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Abstract—This paper compares Transmission and 

Distribution (T&D) network day-ahead market (DAM) 

algorithms clearing energy and reserves under various cases of 

information available to either a centralized or distributed 

decision maker. Flexible Distributed Energy Resource (DER) 

loads transacting hourly energy and reserves are market 

participants in addition to conventional generators and 

inelastic demand. DERs are connected to distribution networks 

where line losses are significantly higher than in the high voltage 

transmission network. Distributed-algorithm-based Market 

clearing with self-scheduling DERs is required for computation 

and information communication tractability. Under certain 

conditions of information available to flexible DER loads, 

strategic behavior is possible. This paper’s contribution is the 

investigation of the likelihood and severity of DER strategic 

behavior. It investigates the Nash Equilibrium achieved by self-

scheduling of profit maximizing DER-market-participants 

adapting iteratively to hourly day-ahead energy and reserve 

marginal-cost-based prices set by collaborating T&D 

Independent System Operators. The Nash Equilibria obtained 

under different cases of distribution network information 

available to individual DERs or their aggregator are compared 

to social welfare maximizing DER schedules obtained by an “all 

knowing” Centralized Market Operator (CMO). Comparison of 

Nash and Social Welfare maximizing Equilibria across the 

aforementioned information availability cases, indicates that 

under some -- possibly impractical -- information availability 

cases, self-scheduling DERs can achieve a higher profit than 

under a social welfare maximizing CMO, a result magnified by 

DER collusion through an aggregator. We perform numerical 

experiments on a simple T&D network modeling salient 

characteristics of EV mobility, battery electrochemistry 

charging constraints and distribution network losses. 

 

I. INTRODUCTION 

Increasing penetration of environmentally sustainable, 
albeit intermittent and volatile, renewable generation can 
benefit handsomely from significantly positive synergies with 
equally increasing storage-like flexible Distributed Energy 
Resource (DER) loads. DERs, supreme among them electric 
vehicles (EVs), can schedule their hourly charging capacity to 
charge their battery and promise secondary reserves. EVs self-
schedule by maximizing their benefits while adapting 
iteratively to hourly day-ahead distribution location marginal-
cost-based prices (DLMPs) determined by collaborating T&D 
Independent System Operators. Note that DLMPs are equal to 
transmission locational marginal prices (LMPs) adjusted for 
distribution line marginal loss and other distribution network 
marginal costs [14]. Unfortunately, familiar centralized market 
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clearing algorithms administered by a Centralized Market 
Operator (CMO) with access to T&D network as well as T&D 
connected participant preferences are intractable. The reason 
is that DERs connected to medium/low voltage distribution 
networks are much more numerous than conventional 
generators, and possess intertemporal and complex 
preferences and capabilities. Load aggregation and direct 
centralized utility control methods proposed in the literature in 
order to address these difficulties [1-3] as well as open-loop 
optimal EV charging approaches [10,15] are not scalable for 
DER market integration. Distributed algorithm methods based 
on DER self-scheduling that adapts to DLMPs determined by 
a single T&D Independent System Operator (T&DISO) or 
collaborating Transmission and Distribution Independent 
System Operators (TISO), (DISO) is the only tractable 
approach to the complex DER preferences and dynamics and 
the associated information communication constraints [8, 14].  

Given the unavoidable self-scheduling of DERs under 
tractable distributed-algorithm-based market clearing 
approaches, two important questions arise: (i) Is there a unique 
and reasonably fast converging Nash Equilibrium that can be 
obtained for the market to clear, and moreover, (ii) are there 
opportunities for DERs to engage in strategic behavior 
enabling them to increase their individual benefits at the 
expense of social welfare?  Needless to mention that there is a 
vast literature on these topics. To mention a few, the reader is 
referred to [16] and [20] on the theory of the existence of Nash 
Equilibrium in well behaved (convex) markets and [5, 7, 9, 11, 
18, 21] for convergence and strategic behavior issues. It is the 
second question that we address in this paper and this 
constitutes the paper’s contribution.  

This paper contributes to past work by investigating cases 
of network-information-access enabling social welfare 
compromising DER strategic behavior. Furthermore, it sheds 
light on the feasibility of accessing such information, the 
magnitude of the associated loss of social welfare, and, finally, 
market design/regulatory options that can mitigate DER 
strategic behavior.  

We are able to obtain analytical as well as extensive 
numerical results by (i) focusing on EV DERs and modeling 
their day ahead market dynamics at a high level of fidelity by 
considering actual battery dynamics [17] and mobility, and (ii) 
modeling accurately centralized generator costs and 
capabilities but simplifying, albeit without loss of generality as 
regards our analytical results, the transmission and distribution 
networks. Although a CMO is not tractable for realistic size 
problems, we are able to formulate its model for the simplified  
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transmission and distribution network representation and solve 
it for small problem instances so that the optimal social welfare 
can be quantified and compared to the outcome of distributed 
decision making. More importantly, analytic expressions of 
market equilibrium optimality conditions under a CMO can be 
compared to the conditions under distributed market clearing 
Nash Equilibria corresponding to the various network 
information access cases considered. Distributed market 
clearing information cases include (i) D: Individual DERs 
respond to day ahead hourly DLMPs as pure price takers; they 
do not know (nor can they learn) how their decisions may 
affect DLMPs or the decisions of other DERs, (ii) DN: 
Individual DERs know the relevant LMPs and can map them 
to the DLMPs by estimating the marginal losses at their 
location. (iii) DA: DERs assign their scheduling to an 
aggregator who knows the decision of all DERs, but does not 
know marginal losses (iv) DN,A: as above, except that the 
aggregator knows marginal losses.  

The main conclusion of the paper is that whereas there is no 
social welfare compromise under D and DA, strategic behavior 
is possible and of increasing importance as we move to cases 
DN and DN,A. A non-surprising conclusion is that aggregation 
or collusion amongst DERs is prima face undesirable. In 
addition, we can argue that cases DN and DN,A are equivalent 
to allowing the Distribution Independent System Operator 
(DISO) to serve as an Energy Service Company (ESCO) that 
schedules all EVs. Should this be allowed for the independent 
DSO? Would it be necessary to have aggregating ESCOs if 
information platforms allowing individual EV scheduling 
become available?  

The remainder of this paper is organized as follows: Section 
II presents a simplified model of a meshed and lossless 
Transmission network connected to Distribution Feeders with 
explicit non-linear line losses; conventional price inelastic 
loads and price elastic EVs are connected to the Distribution 
network, while conventional generators are connected to the 
Transmission network. Different cases of distribution network 
information available the ISO and to EVs are defined. Section 
III presents the EV battery model, distributed day ahead 
market (DAM) clearing model constituting an iterative DER-
T&DISO hierarchical game: individual EVs self-schedule 
against forward T&DISO DLMP estimates. DERs reschedule 
till a Nash Equilibrium is achieved at a reasonable 
convergence rate associated with adaptive DLMP update 
conditions. In addition, EVs have the option to either self-
schedule or entrust their schedules to a load aggregator ESCO. 
Section IV presents two CMO algorithm versions. In version 
C the CMO has access to EV preferences and collaborates with 
the DISO to translate LMPs to DLMPs. In version CN, the 
CMO has access to EV preferences and also to all DISO 
network information. Under version CN, the CMO clears the 
market achieving the maximal social welfare in a single 
iteration, while a few iterations are needed in the C version of 
the CMO. Section V represents the differences in the 
optimality conditions that characterize the centralized and 
distributed algorithms under various distribution network 
information availability and load aggregation options. Section 
VI presents numerical results and Section VII concludes. 

 

 

 

 

Notation Definition 

Indices and sets 

, ( ),n n i j  
Transmission bus n; associated Distribution 

feeder bus 
( )( ), n in i i s ; EV j 

( ) ( ), , ,

,`

j
n n i n i

j

s s s

H H
 

Set of transmission buses, Set of feeders that 

belong to transmission bus n, Set of feeders EV j

visits, set of hours, set of hours that EV j is 

mobile/traveling; .`
jH H   

, ( )

, ( )

, ,a

j n i

d

j n i

h h

h
 

Hour h H  ; arrival/depart. hour of  EV j 

to/from n(i).  0..24h   

( , )h i j ,

( , ), *i j h i   

Location assignment matrix of EV j. 

( , ) 1h i j   if EV j is in feeder i  at time h, 

location of EV j at time h, 

* ( , ) . ( *, ) 1hi i j h s t i j    

EV variables and parameters 

,j j

h hp r  
Real power (p) consumed and reserves provided 

(r) by EV j during hour h 

{ , },j j j

h h ha b x  

KiBaM battery state of charge (SoC) variables, 

Total battery SoC of EV j at the beginning of 

hour h. Note that 
j j j

h h hx b a   

j

hu ( , ), ,j j j

h hb a C

P
 

Max charging rate function, Energy Storage 

capacity of EV j, rated power of the outlet 

( )d
n(i)

d
n(i)

j

hh

jU a b

 

Quadratic cost/disutility of EV j when total SoC 

( )
j

n iC  when it departs n(i).

( ) ( )

2( ) ( ( ))d d d
n(i) n i n i

d
n(i)

j j j j

h h hh

jU a b C b a     

S j
h   

Energy spent by EV j during traveling at hour h; 

`
jh H  . 

Generator variables and parameters 

,g g

h hp r  
Real power (p) generated and reserves provided 

(r) by generator g during hour h 

,g g  Generator g capacity and technical minimum 

g gc ( ), r ( )g g

h hp r

 

Convex cost of energy and reserve provision 

respectively of generator g 

Network and system parameters 

( ) ,n i

h hd R
 

Conventional/inelastic  demand at n(i); system 

reserve requirement at hour h 

( ) ( ),n i n i

h hL m   
Total and marginal Losses over distribution 

feeder connecting busses n and n(i) 

,n

h h 
 

Ex-Post Marginal Cost of energy and reserves at 

transmission bus n (i.e., LMPE and LMPR) 

( ) ( ),n i n i

h h 
 

Ex-Post Marginal Cost of energy and reserves at 

distribution bus n(i) (i.e., DLMPE and DLMPR) 
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II. T&D NETWORK APPROXIMATION AND CASES OF 

INFORMATION AVAILABILITY 

Following the above notation definition we formulate a 
stylized T&D network consisting of a meshed High Voltage 
finite line capacity but lossless transmission Network with 

nodes n, and loss-incurring distribution feeders, each 

represented by a single line , ( )n n i  as shown in Figure 1. 

Feeder demand is aggregated at each n(i) and equals the sum 
of inelastic conventional demand and EVs connected at the 
distribution side of each feeder. Conventional centralized 

generators are connected to transmission side nodes n. More 

realistic renditions of the T&D Network (see for example [14]) 
do not affect our results. We assume quadratic losses over 
distribution feeders and define the details of the 
aforementioned information access next: 

 
 

Figure 1. T&D Network approximation 

A. Distribution Network Information 

Assuming quadratic distribution feeder losses, we write  

( ) ( )

( ) ( ) 2 ( ) 2

| ( , ) 12 2
( ) ( )

n i n i

h

n i n i j n i
h h h h

j i j

L d p
 

 

     

where 
( )n i  is the ratio of line resistance over the square of 

voltage at bus n(i). Marginal losses of additional load at n(i) 

are ( ) ( ) ( )n i n i n i
h hm  . Distributed loads at feeder n(i) and the 

resulting withdrawal at node n are: 
 

 
1 We assume that incremental losses at full reserve deployment are 

adequately represented by marginal losses. 

( )

( ) ( )

( ) ( )

| ( , ) 1

( )
n i

h

n i n i j

h h h

j

n n i n i

h h h

i j

i s

d p

L

 



 

 




 

Similarly, distributed reserve offers,
( )n i

hr , and the resulting 

reserves that can be delivered upon deployment1 to 

transmission node n are: 

( )

( )

| ( , ) 1

( ) ( )(1 )

h

n i

n i j

h h

j i j

n n i n i

h h h

i s

r r

r m r

 





 




 

We finally note that spatiotemporal real power and reserve 

marginal costs at node n, (LMPE, LMPR), and at feeder n(i), 

(DLMPE, DLMPR), are related by 

( ) ( ) ( ) ( )(1 ) (1 )n i n i n n i n i

h h h h h handm m        

Readers interested in the detailed physics of distribution 
networks, should note that our single distribution line 
representation of distribution feeders with all distribution 
feeder loads and DERs connected to a single node constitute 
an approximation/aggregation that subsumes dynamically 
changing radial feeder topologies and locational load 

distribution. As a result, the effort that EV j would have to 

undertake to know in a real feeder the equivalent of 
( )n i   and 

total load of other customers,
j

h , is far from negligible.  

B. Cases of Information Available to DERs in the Iterative 

Distributed- Algorithm-Market-Clearing Model 

During iteration k, each EV schedules and optimally 

allocates its capacity between
, 1j k

hp 
 and 

, 1,j k

h hr 
  so as to 

maximize its utility of a charged battery at the time of 
departure minus the cost of power purchased plus the income 
from providing regulation service reserves subject to 

constraints. As shown in Section III, each EV j solves in 

iteration k, an optimization problem that depends on its 

knowledge about
( ),n i k

h and
( ), ,n i k

h h  . The two information 

cases of the distributed algorithm we consider are (i) without 
access to information about feeder losses and complementary 
loads, and (ii) full access to feeder losses and complementary 
loads.  These cases are detailed below: 

Case D - Distributed algorithm with no feeder information: 

DLMP estimates ( ), ( ),
andˆ ˆ n i k n i k

h h h   are provided at the 

beginning of iteration k by the Transmission Independent 
System Operator (TISO) in collaboration with the Distribution 
Independent System Operator (DISO). TISO schedules 

centralized generation connected to Transmission nodes n, 
conditional upon self-scheduled EV quantities at the most 

recent iteration, 
, ,

,,j k j k

h h h jp r  . The resulting DLMPs can be 

     

  

    

    

   

Acronyms  

DAM Day ahead Market 

DER, EV Distributed Energy Resource, Electric Vehicle 

TISO, DISO, 

T&DISO, CMO 

Transmission Independent System Operator, 
Distribution Ind. System Operator, T&D Ind. 

System Operator, Central Market Operator 

D, DA, DN, 
DN,A, C, CN 

Cases of distributed (D) and centralized (C) 
models. See Section I for definitions. 

KiBaM Kinetic Battery Model 
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interpreted as ex-post DLMPs and are used to determine 

DLMP estimates ( ), ( ),
andˆ ˆ  n i k n i k

h h h    in a manner that 

assures convergence of the iterative algorithm as described in 
the TISO problem of Section III.  

Case DN - Distributed algorithm with full feeder information: 

LMP estimates ,ˆ ˆ and ,n k k

h h h   are provided at the 

beginning of iteration k by the TISO on the basis of ex-post 
LMPs derived in a manner similar to the one above. Loss 

information ( ) ,n i and the complementary load to EV j at 

feeder n(i), denoted by 
, ( ), ,j n i k

h h as well as the closed 

form expression for losses is provided by the DISO. The 

complementary load to EV j is expressed as: 

, ( ) ( ) '

'| ( , ') 1, 'h

j n i n i j

h h h

j i j j j

d p
  

    

We can therefore write the DLMPs as a function of the 
individual EV decisions, 

( ), ( ) , ( ) , 1 ,

( ), ( ) , ( ) , 1

ˆ ˆ( ) (1 ( ))

ˆ( ) (1 ( ))

n i k n i j n i j k n k

h h h h

n i k n i j n i j k k

h h h h

i p

ii p

  

  





  

  
 

Knowledge of complementary loads changes the properties 
of the optimization problem that each EV solves. The 
distributed algorithm represents a first step of EVs connected 
to the same feeder toward colluding by sharing charging 
decisions. The next step that completes the collusion is to rely 
on an aggregator/ ESCO to schedule all EVs.  

Cases DA and DN,A: Similar to the cases above, except that 

all EVs connected to a substation are scheduled by a load 

aggregator (A) who determines ,,j j

h h h jp r  . Note that in 

case DN,A the load aggregator  can relate its DLMP to the 

LMP since it has access to the following information:  

|

( ), ( ) ( ) , 1 ,

( , ) 1

( ), ( ) ( ) , 1

| ( , ) 1

ˆ ˆ( ) (1 ( ))

ˆ ˆ( ) (1 ( ))

h

h

n i k n i n i j k n k

h h h h

j i j

n i k n i n i j k k

h h h h

j i j

i d p

ii d p

  

  



 



 

  

  




 

C. Cases of Information Available to Centralized-

Algorithm-Market-Clearing 

The centralized market clearing algorithm utilizes full 
information of the intertemporal preferences and capabilities 
of EVs, and simultaneously schedules centralized generator 
and EV energy and reserve decisions including 

, , , ,g g j j

h h h h hp r p r  .Besides full EV information, the CMO 

may have all of the TISO and DISO information or have to 
rely on a separate DISO entity to provide loss and marginal 
loss information. The two resulting CMO versions are 
described below. 

Case C – CMO has partial information on the network losses: 
The CMO schedules centralized generation and EVs with 
partial distribution network information limited to feeder 

losses and marginal losses,
( ) ( )ˆ ˆ,n i n i

h h hL m  , provided by the 

DISO, conditional upon the tentative schedules of  ., ,j j

h h hp r 

This may be desirable or cost effective to avoid 
communication delays between the multitude of DISOs 

managing ~ 
( )| || |n i ns s  feeders, and the CMO. In addition, 

real feeders are not a simple aggregate distribution line and 
may be subject to topology changes (see for example [14]). 
This requires few iterations between the CMO and the DISOs 
to converge. The resulting schedules can be considered a 
second best to the socially optimal equilibrium obtained by the 
full information case described below. 

Case CN – CMO has full information on network 
characteristics and losses: The CMO has perfect information 
about distribution feeder topology and electrical properties so 
that location specific losses can be expressed in terms of the 
decision variables. CMO is therefore an entity that combines 
TISO and all DISO information, has access to all DER details, 
hence can clear the market and maximize social welfare in one 
step. The optimality conditions of Case CN characterize the 
socially optimal equilibrium to which we compare all other 
distributed algorithm based information access cases.  

III. ITERATIVE DISTRIBUTED MARKET CLEARING 

ALGORITHM 

The individual EV and the TISO/DISO problems 

mentioned in Section II are presented here in more detail 

along with the battery electrochemistry constraints model. 

Recall that at each iteration k of the distributed model, (i) all 

EVs solve for their optimal schedules by adapting to T&DISO 

provided DLMP estimates, and (ii) the TISO optimizes 

centralized generation schedules conditional upon feeder 

loads and reserve offers determined by EV sub-problem 

solutions, and finally (iii) updated DLMP or LMP estimates 

(in cases DN and DN,A) are provided to each feeder bus n(i), in 

order to proceed to iteration 1k  .  The battery model, the 

EV sub-problems and the TISO generation optimization steps 

showing dual variables associated with constraints are 

presented next.  

 

Battery model: 

The battery is represented as a two bucket system, based on 

the Kinetic Battery Model in [17] adapted for the charging 

phase and normalized in terms of units of power. Total charge 

is modeled as the sum of energy charged in two buckets. 

Power directly flows into the second bucket (b)and from there 

it is transferred to the first bucket (a) at a rate proportional to 

the charge difference w.r.t. bucket b (see Figure 2). The 

following time differential equations represent the battery 

charging dynamics with 1h t h    the continuous time 

evolution during hour h: 

(KiBaM.1)

(KiBaM.2)

[1 ] ( )

[1 ]  unconstrained for 

[1 ] ( ) for 

( )

j j j j j

t t t t t

j j j j

t t t

j j j j j j

t t t t t

j j j

t t t

b p p b a

p p b b

p p b a b b

a b a
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The differential equations can easily provide the maximum 

constant charging rate that is sustainable during hour h as a 

function of the level of the first and second bucket at the 

beginning of hour h, which we denote by u ( , )j j j

h h ha b  This 

model captures the underlying idea that the maximal constant 

hourly charging rate is constrained by the bucket specific SoC 

at the beginning of the hour.  

 

 

 

 

 

 

 

  

 
 
 
 

EV problem for EV j – Case D: 

 

Note that the objective function (EV.1) represents charging 

cost net of reserve revenue and disutility of battery SoC, 

(EV.2) shows the intertemporal SoC dynamics in terms of the 

constant charging rate during hour h, with functions f and g 

obtained from the solution of battery differential equations 

that incorporate also the impact of energy expended if the EV 

is traveling during an hour.  (EV.3) includes a quadratic 

efficiency term expressing losses in the conversion of outlet 

drawn power rate to battery stored energy. Inequality 

constraint EV.4 represent the requirements of up and down 

secondary reserves considered here (for details see [10, 15]). 

EV.4 also captures the limits on the maximum amount of 

reserves promised by the EV, considering the real-time 

tracking of the regulation signal. An EV that promises 

reserves equal to the maximum charging rate may not be able 

to track the signal reasonably well when the second bucket, b, 

reaches its capacity. Therefore, a conservative upper bound is 

adopted. Figure 3 shows an example case where in the 

beginning of the hour an EV is able to track the regulation 

signal rebroadcasted by the TISO during the hour in 2 second 

intervals. However, as the SoC increases, most probably for t 

close to h+1, 
j

tb  reaches its capacity 
j

tb  forcing 
j

tp  to 

plunge to [1 ] ( )j j j j

t t t tp p b a     which may fall short of 

the level required by the regulation sugnal yt, cause the 

tracking error to skyrocket and disqualify the EV from 

participating in the reserves market. Finally, EV.5 ensures 

that battery SoC is within the capacity limit. For simplicity we 

let 2j j ja b C  . 

 
Figure 3 - Differences in the actual deployment and zero tracking error 
consumption of EV j in real time. The actual deployment may fall short of 

the regulation signal y(t) resulting in high tracking errors. 

 

TISO problem determining optimal schedules of 
g, 1 g, 1

,
k k

h h
p r

 
 

 

 

  

b a 

  

Figure 2 - Illustration of the two-bucket Kinetic Battery Model (KiBaM). κ is 

the constant transfer rate between bucket b and a. 

 

( )

( *), 1 ( *), 1

, 1 1

( )

,

EV.1( )

ˆ ˆ( ) ( )min

d d

n(i) n(i)

j j

h h
j

n i

n i k j,k n i k j,k

h h h h

h
j k j ,k

h h

n i s

p r

U a b

p r  

 










 

s.t 

* { | ( , ) 1}
h

i i i j    

1 1 1 1

1 1

, 1

, 1

1 1

` `

` `

( , , , )

( , , , )

j j j j j

h h h h h

j j j j j

h h h h h

j k

h

j k

h

j j

j j

h H h H

h H h H

b f b a p S

a g b a p S





   

 



 



 

 

 

 

1 1

1 1
 

(EV.2)                                                                                                                                                              

    1
2

,
(EV.3)( , ) ( , )min ,u uj j j j

h h h h

jj

h h

k

hh a b a bp P       

  , 1
(EV.4)( , )min , ,0.8u j j

h h

j j j

h h h h

j k

ha br p P p    

, 1
(EV.5), j k

h

j j

h hb b a a                  

( ),ˆn i k

h ,
( ),ˆ n i k

h  determined by Section II.B relations 

that apply to Case D, DA or DN, DN,A. For cases DA and 

DN,A decisions include j connected to the same bus n 

and the objective function is augmented by summing 

over  
( )

, ( ) , { | ( ( ), ) 1}
n i h

h n i s j j n i j       , where 

the constraints (EV.2-5) are also for j . 

 

  

g, 1 g, 1

1 1

,,
(TISO.1)min ( ) ( )

k k
h h

g g,k g g,k

h h

g hp r
c p r r

 

   

 

s.t 

 Energy and reserve balance constraints: 
1g, 1 ( ), 1 ( ), 1

( )

(TISO.2)( ) 0 k

h

k n i k n i k

h h h

g n i

p L    
   

, 1 ( ), 1 1

( ),

1

| ( , ) 1

(TISO.3)

(1 )
h

g k n i k j,k

h h h

g n i j

k

i j

hh

r m r

R  

  

 



 



 
 

 Generator capacity constraints: 
, 1

, 1

g k

h

g

g

k

h

g

h h

g g

h h

p r g

p r g









  

  
                                      (TISO.4) 

With 
( ), 1 ( ), 1

and n i k n i k

h hL m 
 dependent on iteration 

k+1 EV decisions consistent with Section II A 

relations. 
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Recall that the TISO problem optimizes centralized 

generation schedules conditional upon given EV schedules. 

The objective function (TISO.1) represents the energy 

generation and reserve provision cost of centralized 

generators. Equations (TISO.2-3) represent the energy 

balance and reserve constraints resulting in shadow prices 
n

h

and h , respectively. For ease of exposition we consider a 

simplified version of the Transmission network where line 

flow capacity constraints are never binding, rendering
n

h h n   . (TISO.4) represents centralized generator 

capacity constraints. We note that EV schedule convergence 

may be slowed by synchronization effects causing EV energy 

consumption to oscillate across two hours in response to also 

oscilating DLMPs. Adaptive price update rules (see Appendix 

A.3) and strict convexity (e.g. quadratic charging efficiency) 

are crucial in mitigating convergence problems.  

IV. CENTRALIZED MARKET CLEARING MODEL 

The centralized market clearing problem solved by the 

CMO is written as: 

Note that in version CN the market clears in one step, 
whereas version C requires a few iterations between the CMO 
who has access to DER preference and TISO network 
information with the DISO who collaborates to provide total 
substation loss and marginal feeder specific loss estimates. 

V. OPTIMALITY MISMATCH BETWEEN VARIOUS 

INFORMATION AVAILABILITY CASES 

Equilibrium conditions for each of the four distributed, and 
the two CMO problems can be obtained by forming the 
Lagrangians of all sub-problem in each distributed algorithm 
information access sub-problem (a single problem in the CMO 
cases), and setting gradients with respect to decision variables 
to zero [16, 21]. Careful analysis and comparison of 
equilibrium conditions (see Appendix A.2) show mismatches 
in the conditions summarized in Table 1. For notational 
simplicity, mismatches are shown for a single transmission 
node and a single distribution feeder; and the time arguments 

are not included. Generalization is possible with salient 
characteristics and conclusions remain unchanged. 
Distribution and transmission location designations are also 
omitted as they can be surmised by the presence of loads 
(distribution) or generators (transmission).   

Table 1- Pair wise comparison of optimality conditions with 

energy and reserves.  

 C CN 

D None N N

j

C C

j

r   

DA None  N N

j

C C

j

r   

DN ( )
N N N N

j j

D D D Dr p    
'

'

( )
N N N N

j j

C C D D

j j

r p  


   

 DN,A 
, , , ,

( )
N A N A N A N A

j j

D D D D

j

r p  

 

, ,,N A N AD j D

j

p    

Differences in the optimality conditions imply differences 
in the primal decisions and therefore also in the dual variables, 
i.e., 

h , 
h , ( )n i

h  and ( )n i

h , as well as dual variables 

associated with constraints EV.2-4. In addition, by inspection 
of the equilibrium condition differences, we observe that 
optimality condition differences approach 0 as the energy 
consumed and the reserves offered by an EV/DER approach 
zero, and as the distribution network capacity is enhanced 
resulting in a smaller loss coefficient,  , magnitude.   

It is also noteworthy that comparison of C with DA, or C 
with D, shows that when neither the centralized decision 
maker nor the DERs (or their aggregator) have access to 
distribution network information, -- i.e. when a DSO acts as an 
intermediate who translates LMPs to DLMPs and estimates 
losses -- strategic DER behavior is not effective! To be precise, 
in the absence of access to distribution network information, 
the Nash Equilibrium reached by the distributed-algorithm is 
identical to the centralized-algorithm reached equilibrium, 
and, as such, case C achieves a stable market clearing 
equilibrium. On the other hand, when DERs have access to 
distribution network information, they can lower their 
effective cost by engaging in strategic behavior and self-
schedule in ways that differ the social welfare maximizing 
DER schedules derived by CN. In other words, the CMO 
equilibrium is unstable when DERs have access to network 
information.  

Analyzing further Table 1, we note opposite signs in the 

mismatch terms between C and CN relative to DN,A or DN. 

Under asymmetric access to information between DERs and 

CMO, DER self-scheduling deviates more from the CN 

equilibrium than they do from the C equilibrium schedule. In 

other words, the DER incentives to differ from the C 

equilibrium are smaller than the incentives to differ from the 

CN equilibrium.  Indeed, noting that j j

h hr p  from 

relation (EV.4), and the reasonable assumption that ~h h 

, we conclude that the deviation between C and DN is smaller 

than the deviation between CN and DN.  

g g

( )

,
,

, ,

( )

(CMO.1)( )

min ( ) ( )

d d

n(i) n(i)

j j

h h

j j
h h h h

j
n i

g g g g

h h

g h
p r p r

n i s

U a b

c p r r





  




 

subject to:  

 Energy and reserve balance constraints  
( ) ( )

( )

,0
h

g n i n i

h h h

g n i

p L h            (CMO.2) 

( )

( ), | ( , ) 1

(CMO.3)(1 ) ,
h

h

g n i j

h h h h

g n i j i j

hr m r R 
 

          

( ) ( ),n i n i

h hm L determined using Section II.C relations 

depending on whether case C or CN applies. 

 Generation capacity constraints (TISO.4) 

 EV state dynamics and constraints (EV 2-5) 
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The analytical results in Table 1 are reinforced by the 
numerical results reported in Table 2 which imply that the 
largest deviation from the social optimum achieved by DER 
strategic behavior occurs when DERs have access to 
distribution network information while the CMO also has 
distribution network information (CN). Recalling that 
information constraints render CN intractable for real size 
problems, we argue that the market equilibrium under CMO 
version C, is not only identical to the distributed algorithm 
equilibrium under cases D an DA, but is also very close to the 
equilibrium under case DN or DN,A. DN,A is in fact a market 
rendition where the DISO acts as a load aggregator with full 
access to Distribution Network information.  

VI. NUMERICAL RESULTS 

Numerical results are reported and discussed here to 

illustrate the differences between Socially Optimal/CMO and 

Distributed Algorithm market clearing under various 

information access cases. We model a three feeder 

distribution network with six categories of EVs traveling 

between two feeders with different plug in/arrival and 

departure times, 24 kWh batteries, a 7.2 kW charger, overall 

charging demand ~1.4% of the conventional loads and system 

reserve requirements at 6% of conventional demand. 

Centralized generators have continuous quadratic energy and 

reserve supply costs, and there is no Transmission congestion. 

EVs in the same group share identical characteristics such as 

arrival/departure times and drive cycles. Detailed input data 

specifications are available in the Appendix A.4. 

 

Table 2 exhibits distributed and CMO daily cycle statistics 

aggregated over all feeders, representing: (i) effective EV cost 

(i.e., charging cost plus disutility for incomplete charging, 

minus reserve sale revenues) (ii) social cost (i.e. daily 

centralized energy generation cost plus reserve provision 

costs plus EV disutility for incomplete charging upon 

departure), (iii) centralized generators producer surplus, (iv) 

daily inelastic demand charges, and (v) transmission rent 

(inelastic demand charges plus EV energy payments minus 

payments to the generators for energy). 

 

Table 2 – Daily financial quantities ($/day) under different market 

clearing and information access cases. 

  
Total 

EV cost 

Social 

cost 

Generator 

producer 

surplus 

Inelastic 

demand 

charges 

Trans-

mission 

rent 

D 1636.177 454081.646 258381.123 709465.615 32225.221 

DA 1636.177 454081.646 258381.123 709465.615 32225.221 

DN 1636.077 454081.685 258381.108 709465.749 32225.320 

DN,A 1635.574 454081.922 258379.742 709465.334 32225.860 

C 1636.177 454081.646 258381.123 709465.615 32225.221 

CN 1640.361 454081.015 258378.904 709457.874 32222.518 

 

EV self-scheduling enables strategic behavior to lower 

effective costs relative to the socially optimal CMO/CN 

equilibrium. EV reliance on load aggregators, DN,A, 

strengthens strategic behavior gains. Detailed results for each 

information availability case are available in Appendix A.4. 

Average losses are at ~4.78%, and the transmission rent 

implied by marginal cost pricing is 7.10% of the total 

generation costs. DLMP priced conventional demand costs 

are minimum under CMO/CN equilibrium. Network rent is 

also minimized under the socially optimal CMO/CN 

equilibrium indicating correctly improved asset resilience 

under optimal market clearing. Finally, as expected by the 

analytical results of Table 1, CMO/C equilibrium is identical 

to D and DA equilibria. 

The extra terms in Table 1 demonstrate a clear dependence 

on the magnitude of the loss factor,  , and the relative size of 

the flexible load demand and reserve provision. We 

conducted several numerical experiments described in the 

first two columns of Table 3 in order to investigate the impact 

of the factors described above. For expediency, we report the 

total EV and social cost for cases CN and DN,A.  

 

Table 3 - Effect of system losses, size of flexible loads on the difference 

between distributed (DN,A) and centralized (CN) solutions.  
β 

×10-4 
Flex 

demand 
magn.* 

Avg. 
losses 

% 

Tot. EV 
cost  
–DN,A 

Tot. EV 
cost –  

CN 

Social cost  
– DN,A 

Social cost  
- CN 

1 1.4% 4.78 1635.574 1640.361 454081.922 454081.015 

2 1.4% 9.04 1909.520 1917.904 482154.259 482151.772 

2 1.8% 9.06 2251.865 2272.087 482390.564 482385.672 

*Daily EV demand as a percent of daily inelastic demand at feeder 1 & 2. 

The results exhibited in Table 3 point in the expected 

direction: Higher penetration of DERs colluding under a load 

aggregator and an overloaded distribution network result in 

the highest deviation from the social optimum. Figure 4 

shows feeder specific hourly price and EV consumption 

differences across market and information access cases DN,A 

and CN. Figure 4 demonstrates how EV self- scheduling under 

DNA deviates from its CN schedule influencing both energy 

and reserve DLMPs. 

 
Figure 4 – Feeder specific Hourly differences in EV energy and reserve 

schedules and distribution system DLMPE and DLMPR (DN,A value - CN 

value). 
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Figure 5 depicts the hourly differences in the total flexible 

demand in feeder 1 (residential) and 2 (commercial) across 

cases DN,A and CN. Residential EV charging mostly takes 

places after midnight. On the other hand, commercial EV 

charging demand is higher between hours 10-18. 

 
Figure 5 - Total EV real power consumption in feeder 1 (residential) and 

2 (commercial), for cases DN,A and CN. Commercial demand after hour 19 is 

zero.  

 

Figure 6 shows the differences in the total hourly cost of 

real power and reserves produced by centralized generators, 

the social cost and EV consumption across DN,A and CN (DN,A 

value - CN value). Note that the social cost (i.e., sum of 

generation and reserve provision cost) is lower in case CN 

during the hours of lower centralized real power generation, 

because as it turns out marginal generator energy costs are 

higher than reserve provision costs. Even though total EV real 

power consumption, and hence total energy generation, is 

slightly higher2 in case CN (see Appendix A.4), generation 

cost is lower than DN,A; the CMO achieves under CN an 

overall lower social cost through a different schedule of EV 

charging.  

 

 
Figure 6 - Comparison of total hourly centralized generator energy and 

reserve costs, social cost, and EV consumption across cases DN,A, and CN, 

(DN,A value - CN value). EV consumption is related to the scale on the right 

vertical axis depicting MWh. 

VII. CONCLUSION 

 We have demonstrated that in distributed DAM clearing 

algorithms, EVs may engage in strategic behavior that 

become available to them if a future T&D market clears 

relying on distributed algorithms. The resulting hierarchical 

game described in sections III and IV can lead to Nash 

equilibria that may divert from the socially optimal 

 
2 Although the total energy charged is the same, different charging 

schedules are associated with different charging efficiencies.  

equilibrium under asymmetric access to distribution network 

information. For all practical intents and purposes, however, 

there is a credible argument that (i) distributed algorithms are 

the only practical approach to T&D market clearing, and that 

(ii) communication constraints suggest that detailed 

distribution network information cannot be made available to 

either a single centralized or a multitude of individual DER 

decision makers, with a possible exception when the 

distribution utility itself acts as an aggregator empowering 

DERs to gain market power. And even under these 

exceptional circumstances, the impact of market power on 

centralized conventional generation and inelastic 

conventional demand, is unlikely to be substantial if the 

distribution system is not allowed to lag seriously behind in 

maintaining a reasonable capacity level. Nevertheless, 

detailed empirical studies can determine whether market 

power issues may arise that are worth imposing additional 

regulatory constraints such as prohibiting aggregation 

agreements.  

We have also established that the extent to which self-

scheduling DERs impact social optimality depends both on 

their level of penetration and market participation 

characteristics. EVs can conceivably utilize the functional 

form of the distribution network losses to influence the 

DLMPs at their own feeder, and reduce their effective costs 

relative to the optimal social welfare market schedule. As 

mentioned, already, the degree to which the social welfare can 

be unduly influenced appears from our results to be limited. 

The only case of capacity withholding, can be made for an 

additional reactive power compensation product, whose 

DLMP can go be shown to approach zero [14]. In fact, 

because reactive power compensation may be provided by 

putting DER power electronics into dual use, there may be no 

viable economic argument for limiting reactive power 

compensation capacity. For reactive power compensation, 

avoiding/regulating load aggregation, or engaging power 

electronics through the enactment of standards may be a 

reasonable option. On the other hand, real power and reserve 

provision through distributed markets, and clearing such 

markets with distributed algorithms, appears to be a 

reasonable and fruitful direction for distribution network 

market creation.   

As regards to future work, investigation of distributed 

algorithms for the realistic and tractable clearing of 

distribution network markets with high DER penetration, is 

already attracting increasing attention in the research and 

practitioner community, and deserves serious further work. 
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APPENDIX 

 

A1. Solutions to the system of differential equations KiBaM.1 

and KiBaM.2: 

The f and g  functions are obtained from the solutions of the 

differential equations KiBaM.1 and 2 as the following: 

1 1 1 1

2
21 1 1 1 1 1 1

1 1 1 1

2
21 1 1 1 1 1 1

` `

` `

( , , , )

2 2 4 4 2

( , , , )

2 2 4 4 2

j j j j

h h h h

j j j j j j j

h h h h h h h

j j j j

h h h h

j j j j j j j

h h h h h h h

j j

j j

h H h H

h H h H

f b a p S

b a a b u u e u
e

g b a p S

b a a b u u e u
e







 

 

   

      

   

      

 

 



  
    

 



  
    

 

1 1

1 1
 

where 
1 1 1 1` `

[(1 ) ]j j j j

h h h hj jh H h H
u S p p    

  1 1  

Noting that the maximum constant charging rate during an 

hour is the rate that brings the second bucket up to its capacity, 
jb , the maximum charging rate function, ( , )j j

h hu a b , is 

written as; 
2

2

( ) ( 2 )
( , ) 2

2 1

j j j j j
j j j h h h h

h h h

a b e a b b
u a b

e












   


 
 

 

 

A2. Detailed analysis and comparison of equilibrium 

conditions: 

 

The equilibrium conditions below are derived for a single 

feeder, single bus network in order to simplify notation. We 

provide full equilibrium conditions for distributed model case 

D and centralized model case CN, and specify how other 

informational availability cases influence the equilibrium 

conditions relative to these two cases. Using the superscript f 

to denote the feeder’s DLMPs by ,  
, we write the 

equilibrium conditions of the distributed and the centralized 

models as follows:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equilibrium conditions of EV problem j case D: 

   

1 1 1 1
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Equilibrium conditions of the TISO problem: 

,
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,
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Note that the intertemporal dynamics coupling EV 

charging decisions,
j

hp , across hours are captured in 

equilibrium condition 0£ / j

EV hp   by the presence of 

dual variable 1

j

h  related to hour h+1.  

 

The equilibrium conditions of the CMO clearing problem 

under full distribution network information access, CN,  are 

derived next. 
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Equilibrium conditions of Case CN: 
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The bold term in the gradient /£ j

CMO hp  represents the 

optimality mismatch term when compared to the gradient 

/£ j

EV hp  in the distributed model case D. 

 

Lagrangian and Optimality conditions for case DN differ as 

follows; after convergence, the gradient /£ j

EV hp   in case 

DN becomes: 
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Note that in case DN, the DLMP is written explicitly as the 

product of bus LMP and the marginal loss function, where the 

marginal loss is a function of the individual and the 

complementary EV consumption. The bold terms in the 

equilibrium condition above show the terms that do not 

appear in case D. Notice that even in the absence of reserve 

trading, the difference 
h h

jβλ p persists. 

On the other hand, the objective function for case DN,A 

becomes,  
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Analysis of the above conditions indicate equilibrium 

mismatches between certain cases of the distributed and the 

centralized models, which are summarized in Table 1.  

 

A.3 Convergence of the Distributed Algorithm 

 
At each iteration k+1 of the distributed algorithm, 

individual EVs or Load Aggregators (depending on the case) 

receive updated DLMPE and DLMPR prices, 
1 1ˆ ˆ,k k

h h  
from 

the TISO. The TISO updates last iteration’s prices by an 

increment that is proportional to but generally smaller than 

the distance of last iteration’s prices from the current 

iteration’s ex post marginal-cost-based prices. A step size that 

is less than 1 is used in-order to avoid oscillatory behavior. 

More specifically, the step size depends on the sign of the 

change in the EV problem’s schedule of iteration k+1, relative 

to iteration k. The algorithm adopts a smaller, hence more 

conservative, step sizes when the change is negative 

indicating an overshoot. On the other hand, if there is no 

direction change in the last few iterations, step size is 

increased by a pre-determined factor. The adaptive price 

update algorithm employed is described below.  

 
Initialization (start from k=0) : 

( ) ( ) ( ) ( )

, ,

0 0 N

, ,

0 0

for case D

for case D,

,

,
n i n i n i n i

k k

h h

k k

h h

   

   

   

   

 

 

 

 Choose (0,1)  and 1   

Step 1. Solve EV problems and find 
, 1 , 1 ( ), 1, ,j k j k n i k

h h hp r m  
,  
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Step 2. Solve ISO problem and find 1 1,k k

h h    and 

( ), 1 ( ), 1,n i k n i k

h h    

Step 3 Compute  
1 1 1 1

( ), 1 ( ), ( ), 1 ( ), 1 ( ), ( ), 1

ˆ ˆ,

ˆ ˆ,

k k k k k k

h h h h h h

n i k n i k n i k n i k n i k n i k

h h t h h h

     

     

   

   

     

     

  

If    1sgn 1k k

h h      then 

 , 1 ,

0min ,k k

h h

       

Else  ,

0min , k

h h

     endif. 

Similarly repeat if-then of step 3 to find  
1 ( ), 1 ( ), 1, ,k n i k n i k

h h h

      
 

Step 4 Update  

1 , 1 1 , 1ˆ ˆ ˆ ˆ: ; :k k k k k k k k

h h h h h h

                  

For case DN, and similarly  
( ), 1 ( ), 1ˆ ˆ,n i k n i k

h h  
 for case D.  

 If  
2

1 1ˆk k
h h

h

     then  

  1k k   and Go to Step 1. endif. 

 

Convergence of ˆk
h  to 

k
h  as k increases is shown for case 

DN,A, for a selected representative hour in Figure A.3.1. Total 

flexible demand is plotted against the right axis showing 

MWh. 

 
Figure A.3.1 - Convergence of TISO provider energy LMP estimate for 

a selected hour to the actual LMP in case DN,A. The evolution of total EV 

consumption is also plotted against the the right axis showing Mwh. 
 

Figure A.3.2 shows the LMPE convergence metric in case 

DN,A by plotting the total sum of squares difference over all 

hours 2ˆ( )k k
h h

h

  . Convergence is shown for two step 

size update algorithms; (i) the aforementioned direction 

dependent adaptive step size and (ii) a simpler step size 

diminishing with iterations according to 1 k . 

 
Figure A.3.2 – LMPE metric across iterations for case DN,A. The 

convergence is shown for two step size update algorithms. The 

reserve LMPR metric follows a similar trend. 

 

As stated in the Adaptive Step Size algorithm, in cases D 

and DA (i.e., in the absence of network information access), 

the convergence metric is based on the DLMPs, rather than 

LMPs. 

 

A.4 Numerical Experiment Details 
 

Table A.4.1-2 below shows the detailed input data used in 

the experiments.  

Table A.4.1 – EV group data 
EV 

group 

Number 

in group 

Arrival time Departure time 

Feeder 1 Feeder 

2 

Feeder 

1 

Feeder 

2 

1 690 21 10 7 17 

2 690 21 11 7 18 

3 1380 23 12 9 21 

4 172 7 0 22 6 

5 345 0 14 12 23 

6 172 23 8 6 19 

 
Table A.4.2 – Inelastic demand and generation data 

24 hour 

inelastic 

demand 
(MWh) 

24 hour system 

reserve 

requirement 
(MWh) 

Range of 

hourly 

demand 
(MWh) 

Hourly 
generation 

capacity (MW) 

8760 560 215-522 700 

 

In the following tables, we present the details of the 

aggregate results presented in Table 2. Table A.4.3 shows the 

absolute differences between the benchmark socially optimal 

case CN and the rest of the centralized and distributed 

information availability cases.  
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Table A.4.3 - Social optima deviation of each market participant 

from the social welfare maximizing CN 

  
Total 

EV 

cost 

Social 

cost 

Generator 

producer 

surplus 

Inelastic 

demand 

charges 

Trans-

mission 

rent 

CN -D 4.184 -0.631 -2.219 -7.741 -2.703 

CN -DA 4.184 -0.631 -2.219 -7.741 -2.703 

CN -DN 4.284 -0.67 -2.204 -7.875 -2.802 

CN-DN,A 4.787 -0.907 -0.838 -7.46 -3.342 

CN-C 4.184 -0.631 -2.219 -7.741 -2.703 

CN 1640.361 454081.015 258378.904 709457.874 32222.518 

 

Table A.4.4 shows the components of the social cost and 

total generator surplus presented in Table 2. Note that even 

though the reserve provision cost is highest in the welfare 

maximizing case CN, it is dominated by the lower real power 

generation cost to yield a lowest social cost.  

 

Table A.4.4 - Total generator real power and reserve cost/surplus 

  

Generator 

Real power 

generation 

cost 

Generator 

Reserve 

provision 

cost 

Generator  

Profit from real 

power  

Generator 

Profit from 

reserve 

provision 

D 430597.628 23484.018 257000.788 1380.335 

DA 430597.628 23484.018 257000.788 1380.335 

DN 430597.784 23483.901 257000.946 1380.161 

DN,A 430598.730 23483.192 257000.760 1378.982 

C 430597.628 23484.018 257000.788 1380.33 

CN 430593.610 23487.405 256993.108 1385.796 

 

The total amount of real power consumed/reserves 

provided by flexible loads is shown in Table A.4.5 below for 

all information availability cases.  

 

Table A.4.5 - Total flexible consumption/reserve provision and 

conventional generation/reserve provision across all cases 

  

EV real 

power 

consumption 

(MW/day) 

EV Reserve 

provision 

(MW/day) 

Gen. real power 

generation 

(MW/day) 

Gen. 

reserve 

provision 

(MW/day) 

D 140.841 139.006 9326.925 405.512 

DN 140.839 139.004 9326.923 405.514 

DN,A 140.833 138.998 9326.921 405.519 

CN 140.880 139.045 9326.947 405.466 
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