-level
performance evaluation, and process-level operation control. Note
that:

• The factory production planning node passes down weekly
production targets to each cell.

• Each cell evaluates its performance during each week in the
planning horizon, determines variability distributions, and
aggregates its hourly dynamics to weekly time averages of
relevant performance measures such as work in process (WIP),
lead time (LT), and their sensitivity with respect to weekly
production targets passed down from the factory planning
node.

• Contiguous cells coordinate horizontally to determine safety
inventory of semi-finished and finished goods that assures
desired quality of supply levels at each cell and quality of service
to customers.

• Each cell communicates weekly averages and sensitivities
up to the factory planning node and variability distributions
horizontally to upstream and downstream cells.

• UsingWIP, LT, and sensitivity information, the factory planning
node adjusts production targets so as to achieve material flows
across cells that meet required WIP and safety-stock levels
while minimizing SC WIP and LT.

While the remainder of the paper proposes algorithms that
can make practical use of the information flow described
above and reach a stable and optimal production plan, it
must be emphasized that the proposed information architecture,
in addition to distributing computational effort (performance
evaluation and handling of short-time-scale stochastic dynamics
modeling are done in a decentralized manner at each cell) also
reduces communication requirements to the relevant information.
For example, the factory planning node does not need to know
the cell production details: labor and other resources available,
machine capacities, and manufacturing process specifics. It needs
to know, however – and it does know – the weekly lead times
at each cell and the hedging inventory between cells that are
consistent with the production targets that the planning node
sends to each cell.

The general philosophy of the time-scale-driven communica-
tion and decision support architecture described in this section
provides useful guidelines but not a mindless recipe. In the rest
of this paper, these guidelines are used to propose a SC production
planning algorithm that is computationally tractable and outper-
forms two proxies of the state of the art in industry practice that it
is compared to.
Fig. 1. Example of information architecture.

3. Supply chain management problem

This section develops a supply chain (SC) planning algorithm
that utilizes the principles of the time-scale-driven architecture
discussed above. Following an overview, the three layers employed
are described in detail, as well as their interaction in providing the
optimal SC production plan.

3.1. Supply chain problem overview

To describe our SCmodel and establish the notation, the system
depicted in Fig. 2 is considered, and the associated information
exchange and decision layers are shown in Fig. 3. Although a tree
network of SC links or facilities can be modeled, C production
facilities connected in series are considered here, for ease of
exposition but without loss of generality. Production planning
decisions and the resulting WIP and QoS hedging inventory
requirements vary in the medium term (say, across weeks), and
the characteristic scale of their dynamics is called a period and
denoted by t ∈ {1, 2, . . . , T }. On the other hand, performance
evaluation and demand dynamics varymany timeswithin a period
(say, across hours) and their characteristic scale is called a time slot
denoted by the subscript k of k ∈ {1, 2, . . . , K}.

The QoS layer determines a hedging point or safety-stock
inventory policy at each facility c , which guarantees that the
probability of stockout or starvation of facility c − 1 does not
exceed 1 − Γc(t), where Γc(t) is the quality of service that facility
c offers to facility c − 1. In other words, the probability that the
material release requirements of facility c − 1 are met on time
equals or exceeds Γc(t). The QoS layer models random behavior
of short-term facility production capacity and final demand, while
the planning layermodels expected values or time averages during
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Fig. 2. A multi-class supply chain with limited production capacity at each facility.
Fig. 3. Information exchange among the coordination layers and the decentralized layer.
a period (for example, a week) under the underlying assumption
that the period is long enough for the time-slot stochastic process
dynamics to reach steady state.

External demand is met from the available finished goods
inventory in facility 1, and it is backordered if finished goods
inventory (FGI) is not available. Every facility c ∈ {1, 2, . . . , C}

produces a set of products and has a limited production capacity.
Whereas facility C can draw from an infinite pool of inventory,
production of facilities (C − 1, . . . , 2, 1) is constrained by the
production capacities of workstations and in addition by the work
in process (WIP) in each facility. WIP is in turn constrained by
(i) the FGI available upstream to release input into a facility that
replenishes WIP and (ii) the production that depletes WIP. Again,
for ease of exposition and without loss of generality, it is assumed
that all facilities process the same set of part types, {1, 2, . . . ,
P}, and one part of part type p is required from an upstream
facility c + 1 to produce one unit of the same part type at
facility c . The serial SC problem presented in Fig. 2 retains the
most salient features of the more general problem, particularly in
terms of the general demand and service distributions allowed. As
suggested by past experience in the literature [36–38], results for
the simpler system can be routinely generalized to accommodate
assembly/disassembly features.

Dp (tk) denotes the amount of external orders for product of
class p arriving during time slot k of period t . µp

c,m (tk) denotes the
part type p production capacity in isolation of facility c workstation
m during time slot k of period t . Xp

c (tk) denotes the number of
type p parts facility c produces during time slot k of period t .
Rp
c (tk) is the amount of WIP released into facility c from facility

c + 1 FGI. Finally, Q p
c (tk) denotes the type p WIP at facility c , and

Ipc (tk) denotes the type p FGI at facility c available at time slot k
of period t . Only at facility 1, the FGI is allowed to take negative
values to denote backordering. Following standard conventions,(
Ip1 (tk)

)+ and
(
Ip1 (tk)

)− denote, respectively, max
{
0, Ip1 (tk)

}
and

max
{
0, −Ip1 (tk)

}
.

Because the period containing K time slots is the relevant time
scale in the planning layer’s dynamics, and because it is assumed
that it is long enough for the stochastic processes active at the
time-slot scale to reach steady state, the following time-averaged
variables are defined: R̄p

c (t) =
1
K

∑K
k=1 E

[
Rp
c (tk)

]
, and similarly
X̄p
c (t), Q̄

p
c (t), Īpc (t), µ̄

p
c,m(t), and D̄p(t). We use vector notation

X̄c(t) =
(
X̄1
c (t), . . . , X̄P

c (t)
)
.

The SC management problem is implemented in three layers,
exchanging information as shown in Fig. 3 and described below.

3.2. Performance evaluation and information layer

The performance evaluation and information layer shown in
Fig. 3 models the short-term stochastic dynamics of production
facilities at the operational level and develops the steady-state
or time-averaged performance measure estimates of interest at
the longer time scale of the planning layer. More specifically,
performance evaluation means:

1. The transformation of production targets in each period to
estimates of minimum average WIP required during that period
in each facility to meet the production targets set by the planning
layer. This estimate will generally depend on production targets,
X̄c(t), the probability distribution of all relevant random variables
Pc(t), and other operational policies, πc(t), during that period. The
mapping of these inputs to the average WIP in facility c , Q̄c(t), is
implicitly represented by function ḡp

c
(
X̄c(t), Pc(t), πc(t)

)
.

2. The estimation of sensitivities (or derivatives) of ḡp
c (·)

with respect to production targets. This is needed for tractable
representation of the highly nonlinear relationship embodied in
the ḡp

c (·) function.
3. The transformation of production targets, hedging inven-

tory levels, wc(t), and operational policies to the minimum
average FGI required to meet the QoS constraint. The min-
imum average FGI requirements are represented by function
h̄p
c
(
X̄c(t), X̄c−1(t), Pc(t), Pc−1(t),wc(t), πc(t)

)
. For purposes of

demonstrating the concept of dynamic lead times associated with
dynamic QoS guarantee provisioning, a limited pairwise coupling
of upstream and downstream facilities presented in Section 3.3 is
considered here.

4. The estimation of sensitivities (or derivatives) of the function
h̄p
c (·) with respect to production targets. Again, to serve the proof

of concept objective, relatively simple analytic approaches are used
for the determination of h̄p

c (·) and its sensitivity requirement (see
Section 3.3).

5. A representation of an aggregate probabilistic model of
facility c short-term capacity availability for use by the QoS layer.
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Whereas this can be in general a Markov-modulated process
(MMP) model, a simple, weighted bottleneck machine capacity
exponential model (see Section 3.3) is used here, again to capture
the correct factory physics and demonstrate the proof of concept
in the planning layer algorithm. In practice, MMP models for
production cells as well as for final demand can be estimated
by analyzing possibly autocorrelated production and shipment
transaction databases [39].

The estimates produced by the performance evaluation algo-
rithm are merely intended to demonstrate qualitatively appro-
priate behavior, because the objective is to concentrate on an
iterative planning layer. In real applications, the performance eval-
uation and information layer can be implemented using more ac-
curate approaches in a distributed/decentralized manner where
efficiency and robustness are important but not crucial.

Production target decisions are realizable at the desired QoS
level only if the requisite WIP and FGI are available at various
facilities in a manner consistent with material conservation
dynamics. Functions ḡp

c (·) and h̄p
c (·) establish the minimum WIP

and FGI constraints employed at the planning layer discussed in
Section 3.4.

The evaluation of ḡp
c (·) and h̄p

c (·) functions is a formidable
task. Analytic models have been used (mean value analysis [40]
in this paper and the queuing network analyzer elsewhere [34])
to quantify them and introduce their nonlinear characteristics
explicitly in an iterative decomposition planning algorithm for
the purpose of investigating convergence properties of the multi-
layer interactions depicted in Fig. 3. However, it is recognized that
Monte Carlo simulation or complex analytical models involving
Markovian or evenmore general stochastic decision processesmay
be relevant and more accurate in practice and may be indeed used
in place of the more convenient models that were selected for
the purpose of proof of concept, and without loss of generality
since the qualitative behavior of the models is similar to that of
the more accurate models that may be selected in practice. The
Schweitzer–Bard Approximation [41,42] is used with our mean
value analysis algorithm, which enables calculation of ḡ (·) values
for real valued X̄c(t) and Q̄c(t) vectors. Similar fluid approximation
enhancements as those used in the deterministic algorithms of
the planning layer are also relevant in the context of stochastic
models used at the decentralized layer [43,44]. These extensions
are not trivial. For example, key events that are responsible
for the efficiency of event-driven simulation algorithms (e.g., a
buffer fills or a buffer empties) proliferate (a buffer fills or
empties partially withmultiple partial full/empty states) requiring
more sophisticated models [45]. The important advantage of
fluid production stochastic models (whether simulation based or
analytic) is their ability to provide sensitivity estimates more
tractably than finite differencing of stochastic discrete production
models.

Finally, the convexity of the feasible regions defined by the ḡ (·)
and h̄ (·) functions is crucial to the convergence of the planning
layer. Fig. 4 shows a realistic example of the feasible region
boundaries for a two-part type stochastic production network.
More specifically, the maximum value of X̄1

c (t) subject to Q̄ 1
c (t) ≥

ḡ1
c

(
X̄c (t) , Pc(t), πc(t)

)
is plotted versus Q̄ 1

c (t) and X̄2
c (t).

Although the above constraints exhibit generally convex feasi-
ble regions, nonconvex feasible regions have been observed that
arise when either operational policies are flagrantly suboptimal
or facility designs are far from homogeneous (e.g., product classes
impose diverse production time requirements on facility work-
stations) [46]. Consider Fig. 5 depicting mildly nonconvex and
severely nonconvex feasible regions in contrast to the convex ex-
ample in Fig. 4. Robust iterative master problem subproblem al-
gorithms have been constructed that converge even under rather
severe nonconvexity conditions [47].
Fig. 4. Feasible production X̄p
c (t) as a function of WIP Q̄ p

c (t).

3.3. Quality of service coordination layer

The QoS Layer interacts with other layers, as shown in Fig. 3.
Its objective is to estimate a production policy that achieves
the desired probabilistic QoS guarantees. Accurate modeling of
QoS coordination policies is an important research problem in
itself being monitored [48–50]. A number of methodologies have
been used, including multi-class queuing network analysis (QNA),
Monte Carlo simulation, stochastic system approximations, and
large deviations asymptotics.

Given the stated objective to demonstrate the ability to
construct a robust and efficient planning layer, a simple but
certainly near-optimal [9] hedging policy is elected, which works
as follows: Facility c produces at full capacity as long as the amount
of work in its output buffers, τ

p
c (t)Ipc (t), where 1/τ p

c (t) is the
bottleneck capacity of facility c for part type p, is below the hedging
inventory level expressed in units of work, wc(t), set for week t
by the QoS layer. The hedging inventory level is selected by the
QoS layer so that the probability of a stockout of the downstream
facility c − 1 does not exceed the desired level 1− Γc (t). The idea
is implemented using the following model:

1. The desired stockout probabilities, 1 − Γc (t), at intermediate
FGI positions and the final demand (c = 0, 1, 2, . . . , C and
t = 1, 2, . . . , T ) are determined exogenously by the SC planner.

2. The hedging inventory level is estimated so as to achieve a
maximally allowed stockout probability specified for facility c−
1 as 1− Γc(t) under item 1 above by using the large deviations
approach described in [49] and summarized in 5. This approach
provides an efficient and accurate method for determining the
parameters of a hedging point policy and the associated average
inventory of semi-finished goods inventory in the output buffer
of facility c as a function of the QoS required at facility c−1, and
the first twomoments of (i) the effective service timeof facility c
and (ii) the effective demand formaterial release into facility c−
1. The associated average inventory in Īpc (t) is then estimated
by a G/G/1 approximation of the interaction of facilities c
and c − 1 where each multi-machine facility is approximated
by a fictitious single machine with a general service time
distribution. 5 describes the modeling of the hedging inventory
requirements, including the special case of c = 1.

3. The simulation quantified the functional relationship between
QoS and the coefficient of variation. The first two moments
of the effective interrelease times of parts processed by each
facility c and released into FGI c are estimated through
simulation for a set of representative production targets and
hedging points. To this end, multiple Monte Carlo simulation
runs are employed as follows:
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Fig. 5. Examples of mildly nonconvex and severely nonconvex feasible regions.
Fig. 6. Monte Carlo simulation of two-facility, one-part type SC.
(i) Selected production target values for each part type
produced in facility c , X̄p

c (t), are fixed as inputs. In each
simulation run, the production targets across facilities are
set equal to each other. The approximate mean value
analysis (MVA) algorithm that was used to calculate ḡ (·)
in Section 3.2 is employed here again to determine the
required constant work-in-process (ConWIP) vector Kc (t)
that guarantees facility c can produce in isolation at an
average rate X̄c(t) =

[
X̄1
c (t), X̄2

c (t), . . . , X̄P
c (t)

]
.

(ii) The SC is simulated for a range of hedging point wc(t)
values that correspond roughly to QoS levels in the range
of 80%–99%. Each facility is modeled as a fixed routing
proportion queuing network with the material release
protocol described below using as a key parameter the
MVA-calculated ConWIP vector Kc(t).

(iii) The system of Fig. 6, where qc(tk) is defined as a bin
holding fully processed parts remaining inside the facility,
is then simulatedwith the followingmaterial release policy
described for simplicity for the special case of a one-part-
type SC:
• if Qc(tk)+qc(tk) < Kc(t)+dwc(t)/τc(t)e− Ic(tk), where

dxe is the smallest integer greater than x, then facility
c absorbs material from Ic+1(tk) until there is equality
in the expression above or until Ic+1(tk) empties. (Note:
under this rule it is possible to temporarily accumulate
parts inside facility c that exceed Kc(t))

• when a part’s processing is completed in facility c , the
facility

– proceeds to increment Ic(tk) if Ic(tk) < dwc(t)/τc(t)e
– or it proceeds to increment qc(tk) if Ic(tk) = dwc(t)/τc(t)

e with contents qc(tk) counted as part of WIP. Note that
qc(tk) = 0 when Ic(tk) < dwc(t)/τc(t)e.

(iv) Interarrival times into Ic(tk) are sampled conditional
on Ic(tk) < dwc(t)/τc(t)e and used to estimate the
conditional variance of effective service times of facility c
denoted by σc(t). Conditional variance values are stored in
a table entry together with the value of exogenous input
quantities used in that simulation.
Several simulations are performed, each corresponding to
different values of exogenous inputs of facility production
rate targets and hedging points. Each entry of the resulting
table stores a value of the squared coefficient of variation
of interrelease times into Ic(tk). Note that this is a function
scvc

(
Γc+1(t), X̄c (t) , µc(t), Pc(t), πc(t)

)
with the argument

list showing the significant dependencies. For simplicity
is written scvc(t) = scvc (Γc+1 (t) , ρc(t)), where ρc (t)
represents the utilization level of facility c , defined more
precisely later. The table is in effect a representation of the
function scvc (Γc+1(t), ρc(t)), whose values can be interpolated
from the table entries.

Simulation results verify the a priori expectation that
scvc (Γc+1(t), ρc(t)) is increasing in X̄c(t) and decreasing in
Γc+1(t). Associating the largest index facility with the raw
material vendor, a range of vendor hedging point values is
simulated for the same hedging point values at the remaining
facilities. Because each hedging point value at the vendor
results in a different QoS level for the production facility that
the vendor supplies, the impact of QoS on that facility can
be calibrated. In general, the tabulated results were able to
fit a smooth nonlinear function that represents the behavior
of scvc(t), which is then used to model the nonlinear QoS
constraints in the planning coordination layer described in
Section 3.4. Fig. 7 graphs the scvc(t) functionwhose coefficients
are estimated to fit the simulation table entries. Its algebraic
representation is:

scvc(t) = −12.339 (ρc(t))3 − 25.522 (Γc+1(t))3

+ 26.205 (ρc(t))2 Γc+1(t) − 19.602ρc(t) (Γc+1(t))2

+ 85.276 (Γc+1(t))2 + 1.722ρc(t)Γc+1(t)
− 82.355Γc+1(t) + 27.425.

For simplicity, and because the purpose of the paper is to show
that optimal production planning optimization can account
for nonlinear QoS constraints, the reasonable approximation is
employed that the scvc(t) depends significantly only onΓc+1(t)
and ρc(t), while dependence on the utilization or QoS of other
facilities is negligible. This assumption is indeed supported by
simulation experience.
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Fig. 7. Smooth interpolation of simulation results of hedging inventory replenish-
ment process coefficient of variation.

4. The SC production planning algorithm described in Sec-
tion 3.4 employs interpolation to determine variance val-
ues. The large deviations results of [49] are then used to
determine wc(t) values as a function of scvc (Γc+1(t), ρc(t)),
scvc−1 (Γc(t), ρc−1(t)), and ρc(t). The G/G/1 approximation is
finally employed to determine the required average inventory
levels Īpc (t).

5. Recall that the function h̄c(X̄c(t), X̄c−1(t), Pc(t), Pc−1(t),wc(t),
πc(t)) represents the minimum average FGI requirements that
the planning layermust observe in order tomodel dynamic lead
time and QoS requirements. This average must hold both dur-
ing the fast time-slot scale that characterizes production ca-
pacity variations (for example, failures and repairs) as well as
during the coarse time scale of the production planning func-
tion. The approach in [48] is adopted and the fast stochastic
dynamics are modeled with a discrete Markov-modulated pro-
cess model whose characteristic time scale is a day. The results
in [48] are then used to obtain the hedging point required to
obtain the desired QoS level as a multiple of the average daily
production capacity. For a QoS level that is reasonably close to
one, a good approximation for h̄c (·) is a quantity proportional
towc (·) − L̄c(t), where L̄c(t) denotes the average queue length
of a G/G/1 queuing system corresponding to a model of the re-
verse material flow relative to the actual system. In the reverse
flow G/G/1 model, starvation is equivalent to blocking that oc-
curs in the actual system when the inventory level reaches the
hedging point level. Thus, the zero queue event corresponds to
the event where the inventory equals the hedging point in the
actual system. Furthermore, a strictly positive queue event in
the G/G/1 model corresponds to an inventory level strictly be-
low the hedging point in the actual system. The Krämer and
Langenbach-Belz two-moment approximation is used to calcu-
late L̄c(t) as in [48]. This gives:

L̄c(t) =
(ρc(t))2 (scvc(t) + scvc−1(t))

2 (1 − ρc(t))

× exp
{

−2 (1 − ρc(t)) (1 − scvc−1(t))
3ρc(t) (scvc(t) + scvc−1(t))

}
+ ρc(t)

if scvc−1(t) ≤ 1, otherwise

L̄c(t) =
(ρc(t))2 (scvc(t) + scvc−1(t))

2 (1 − ρc(t))

× exp
{

− (1 − ρc(t)) (scvc−1(t) − 1)
4scvc(t) + 4scvc−1 (t)

}
+ ρc(t)

where ρc(t) is the weighted sum of utilization levels of the
workstations in facility c caused by production targets X̄c(t).
The weight used for each workstation equals the workstation’s
utilization normalized so that the weights sum to unity. The
squared coefficient of variation of the interarrival times into
Ic(tk) is denoted by scvc(t).

Using the large deviations results of [48], the hedging point is
calculated as:

wc(t) = −
1

θ∗
c (t)

log
(

1 − Γc(t)
θ∗
c (t)L̄c(t)

)
where θ∗

c (t) is the solution of Eq. (11) in [48], assuming that the
demand and service processes in the G/G/1 model are sampled
at the beginning of each time slot from a normal distribution
where the mean and variance values of the effective processing
times are

(
ρc(t); scvc(t) (ρc(t))2

)
and (1; scvc−1(t)), respectively.

In general, autocorrelations may be modeled and a numerical
solution can be easily obtained as described in [48]. This paper uses
the simple case of a single-state Markov-modulated model where
the solution can be written explicitly as:

θ∗

c (t) =
2 (1 − ρc (t))

scvc(t) + scvc−1 (t) (ρc(t))2
.

Note that the variance values reflect the stochastic dynamics
at facilities c and c − 1 that are compatible with the planned
production targets and the specified QoS levels. Average utilization
rates correspond to production targets in the optimized production
schedule and are expressed in terms of work assigned to facility c
and the production capacity of facility c.

In case of multiple part types, the minimum average FGI
requirement calculated above is divided among part types
proportional to the workload each imposes on facility c.

The hedging inventory policy described above achieves the
specified QoS levels between facilities and decouples the imple-
mentation of operational decisions across facilities. A single ficti-
tious part type aggregation is employed, and virtual workstations
that behave similarly in each SC facility are utilized. The aggrega-
tion of part types to a single fictitious part is done so as to preserve
the probabilistic behavior of work needed to produce all individual
part types. Therefore, QoS, and hence stockout probability, is de-
fined in terms of the probability that the work incorporated in the
intermediate FGI of facility c falls short of the work incorporated in
the part-type quantities required during the relevant time period
by downstream facility c−1. In that sense, the hedging point quan-
tity is a scalar that is not part-type specific and is defined in terms
of work corresponding to the quantity of the fictitious part that
is sufficient to achieve the desired stockout probability threshold
for the fictitious part. It should be noted that the proposed supply
chain production planning algorithm does not provide part-type-
specific hedging FGI quantities needed for production floor im-
plementation. Part-type-specific quantities are approximated for
holding-cost accounting purposes by disaggregating the fictitious
part work-hedging quantity to part-type-specific work in propor-
tion to the work rate incorporated in each part’s production tar-
get rate relative to the total, and then converting the work parts.
However, it is not proposed that these part-type-specific quanti-
ties be used on the production floor. Among others, the reason is
that the material flow protocol is not fully defined because a dy-
namic policy allocating production capacity among specific part
types in real time would be required under these circumstances.
It is clear that not any such policy, as for example a priority pol-
icy, will achieve the desired QoS for each part type. Such a policy
is not specified, as it is considered to be out of the scope of this
paper. Instead, what is used is the reasonable assumption that an
appropriate policy that achieves part-type-specific QoS guarantees
does exist. Furthermore, it is conjectured that, given the aggregate
fictitious part-hedging quantity that provides the requisite excess
capacity, an adequate real-time policy can be easily devised on the
production floor.
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Fig. 8. Horizontal coordination constraint function scaled by τc(t), τc(t)h̄c (·), for
a single-part-type system.

The large deviation estimates of the required hedging point
and average queue given above characterize the FGI required to
meet the desired quality of service, assuming that the hedging
point material flow policy is implemented in real time and is
based on the single-part variability of production and demand.
However, in practice, the hedging point material flow policy is
not implemented in real time but over a longer period that
lies between the hourly time scale of production and demand
events and the weekly planning period time scale. This reduces
the coefficient of variation of total production and demand over
the longer material flow implementation period. Hence, the
minimum FGI required to meet the desired quality of service
over the longer material flow period is smaller. To model this
issue, the real-time material flow policy FGI is divided by a
factor of d that must be larger than or equal to one. For the
purposes of the numerical examples, and to avoid the tedious
work of estimating explicitly FGI under a reduced-variability
assumption, d = 6 is used, which is approximately the number
of working days per week. Thus, h̄c (·) =

1
d

(
wc(t) − L̄c(t)

)
.

Finally, distributing this aggregate quantity amongpart types using
weights τ

p
c (t) X̄p

c (t)/
∑P

r=1 τ r
c (t)X̄

r
c (t) that sum up to one and

converting from work units back to part units by multiplying with
1/τ p

c (t), the minimum average FGI requirements function for part
type p is obtained:

h̄p
c

(
X̄c(t), X̄c−1(t), Pc(t), Pc−1(t),wc(t), πc(t)

)
=

1
τ
p
c (t)

τ
p
c (t) X̄p

c (t)
P∑

r=1
τ r
c (t) X̄ r

c (t)

1
d

(
wc(t) − L̄c(t)

)
.

As mentioned, the coefficients τ
p
c (t) convert each unit of FGI,

Īpc (t), to units of work defined as the processing time needed
at the upstream facility to produce the required amount of
inventory. τ

p
c (t) is used to equal the reciprocal of the minimum

production capacity for part type p of all machines in facility
c , τ

p
c (t) =

[
min∀m∈Mc µ̄

p
c,m(t)

]−1. Fig. 8 shows an instance
of the FGI constraint surface corresponding to upstream and
downstream facilities, each consisting of three identical machines
with production capacity of 50 parts per time period and
Γc+1 (t) = Γc(t) = 96%.

The hedging inventory requirements of facility c = 1 is cal-
culated by treating scv0(t), the squared coefficient of variation of
interarrival times of the demand for final products at the first fa-
cility, as an exogenous parameter. The QoS provided to the cus-
tomers,Γ1(t), is also determined by the user. The required hedging
inventory at c = 1, h̄p

1

(
X̄1(t), D̄p (t) , P1(t), P0 (t) ,w1(t), π1(t)

)
,

Fig. 9. FGI hedging constraint function scaled by τ
p
c (t), τ1(t)h̄1 (·), for a single-

part-type system.

is therefore a function of only one endogenous variable, the pro-
duction target vector of the first facility. An instance of the FGI con-
straint surface corresponding to facility c = 1 comprising three
identical machines with production capacity of 50 parts per time
period, Γ2(t) = 96%, Γ1 (t) = 95%, and scv0(t) = 0.6, is plotted
in Fig. 9.

3.4. Planning coordination layer

The planning layer shown in Fig. 3, and its role in the
collaborative framework where the master and subproblem layers
interact in an iterative algorithm that produces the optimal
production plan, are described next.

3.4.1. Master problem optimization algorithm
Given the longer (weekly) time scale of the planning layer, a

linear programming (LP) based fluid model approximation of the
discrete part production planning problem is used. Moreover, the
fluid model is extended to represent WIP and FGI-driven dynamic
lead times through the nonlinear constraint surfaces defined in
Sections 3.2 and 3.3. These constraints are key components of the
planning layer model (see inequalities (6)–(8) in Exhibit 1).

Exhibit 1 (Planning Layer Optimization Problem).

min
X̄p
c (t),R̄pc (t)

∑
p,t

[
C∑

c=1

ᾱp
c Q̄

p
c (t) +

C∑
c=2

β̄p
c Ī

p
c (t) + β

p
1

(
Ip1(t)

)+

+ γ
p
1

(
Ip1(t)

)−
+ δ

p
1

(
Jp1 (t)

)−

]
(1)

subject to:

Q p
c (t + 1) = Q p

c (t) + R̄p
c (t) − X̄p

c (t) ∀p, c, t (2)

Ipc (t + 1) = Ipc (t) + X̄p
c (t) − R̄p

c−1(t) ∀p, c ≥ 2, t (3)

Ip1 (t + 1) = Ip1(t) + X̄p
1 (t) − D̄p(t) ∀p, c = 1, t (4)

P∑
p=1

X̄p
c (t)

µ̄
p
c,m(t)

≤ ηc(t) ∀m, c, t (5)

Q̄ p
c (t) ≥ ḡp

c

(
X̄c(t), Pc(t), πc(t)

)
∀p, c, t (6)

Īpc (t) ≥ h̄p
c

(
X̄c(t), X̄c−1 (t) , Pc(t), Pc−1 (t) ,wc(t),

πc(t), πc−1(t)) ∀p, c ≥ 2, t (7)

Ip1(t) − Jp1 (t) ≥ h̄p
1

(
X̄1(t), D̄p (t) , P1(t), P0 (t) ,w1(t),

π1(t)) ∀p, c = 1, t. (8)
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The planning layer’s objective is to determine targets of weekly
production and release that minimize weighted WIP, FGI, and
backlog costs over the horizon T , subject not only to the capacity
and material conservation constraints, but also the nonlinear
constraints on weekly average WIP and hedging inventory that
capture the essence of faster time-scale stochastic dynamics driven
by QoS provisioning and other operational policies that may be in
place at some facilities.

The planning layer solves the optimization problem given in
Exhibit 1 where minimization takes place over weekly production
target, X̄p

c (t), and release, R̄p
c (t), decision variables. For all facilities,

ᾱ
p
c and β̄

p
c denote, respectively, WIP and FGI holding cost rates,

while β
p
1 , γ

p
1 , and δ

p
1 denote respectively, holding, shortage, and

hedging constraint penalty cost rates1 at c = 1 applied to
the end-of-period values of FGI. Average WIP and FGI values at
facilities c > 1 are related to the end-of-period values via
the approximations Q̄ p

c (t) = 0.5Q p
c (t − 1) + 0.5Q p

c (t) and
Īpc (t) = 0.5Q p

c (t − 1) + 0.5Q p
c (t). ηc(t) is the maximum allowed

utilization level for workstations in facility c during time period
t . The optimization problem of Exhibit 1 is subject to the usual
positivity (with the exception of Ip1(t) and Jp1 (t) being unrestricted
∀p, t), initial condition, capacity (5), material conservation (2)–(4),
and nonlinear constraints (6)–(8) that capture lead time and QoS
dynamics. Pc(t) and πc(t) are as defined in Section 3.2. Vector
[wc(t) c = 1, 2, . . . , C] is determined at the QoS layer. It denotes
the hedging inventory level implemented by facility c to control
its production schedule so as to prevent the downstream stockout
frequency from violating the desired probabilistic QoS constraint.
Notice that the hedging inventory level is strictly enforced on
Īpc (t) in constraint (7), whereas constraint (8) is a soft constraint.
Violation of the hedging inventory requirement on Ip1 (t) is defined
as Jp1 (t) = Ip1(t)− h̄p

1 (·), and its negative part,
(
Jp1 (t)

)−, is penalized
in the objective function at a rate of δ

p
1 . This allows partitioning

the FGI cost into three parts: (i) Ip1(t) ≥ h̄p
1 (·), with a cost rate of

β
p
1 , (ii) 0 ≤ Ip1(t) ≤ h̄p

1 (·), with a cost rate of δ
p
1 for each unit of

negative deviation from h̄p
1 (·), and (iii) Ip1(t) ≤ 0, with a cost rate

of γ
p
1 + δ

p
1 (because both

(
Ip1(t)

)− and
(
Jp1 (t)

)− are positive). This
constraint is defined on the FGI end-of-period values, Ip1 (t), rather
than the average time period values, Īp1(t). The justification of this
modeling choice is that it constitutes a reasonable simplification
(indeed, a conservative cost estimate) given the nonlinear nature
of the inventory/backlog cost trajectory).

3.4.2. Iterative algorithm for layer collaboration and coordination
An iterative single master problem (centralized planning coor-

dination layer) multiple subproblem (decentralized performance
and information layer) algorithm has been developed to model
the nonlinear constraints and derive optimal production plans that
explicitly account for variable lead time and QoS constraints (see
Fig. 3). The efficient representation of constraints (6) and (7) in
Exhibit 1 requires point estimates and sensitivity estimates so as
to approximate the nonlinear constraint boundaries. In fact, the it-
erative fine-tuning of a finite number of appropriately selected lo-
cal approximations leads to convergence under mild convexity or
quasi-convexity conditions [46]. This iterative algorithm is sum-
marized below and also shown in Fig. 3:

1. The planning layer, at iteration n, calculates tentative
production and material release schedules nX̄p

c (t), nR̄p
c (t)∀p, c, t ,

1 Note that penalizing for back orders at the planning layer does not contradict
the probabilistic QoS guarantees provided by the hedging point policy implemented
through production policy thresholds wc(t). The planning layer’s constraints (7)
and (8) assure that weekly production targets are consistent with probabilistic QoS
requirements.
and conveys them to facility subproblems along with the WIP and
FGI levels nQ̄ p

c (t), n Ī
p
c (t), that result from the production schedule

through the material flow constraints (2)–(4) in Exhibit 1.
2. For the tentative production target assigned to it by the

planning layer and the QoS it receives from the upstream portion
of the SC, each facility conveys to the quality of service layer a
Markov-modulated model that represents the stochastic behavior
of its production capacity. For the same tentative production
targets, the quality of service layer proceeds to calculate tentative
hedging pointswc(t) that each facility needs to employ to provide
the required QoS to its downstream facility.

3. Each facility evaluates its performance and calculates its
average WIP as well as the WIP’s sensitivity with respect to the
facility’s tentative production target. For each pair of upstream and
downstream facilities, the pair’s performance is also evaluated to
calculate the average FGI needed to achieve the QoS requirements
as well as the FGI’s sensitivity with respect to the tentative
production targets of both facilities. The planning layer receives
the following feedback: (i) the requiredWIP and FGI

(
ḡp
c (·) , h̄p

c (·)
)
,

and (ii) their sensitivities, namely ∇ ḡp
c (·) and ∇h̄p

c (·) w.r.t. the
production targets.

4. The planning layer’s linear constraint set is augmented
using the hyperplanes tangent to functions ḡp

c (·) and h̄p
c (·) at

the most recent iteration’s production target values nX̄c(t). More
specifically, the additional constraints are:

Q̄ p
c (t) ≥ ḡ r

c

(nX̄c(t)
)
+ ∇ ḡ r

c

(nX̄c(t)
)′ [X̄c(t) −

nX̄c (t)
]

∀p, c, t (9)

Īpc (t) ≥ h̄r
c

(nX̄c(t),
nX̄c−1(t)

)
+ ∇h̄r

c

(nX̄c(t),
nX̄c−1(t)

)′

×

[
X̄c(t) −

nX̄c(t)
X̄c−1(t) −

nX̄c−1(t)

]
∀p, c ≥ 2, t (10)

Ir1(t) − J r1(t) ≥ h̄r
1

(nX̄1(t)
)
+ ∇h̄r

1

(nX̄1(t)
)′ [X̄1(t) −

nX̄1(t)
]

∀p, c = 1, t. (11)

Note that this set of hyperplanes (linear constraints) (9)–(11),
are generated at iteration n to approximate the nonlinear WIP
constraints (6) and FGI constraints (7) and (8), respectively, around
the point nX̄c(t). Note also that the probability distributions Pc(t),
operational πc(t), and the hedging points wc(t) are omitted for
notational simplicity.

5. Using the tangent hyperplanes (9)–(11) accumulated over
past iterations 1 through n and the master problem constraints
(2)–(5), the planning layer solves again the master problem as a
linear program to produce a new set of tentative targets, n+1X̄p

c (t),
n+1R̄p

c (t)∀p, c, t . Iterations continue to convergence defined by
a tolerance with respect to which the nonlinear constraints are
satisfied.

Fig. 10 depicts this iterative process for iterations n and n +

1 on a single-part-type WIP constraint. Tentative planning layer
solution

[(
nQ̄ p

c (t), nX̄p
c (t)

)]
is associated with the nominal point[

ḡp
c
(
nX̄c(t)

)
, nX̄p

c (t)
]
on the surface of the nonlinear constraint

where the tangent hyperplane constraint is generated. The next it-
eration’s tentative solution,

[n+1Q̄ p
c (t), n+1X̄p

c (t)
]
, satisfies all con-

straints added so far. A new tangent hyperplane constraint is gen-
erated after iteration n + 1 at the point

[
ḡp
c
(n+1X̄c(t)

)
, n+1X̄p

c (t)
]
.

Note that the approximation accuracy of the nonlinear con-
straint surfaces increases monotonically with the addition of
tangent hyperplanes. As the algorithm approaches convergence,
tentative solutions are close to each other, resulting in the addition
of an increasing number of tangent hyperplane constraints in the
vicinity of the optimal solution, rendering the linear approximation
error of the nonlinear constraints arbitrarily small. This process of
outer linearization of the nonlinear constraints is a smart lineariza-
tion because it is not a uniform linearization that is, in general,
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Fig. 10. Tentative target
(
nQ̄ p

c (t) , nX̄p
c (t)

)
and the associated tangent hyperplane

depicted on a single-part-type WIP constraint.

Fig. 11. Feasible production as a function of WIP with various deterministic fluid
and stochastic model approximations.

computationally intractable, but is progressively dense and hence
accurate where it matters, that is, in the vicinity of the optimal so-
lution.

An example to introduce the basic idea of lead time dynamics
at the coarse time scale of the planning layer and its significance
in yielding a superior production plan is employed next. Consider
a simple manufacturing facility consisting of a 10-workstation
transfer line. Each workstation has stochastic processing time and
average production capacity of 10 parts per week. This is also the
capacity of the facility.

Fig. 11 shows the average weekly facility production rate, X̄ ,
that is achievable as a function of the average available WIP,
denoted by Q̄ , under three successively more accurate fluid
model approximations (FMAs). The naive FMA does not impose
any average WIP constraints, and the production rate is simply
constrained by the average production capacity. The certainty
equivalent FMA considers deterministic workstation capacities
equal to the average capacity availability. As a result, it disregards
queuing delays. It underestimates the average WIP needed for
sustaining a certain average production rate, setting it equal to
the sum of the 10 machine utilizations. This is a linear constraint
involving production and WIP. Finally, the optimal open loop
feedback controller (OOLFC) employs a stochastic model that
captures the fact that effective workstation processing times are
random variables. This results in the correct estimate of average
WIP, and hence of average lead time, which reflects the average
queue levels in front of workstations in addition to the average
number of parts being processed.
Fig. 13. OOLFC, CE, and LIX.

In the context of the SC planning coordination layer, the
OOLFC model approximation is implemented via the inclusion
of nonlinear constraints on production X̄p

c (t) represented by
the WIP and FGI functions, ḡp

c (·) and h̄p
c (·), introduced in

Sections 3.2 and 3.3. Several approaches have been successfully
implemented to handle these constraints, so far based on iterative
tangent or piecewise-linear approximations [34] that allow LP
optimization. When used in a manner of an open-loop control,
errors introduced via shortcomings of modeling choices in
estimating these functions, ḡp

c (·) and h̄p
c (·), will propagate over the

planning horizon. The magnitude of errors depend on: (i) accuracy
of the model used in estimation, and (ii) the time-scale separation
required for steady-state convergence [35]. The propagation and
impact can be evaluated through simulation. Use of the rolling
horizon approach requires implementation of only the first-period
results, thus mitigating the impact of error propagation. Although
the preliminary evaluations show that the impact is relatively
small, additional work in this area would be useful [33].

The nonlinear constraints render the production plans gener-
ated not only feasible but also superior to plans obtained by al-
ternative deterministic approaches based on certainty equivalent
formulations [20,51,46]. The introduction of the nonlinear con-
straints is equivalent to formulating and solving the open-loop
optimal controller known to dominate the certainty equivalent
controller [52]. The certainty equivalent controller, possibly ad-
justed to model a larger, worst-case, constant lead time delay in
each activity, represents today’s industry practice, and, as such,
it is compared to the proposed open-loop optimal controller in
Section 4.

4. Algorithmic implementation and numerical evaluation of
benefits

This section discusses the computational experience of the
proposed dynamic lead time and QoS hedging inventory modeling
algorithm, referred to as the optimal open loop feedback controller
(OOLFC). OOLFC performance is compared to two algorithms
that represent industry practice to explore the value that one
may attribute to the dynamic lead time and QoS hedging
inventory information employed by the OOLFC approach.Whereas
production planning algorithms have been previously reported
that model explicitly dynamic lead times [34,53,51,46,54,55],
results reflecting probabilistic QoS policies are presented here for
the first time.
Fig. 12. An example supply chain with three facilities producing five part types.
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Table 2
Average workstation production capacities

Facility 3 Facility 2 Facility 1
m3,1 m3,2 m3,3 m3,4 m3,5 m2,1 m2,2 m2,3 m2,4 m1,1 m1,2 m1,3 m1,4 m1,5 m1,6

p.t. 1 70 70 55 55 55 55 55 55 55 40 35 40 40 35 35
p.t. 2 75 65 60 70 55 55 55 65 55 40 50 40 35 50 50
p.t. 3 75 65 75 75 80 55 60 55 65 60 50 55 50 60 55
p.t. 4 85 70 90 80 65 65 55 70 70 55 65 65 55 55 65
p.t. 5 70 85 80 75 90 70 70 65 65 65 65 70 70 65 70
Table 3
WIP, FGI holding, and FGI backlog cost coefficients

Facility 3 Facility 2 Facility 1
WIP ᾱ

p
3 FGI+ β̄

p
3 WIP ᾱ

p
2 FGI+ β̄

p
2 WIP ᾱ

p
1 FGI+ β̄

p
1 FGI− γ

p
1 FGH− δ

p
1

p.t. 1 20 27 30 55 60 150 1200 1800
p.t. 2 15 20 25 40 50 110 880 1320
p.t. 3 10 12 15 40 50 120 960 1440
p.t. 4 10 23 30 42 45 100 800 1200
p.t. 5 5 8 10 26 30 70 560 840
Fig. 14. Facility 1 optimal solution details of OOLFC under demand scenario 4.
Presented below is numerical experience from six demand
scenarios applied to a five-part type 3 facility SC depicted
in Fig. 12. Facilities 3, 2, and 1 having five, four, and six
workstations, respectively, with average production capacities,
are shown in Table 2, with part types corresponding to columns
and workstations to rows. Facilities are allowed a maximum
workstation utilization of ηc(t) = 0.9 ∀c, t . QoS levels are set
at Γ·(t) =

[
95% 97% 97% 97%

]
for facility indices 1 through

4. Γ4 (t) is the QoS provided to facility 3 by the raw material
vendor. The demand-squared coefficient of variation is set to 0.6
throughout the planning horizon. Initial levels of WIP and FGI are
set to zero in all facilities. Cost coefficients are shown in Table 3.

All demand scenarios consist of a 23-week planning horizon.
The first four weeks in scenarios 1 and 2, the first two weeks in
scenarios 3, 4, 5, and 6, and the last four weeks in all scenarios
were on purpose assigned zero demand to allow the algorithm
to fill and empty the system optimally without disadvantaging
the suboptimal industry practice alternative planning algorithms
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Fig. 15. Facility 2 optimal solution details of OOLFC under demand scenario 4.
Table 4
Weekly demand for scenarios 3, 4, 5, and 6; weeks 3 through 19

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Demand scenario 3 p.t. 1 3 9 4 1 1 1 1 2 2 2 2 7 11 10 8 10 10
p.t. 2 21 15 10 8 5 6 4 8 14 12 29 23 17 13 21 11 19
p.t. 3 4 3 1 1 1 3 3 3 1 1 2 4 5 3 1 1 3
p.t. 4 11 3 1 4 9 14 15 15 6 2 4 7 16 14 7 2 7
p.t. 5 5 9 5 4 4 4 4 6 6 6 5 4 5 7 6 6 11

Demand scenario 4 p.t. 1 0 0 9 30 6 6 3 9 6 6 9 42 39 30 42 30 21
p.t. 2 0 0 18 11 13 6 8 4 19 15 42 19 16 28 6 49 31
p.t. 3 0 0 4 2 1 1 4 5 1 1 3 6 4 1 1 4 7
p.t. 4 0 0 10 1 3 11 18 28 9 3 6 11 17 7 0 16 7
p.t. 5 0 0 4 9 4 4 5 7 7 7 6 5 9 7 9 23 10

Demand scenario 5 p.t. 1 0 4 8 4 2 1 1 2 2 2 3 10 14 10 10 11 9
p.t. 2 0 23 11 11 8 6 5 7 16 13 34 22 16 19 17 14 39
p.t. 3 0 4 2 1 1 2 3 4 1 1 2 5 5 3 1 1 4
p.t. 4 0 12 1 2 7 13 18 21 7 3 5 9 16 11 3 3 13
p.t. 5 0 5 8 5 4 4 4 6 6 6 5 5 8 8 8 10 18

Demand scenario 6 p.t. 1 0 0 31 21 7 9 35 29 6 4 14 31 13 4 4 13 21
p.t. 2 0 0 9 5 3 15 28 17 7 0 5 14 10 5 0 2 1
p.t. 3 0 0 8 7 6 10 4 2 11 6 5 6 4 8 6 4 1
p.t. 4 0 0 7 3 18 18 4 1 4 1 5 2 2 7 8 11 5
p.t. 5 0 0 4 1 33 13 1 4 3 18 7 7 1 4 3 4 9
considered. The first two scenarios have a constant demand for
each of the five part types during weeks 5–19 equal to vectors of
(7, 14, 8, 6, 10) and (11, 9, 8, 6, 3). Demand scenarios 3, 4, 5, and 6
during weeks 3–19 are given in Table 4. Part types correspond to
rows.

Scenarios 3, 4, 5, and 6 represent increasingly more costly
situations for the SC where, for a range of intermediate time
periods in the planning horizon, namely periods (13–16), (12–17),
(14–19), and (7–19), respectively, the cumulative demand load
exceeds the cumulative production capacity.

To compare the proposed SC planning algorithm to the state-of-
the-art practice in industry, three planning approaches are evalu-
ated, the one proposed in this paper and two additional ones that
represent advanced versions of planning algorithms employing the
standard feature of the fixed lead time approximation. Given that
the fixed lead time approximation is a basic foundation of industry
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Fig. 16. Facility 3 optimal solution details of OOLFC under demand scenario 4.
Table 5
OOLFC, LIX, and CE relative cost comparison

Approach OOLFC LIX CE OOLFC LIX CE OOLFC LIX CE

Scenario 1 Scenario 2 Scenario 3
T.C. 124K 130 2698 77K 158 4102 120K 204 2397
WIP 18 26 15 25 45 24 18 28 15
FGI 14 15 12 17 18 17 15 15 13
FGI+ 62 83 9 57 92 0 62 83 8
FGI− 0 0 1614 0 0 2472 0 3 1457
FGH− 6 7 1048 1 3 1588 5 75 903

Scenario 4 Scenario 5 Scenario 6
T.C. 242K 136 1604 169K 126 1780 1141K 152 518
WIP 10 15 8 14 19 12 2 4 2
FGI 10 9 8 12 11 11 2 2 1
FGI+ 74 66 21 69 84 18 4 3 1
FGI− 0 10 989 0 0 1072 33 54 326
FGH− 6 37 579 4 11 667 59 89 188
practice algorithms, these two algorithms are treated as proxies
of industry practice. To improve the performance of the indus-
try proxy algorithms so as to provide a fair comparison to the
proposed algorithm, after the material release schedule to the up-
stream most facility is determined, the fixed lead time approxi-
mation is relaxed in modeling the actual production performance
of the supply chain. Thus, it is asserted that these two industry
practice proxies are actually representative of the state of the art
in industry practice. By contrast, the ‘‘vanilla’’ industry practice
in widespread MRP scheduling uses a fixed lead time to model
delays at all production facilities, giving rise to further work-in-
process inventory mismatches along the supply chain. The three
methodologies used for comparison purposes in the numerical ex-
perience section are described next in greater detail:

(i) Optimal open loop feedback controller approach. Recall
that the optimal open loop feedback controller approach (OOLFC)
is the short name used for the algorithm proposed in this
article and described in Section 3.4. It models the dynamics of
required lead times and QoS hedging inventory by employing
a smart, progressively increasing in accuracy outer linearization
approximation of the nonlinear lead time and hedging inventory
constraints. For a one-dimensional case, this can be visualized
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Fig. 17. Facility 3 production targets and FGI levels comparison among OOLFC, LIX, and CE approaches under demand scenario 1.
as using a tentative polyhedral feasible decision variable region
area corresponding to an approximation of the union of areas A2
and A3 in Fig. 13. In Fig. 13, the top horizontal line represents
production capacity and the one below represents the maximum
allowed utilization, namely the linear constraint (5) in Exhibit 1.
Little’s law is then employed to convert the WIP, denoted by Q̄ ,
versus production, denoted by X̄ , space to the equivalent lead time
versus production space. The OOLFC approach is compared to the
following two approaches.

(ii) Certainty equivalent approach. The certainty equivalent
(CE) approach provides a conservative upper cost bound to the
state of the art in industry practice. It generates a raw material
release schedule based on an optimistic, that is, relaxed, feasible
region that corresponds to the ideal situation in which lead times
equal the fixed sumof requiredprocessing timewithno accounting
for queuing delays. The resulting raw material release schedule
generates shortfalls and almost surely provides a higher planning
cost (especially material shortage costs) than that of the second
proxy presented below. The relaxed feasible decision space used
to generate the raw material release schedule can be visualized
as the union of areas A1, A2, and A3 in Fig. 13. Under the CE
approach, the production planning problem is first solved under
this optimistic fixed lead time constraint, ignoring QoS constraints.
The resulting production schedule violates the actual lead time and
QoS constraints. Under the CE approach, the raw material release
schedule associated with the infeasible production plan is then
fixed, and facility-specific production is reoptimized subject to the
fixed rawmaterial release schedule but with a full implementation
of the nonlinear WIP and FGI constraints. The feasible production
plan thus obtained is reported as the production planning cost of
the CE approach. A second, more favorable proxy of the state of the
art in industry practice that is also based on the fixed lead time
approximation is considered below.

(iii) Limited information exchange approach. The limited in-
formation exchange (LIX) approach is finally used to generate pro-
duction schedules that are the best representatives of the state of
the art in industry practice. Itmodels limited information exchange
among planners and operators by generating a production and raw
material release schedule based on constant lead times that are
representative of expected facility loading conditions.More specif-
ically, the level of the constant lead times is set to the worst-case
level, namely the one required to sustain the maximum allowable
utilization. The resulting feasible decision space can be visualized
as area A3 in Fig. 13. The LIX approach is a reasonable abstraction of
the limited information about actual lead times that production fa-
cilitymanagersmay provide on a yearly or quarterly basis to legacy
MRP-based planning systems in place. Again, to render the LIX ap-
proach a state of the art of industry practice representative, further
action is taken to ensure compatibility of WIP requirements and
actual production levels and to enforce interfacility QoS require-
ments. To this end, the rawmaterial release rates are again fixed to
the schedule determined by the linear fixed lead time constraints,
and the production schedule is reoptimized subject to the union of
the linear fixed lead time and the nonlinear lead time and QoS con-
straints. Note that the LIX approach provides feasible and virtually
optimal production schedules when the production facilities in the
SC are level loaded, whereas it is still disadvantagedwhen demand
and hence loading varies over time. It may therefore be concluded
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Fig. 18. Facility 3 production targets and FGI levels comparison among OOLFC, LIX, and CE approaches under demand scenario 4.
that the performance of state of the art in industry practice today is
well represented by the LIX and CE approaches. Cost comparisons
reported below may therefore be interpreted accordingly.

Figs. 14–16 present the optimal production schedules for
facilities 1, 2, and 3 of the proposedOOLFC approach under demand
scenario 4. Part-type-specific schedules are shown from top to
bottom. The release rate of parts into each facility, average WIP in
each facility, facility-specific production rates, and FGI (facility 1)
or hedging inventory (facilities 2 and 3) schedules are also shown.
Demand trajectories are superimposed for easy reference on FGI
trajectories as a bar graph on the same scale. It is observed that for
part types 1, 2, and 5production plans at facility 1 are characterized
by significant preproduction during the first half of the planning
horizon for part type 2 and in the second half for the other two. FGI
trajectories of part types 3 and 4 seem to balance the requirements
of the FGI hedging constraint and the implied cost of sharp changes
in FGI level.

In Figs. 15 and 16, the last columndepicts the hedging inventory
located downstream to the associated facility. Past computational
experience indicates that the trajectory of the hedging inventory
resembles closely the upstream production schedule, which is
the major determinant of the prescribed hedging level. For the
reasonable cost coefficients and demand loads employed, only
under extreme cases does the optimization algorithm choose to
stock material in FGI for future use.

In Figs. 17–19, the production targets of facility 1 obtained by
each of the three approaches are compared. Solid, dashed, and
dotted lines are used to distinguish OOLFC, LIX, and CE approach
weekly production schedules for three different demand scenarios.
Part type 1 through 5 production is shown from top to bottom,
respectively.

Demand scenario 1 schedule shown in Fig. 17 corresponds to a
constant workload of about 79% on facility 1 and a constant part
type demand mix. Because this load is close to the 90% for which
the constant lead time and hedging inventory constraint used in
the LIX approach has been calculated, onewould expect a relatively
small cost difference in the performance of the LIX approach
relative to the OOLFC approach. The differences in performance
between LIX and OOLFC observed here (30% higher cost than
OOLFC as reported in Table 5) are primarily caused by (i) higher
FGI holding costs at the first facility due to LIX approach’s need
to build up inventory earlier than necessary and then not being
able to reduce the inventory until the end of the planning horizon
because demand load remains high till the end of the horizon,
and (ii) higher WIP holding costs due to the lower production
target levels that are needed during time periods at the beginning
and the end of the planning horizon when the WIP and hedging
inventory levels are ‘‘ramped up’’ from zero levels or ‘‘ramped
down’’ to zero levels. In a production system processing a single-
part-type, or equivalently a family of perfectly similar part types,
level loading that is close to the maximum allowed utilization,
ηc(t), yields minimal performance differences [56]. On the other
hand, scenario 2 has a constant workload of about 66%, which
differs significantly from the 90% utilization towhich LIX fixed lead
times are calibrated. As a result, LIX performance is worse—58%
higher as opposed to 30%. The level-loading, constant-production
mix observed in Fig. 17 verifies the proximity of the LIX and
OOLFC-generated production plans during the middle portion of
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Fig. 19. Facility 3 production targets and FGI levels comparison among OOLFC, LIX, and CE approaches under demand scenario 6.
the planning horizon. The remaining differences are due to the
nonlinear lead time and hedging inventory requirements during
the transition period at the beginning/end of the planning horizon
from/to zero demand activity.

Fig. 18 shows the production target and FGI differences among
the three approaches under scenario 4. Although the overall
horizon workload is feasible, demand scenario 4 contains periods
of very high demand. Production schedules for each of the three
approaches attempt to balance preproduction and shortages in
different ways. There are multiple ‘‘ramp-up’’ and ‘‘ramp-down’’
portions of the production schedule duringwhich the LIX approach
results follow theOOLFC approach resultswith delay. This behavior
of production schedules is even more conspicuous in Fig. 19,
which presents the results of each of the three approaches on
scenario 6. Due to the fluctuating demand pattern of scenario 6,
none of the approaches can avoid temporary shortages of FGI at
facility 1. Furthermore, the delay of the LIX approach solution in
responding to scenario 6 demand has an amplification effect on
backlog and results in very high backlog costs that are in absolute
termsmuch higher thanWIP costs. This is themain reasonwhy the
LIX approach reports 42% higher total cost than OOLFC in scenario
6, in contrast to 26% in scenario 4.

As mentioned already, while OOLFC corresponds to the pro-
posed modeling of dynamic lead times through the incorporation
of nonlinear constraints (6)–(8) of Exhibit 1, the LIX approach is
used as a representative of the current practice of planning with a
fixed lead time and safety stock assumptions, usually correspond-
ing to level-loading conditions at the maximum allowed efficiency
(worst-case analysis). Finally, the CE approach is representative of
an over-optimistic, that is, too low, lead time allowance that as-
sumes no queuing delays. Obviously, CE schedules are hampered
by shortfalls and backlogs, rendering the CE approach one order of
magnitudeworse than themore advanced state of the art in indus-
try practice represented by LIX.

Table 5 summarizes the potential benefits of the proposed
OOLFC framework. Note that the Total Cost (T.C.) column shows the
value of the optimal objective function for OOLFC and the relative
percentage of the cost produced by the CE and LIX approaches. The
remaining columns represent a decomposition of the total cost into
its WIP, positive FGI, and backlog components. The superiority of
the OOLFC dynamic lead time approach is clear.

In terms of computational effort, all three approaches under all
six scenarios converged in no more than 16 master problem sub-
problem iterations. In 15 runs out of the total of 18, convergence
was achieved in at most 12 iterations. The software implementa-
tion involved compiled C++ objects, Matlab’s interpreted scripts,
and Ilog’s CPLEX optimizer. On a Pentium 4 PC running a Linux
operating system, the calculations for each iteration takes about
five seconds (there is ample room for improvement if the whole
implementation is done in compiled objects), and the LP solution
takes less than half a second. Extensive empirical experience with
varying sizes of problem instances, up to eight part types, seven
facilities, and 40 time periods indicates that: (i) the number of it-
erations to convergence remains flat over all cases run, and (ii) the
total computational effort grows linearly in the number of time pe-
riods and number of facilities but polynomially in the number of
part types.
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5. Conclusion

Computationally tractable and robust algorithms for SC coor-
dination and planning are presented that are capable of incorpo-
rating nonlinear lead time performance and probabilistic quality
of service requirements to reduce SC inventory and increase its
speed. Nevertheless, demonstration that significant reduction in
inventory costs is possible when the nonlinear relationship of fa-
cility lead times is modeled in the SC production planning process
is not the major contribution of this paper. The major contribution
of this paper is the proposal and implementation of a practical, ef-
ficient, tractable, and robust algorithm that is capable of achieving
these cost savings. In doing so, the concept is proved that plan-
ning on constant lead times is not a necessary evil imposed by the
presumption of insurmountable computational complexity. In fact,
this presumption is shown to be incorrect and that industry does
not have to live any longer with the undesirable consequences of
the constant lead time assumption impeding today’s production
planning practice.

Furthermore, the results leverage the value of research in
stochastic systems and, in particular, queuing network models of
production systems, including analytical probabilistic approaches
as well as Monte Carlo simulation approaches that have attracted
and continue to attract a substantial portion of the research
community. Ongoing research is focusing on improving QoS layer
algorithms and enhancing fluid Monte Carlo simulation models
applicable to multi-echelon production systems.

Finally, it is emphasized that the inclusion of production
system stochastic dynamics in SC coordination and production
planning is particularly desirable in view of the emergence of
sensor network and related technologies such as RFIDs. The value
of these technologies’ ability to supply reliable, affordable, and
timely information about production conditions, transportation,
receiving, warehousing, and retail activities will be undoubtedly
enhanced if this information is translated to significant efficiency
gains in SC management.
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