
1

Energy-Efficient Variable-Flow Liquid Cooling
in 3D Stacked Architectures

Ayse K. Coskun†, David Atienza‡, Tajana Simunic Rosing?, Thomas Brunschwiler#, Bruno Michel#
†Electrical and Computer Engineering Department, Boston University, USA.

‡Embedded Systems Laboratory (ESL), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
?Computer Science and Engineering Dept. (CSE), University of California San Diego, USA.

#IBM Research GmbH, Zurich Research Laboratory, Switzerland.

Abstract— Liquid cooling has emerged as a promising solution for
addressing the elevated temperatures in 3D stacked architectures. In this
work, we first propose a framework for detailed thermal modeling of the
microchannels embedded between the tiers of the 3D system. In multicore
systems, workload varies at runtime, and the system is generally not fully
utilized. Thus, it is not energy-efficient to adjust the coolant flow rate
based on the worst-case conditions, as this would cause an excess in
pump power. For energy-efficient cooling, we propose a novel controller
to adjust the liquid flow rate to meet the desired temperature and to
minimize pump energy consumption. Our technique also includes a job
scheduler, which balances the temperature across the system to maximize
cooling efficiency and to improve reliability. Our method guarantees
operating below the target temperature while reducing the cooling energy
by up to 30%, and the overall energy by up to 12% in comparison to
using the highest coolant flow rate.

I. INTRODUCTION

3D integration is a recently proposed design method for overcom-
ing the limitations regarding the delay and power consumption of the
interconnects. An important challenge in 3D circuits is the elevated
temperature. Vertical stacking increases the thermal resistances and
makes it difficult to remove the heat using conventional cooling
methods. Liquid cooling is a potential solution to address the high
temperatures in 3D chips, due to the higher heat removal capability
of liquids in comparison to air. Our focus in this work is developing
energy- and performance-efficient thermal management techniques
for joint control of job scheduling and liquid flow rate in 3D systems.

Liquid cooling is performed by attaching a cold plate with built-
in microchannels, and/or by fabricating microchannels between the
layers of the 3D architecture. Then, a coolant fluid (i.e., water or
other fluids) is pumped through the microchannels to remove the
heat. The heat removal performance of this approach, called interlayer
cooling [4], scales with the number of tiers. The flow rate of the pump
can be altered dynamically, but as there is a single pump connected
to the system, the flow rates among the channels are the same—as
the channel dimensions are identical. One obvious way to set the flow
rate is by matching it with the worst-case temperature. However, the
pump power increases quadratically with the increase in flow rate [4],
and its contribution to the overall system energy is significant. Also,
over-cooling may cause dynamic fluctuations in temperature, which
degrade reliability and cooling efficiency. Through runtime system
analysis and intelligent control of the flow rate, it is possible to
determine the minimum flow rate to remove the heat and maintain
a safe system temperature. In addition, by maintaining a target
temperature value throughout the execution, we can minimize the
temperature variations. Note that, while reducing the coolant flow
rate, it is necessary to maintain the temperature at a level where
the temperature-dependent leakage power does not revert the benefits
achieved with lower-power pumping.

In a 3D system, cores located at different layers or at different
coordinates across a layer may significantly vary in their rates
for heating and cooling [7]. This variation is due to the change
in thermal resistance, which is a function of the unit’s location.
Therefore, even when we select an energy-efficient flow rate for the

coolant, large temperature gradients across the system may still exist.
Conventional multicore schedulers, e.g., dynamic load balancing, do
not consider such thermal imbalances. To address this issue, we
propose a temperature-aware load balancer, which weighs each core’s
workload with the core’s thermal properties and uses this weighted
computation to balance the temperature. This paper’s contributions
are the following:
• We show in detail how to model the effects of the liquid flow

on temperature. Our model is based on the liquid cooling work of
Brunschwiler et al. [4]. We improve the previous liquid cooling
model in [6] with a finer-grained computation of the heat spread,
and by using model parameters verified by finite element simula-
tion. We integrate our modeling infrastructure in HotSpot [19].
• We propose a controller for adjusting the liquid flow rate dynam-

ically to maintain a target temperature while minimizing the pump
power consumption. Our controller forecasts maximum system
temperature, and uses this forecast to proactively set the flow rate.
This way, we avoid over- or under-cooling due to delays in reacting
to the temperature changes.
• We integrate the controller with a novel job scheduler that com-

putes the current workload of each core as a function of the core’s
thermal properties. The scheduler addresses the inherent thermal
imbalances in multicore 3D systems and reduces the frequency of
large thermal gradients.
• On 2- and 4-layered 3D systems we experiment with, we see

that our method achieves up to 30% reduction in cooling energy,
and 12% reduction in system-level energy in comparison to setting
the flow rate at the maximum value, while we maintain the target
temperature. We also show that temperature-aware load balancing
reduces the hot spots and gradients significantly better than load
balancing or reactive thread migration.
The rest of the paper starts with an overview of the prior art.

Section III describes the thermal model for 3D systems with liquid
cooling. In Section IV, we provide the details of the flow rate con-
troller and job scheduler. The experimental results are in Section V,
and Section VI concludes the paper.

II. RELATED WORK

Accurate thermal modeling is critical in the design and evaluation
of systems and policies. HotSpot [19] is an automated thermal
model, which calculates transient temperature response given the
physical and power consumption characteristics of the chip. To
reduce simulation time even for large multicore systems, a thermal
emulation framework for FPGAs is proposed in [1]. Dynamic thermal
management in microprocessors has been introduced to ensure chip
temperature does not exceed critical values. Activity migration [12]
and fetch toggling [19] are examples of such techniques. Kumar et
al. propose a hybrid method that combines clock gating and soft-
ware thermal management [13]. The multicore thermal management
method introduced by Donald et al. [9] combines distributed dynamic
voltage scaling (DVS) with process migration. For multicore systems,



temperature-aware task scheduling [8] achieves desirable thermal
profiles at low performance cost.

Most of the prior work in thermal management of 3D systems
address design stage optimization, such as thermal-aware floorplan-
ning (e.g. [11]) and integrating thermal via planning in the 3D
floorplanning process [17]. In [24], the authors evaluate several
policies for task migration and DVS. Our prior work proposes a
temperature-aware scheduling method specifically for air-cooled 3D
systems [7], taking into account the thermal heterogeneity of the
different layers in the system.

The use of convection in microchannels to cool down high power
density chips has been an active area of research since the initial
work by Tuckerman and Pease [23]. Their liquid cooling system can
remove 1000 W/cm2; however, the volumetric flow rate and the
pressure drop are large. More recent work shows how back-side liquid
cold plates, such as staggered microchannel and distributed return jet
plates, can handle up to 400 W/cm2 in single-chip applications [3].
The heat removal capability of interlayer heat-transfer with pin-fin
in-line structures for 3D chips is investigated in [4]. At a chip size
of 1 cm2 and a ∆Tjmax−in of 60 K, the heat-removal performance
is shown to be more than 200 W/cm2 at interconnect pitches bigger
than 50 µm. Finally, previous work in [2], [15] describe how to
achieve variable flow rate for the coolant.

Prior liquid cooling work in [6] evaluates existing thermal man-
agement policies on a 3D system with a fixed-flow rate setting, and
also investigates the benefits of variable flow using a policy to incre-
ment/decrement the flow rate based on temperature measurements,
without considering energy consumption. This paper’s contribution
is a controller design to provide sufficient coolant flow to the system
with minimal cooling energy. Our management policy combines this
controller with a novel job scheduler to prevent thermal variations,
and further improves the cooling efficiency without affecting perfor-
mance. We also improve the liquid cooling model in [6] with a finer-
grained computation of the heat spread to the microchannels, and by
using model parameters verified by finite-element simulation.

III. MODELING OF 3D SYSTEMS WITH LIQUID COOLING

Modeling the temperature dynamics of 3D stacked architectures
with liquid cooling consist of: (A) Forming the grid-level thermal
R-C network, (B) Detailed modeling of the interlayer material be-
tween the tiers, including the through-silicon-vias (TSVs) and the
microchannels, and (C) Modeling the pump and the coolant flow
rate. We assume forced convective interlayer cooling with water [4]
in this work, but our model can be extended to other coolants as well.

Figure 1 shows the 3D systems targeted in this paper. A target
system consists of two or more stacked layers (with cores, L2 caches,
crossbar, and other units for memory control, buffering, etc.), and
microchannels are built in between the vertical layers for liquid
flow. The crossbar contains the TSVs that provide the connection
between the layers. The microchannels, which are connected to an
impeller pump (such as [14]), are distributed uniformly, and fluid
flows through each channel at the same flow rate. The liquid flow
rate provided by the pump can be dynamically altered at runtime. In
the rest of this section, we provide the details of the thermal modeling
infrastructure we developed for the 3D system.

A. Grid-Level Thermal Model for 3D Systems with Liquid Cooling

Similar to 2D chips, 3D thermal modeling is performed using an
automated tool that forms the R-C circuit for given grid dimensions.
In this work, we utilize HotSpot v.4.2. [19], which includes 3D
modeling capabilities. The existing model in HotSpot assumes that
the interlayer material between stacked layers has homogeneous
thermal characteristics, represented by a thermal resistivity and a

Fig. 1. Floorplans of the 3D Systems.
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Fig. 2. Cross section of the 3D layers and the resistive network.

specific heat capacity value. The extension we have developed in
this work provides a new interlayer material model to include the
TSVs and the microchannels.

To model the heterogeneous characteristics of the interlayer ma-
terial including the TSVs and microchannels, we introduce two
novelties: (1) As opposed to having a uniform thermal resistivity
value of the layer, our infrastructure enables having various resistivity
values for each grid cell, (2) The resistivity value of the cell can
vary at runtime. Item (1) enables distinctly modeling TSVs, the
microchannels, and the interlayer material, while item (2) enables
modeling the liquid coolant and dynamically changing flow rate.
Thus, the interlayer material is divided into a grid, where each grid
cell except for the cells of the microchannels has a fixed thermal
resistance value depending on the characteristics of the interface
material and TSVs. The thermal resistivity of the microchannel cells
is computed based on the liquid flow rate through the cell, and
the characteristics of the liquid at runtime. We use grid cells of
100µmx100µm in our experiments.

In a 3D system with liquid cooling, we compute the local junction
temperature using a resistive network, as shown in Figure 2. In this
figure, the thermal resistance of the wiring layers (RBEOL), the
thermal resistance of the silicon slab (Rslab), and the convective
thermal resistance (Rconv) are combined to model the 3D stack. In
the figure, the heat flux values (q̇) represent the heat sources. This R-
network can be solved to get the junction temperature (Tj). Note that
the figure shows the heat sources and the resistances of only one layer,
and heat will be dissipated to both opposing vertical directions (i.e.,
up and down) from the heat sources. For example, if there is another
layer above the two heat-dissipating layers shown in the figure, q̇1 will
also be dissipating heat towards the upper stack. Also, the network in



Figure 2 is a simplification and it assumes isothermal channel walls;
i.e., top and bottom of the microchannel have the same temperature.

The typical junction temperature (Tj) response at uniform chip
heat flux and convective cooling is a sum of the following three
components: (1) The thermal gradient due to conduction (∆Tcond);
(2) the coolant temperature, which increases along the channel due
to the absorption of sensible heat (∆Theat); and (3) the convective
(∆Tconv) portion, which increases until fully developed hydrody-
namic and thermal boundary layers have been reached [4]. The total
temperature rise on the junction, ∆Tj , is computed as the following:

∆Tj = ∆Tcond + ∆Theat + ∆Tconv (1)

Thermal gradient due to heat conduction through the BEOL layer,
∆Tcond is computed with Equations 2 and 3. Note that ∆Tcond is
independent of the flow rate. Figure 2 demonstrates tB , and kBEOL

is the conductivity of the wiring layer.

∆Tcond = Rth−BEOL · q̇1 (2)

Rth−BEOL =
tB

kBEOL
(3)

Temperature change due to absorption of sensible heat is computed
using Equations 4 and 5. Aheater is the area of the heater (i.e., total
area consuming power), cp is the heat capacity of the coolant, ρ
is the density of the coolant, and V̇ is the volumetric flow rate
in the microchannel (in l/min). Equations 4 and 5 are valid for
uniform power dissipation. For the general case, heat absorption in
the fluid is calculated iteratively along the channel: ∆Theat(n+1) =∑n

i=1
∆Theat(i), where n is the position along the channel.

∆Theat = (q̇1 + q̇2) · Rth−heat (4)

Rth−heat =
Aheater

cp · ρ · V̇
(5)

Finally, Equation 7 shows how to calculate ∆Tconv . Note that
∆Tconv is independent of flow rate in case of developed boundary
layers. h is dependent on hydraulic diameter, Nusselt number, and
conductivity of the fluid [4]. As ∆Tconv is not affected by the change
in flow rate, we compute this parameter prior to simulation and use
a constant value during experiments. Figure 2 demonstrates wc, tc,
and p parameters on the cross-section of the 3D system.

∆Tconv = (q̇1 + q̇2) · heff (6)

heff = h
2 · (wc + tc)

p
(7)

The equations above give the ∆Tj for the unit cell shown in
Figure 2; thus, we extend the computation to model multiple layers
and multiple cells as well.

Table I lists the parameters used in the computations, and provides
the values for the constants, which are taken from prior liquid cooling
work [4]. Note that the flow rate (V̇ ) range provided in the table is per
cavity (i.e., the interlayer cavity consisting of all the microchannels
in one layer), and this flow is further divided into the microchannels.

We compute the flow rate dependent components whenever the
flow rate changes. Heat flux, q̇ (W/cm2), values change as the power
consumption changes. Instead of reacting to every instant change
in power consumption of the cores, we re-compute the q̇ values
periodically to reduce the simulation overhead.

Considering the dimensions and pitch requirements of microchan-
nels and TSVs, we assume there are 65 microchannels in between
each two layers (in each cavity), and there are cooling layers on the
very top and the bottom of the stacks. Thus, there are 195 and 325
microchannels in the 2- and 4-layered systems, respectively.

TABLE I. PARAMETERS FOR COMPUTING EQUATION 1
Parameter Definition Value

Rth−BEOL Thermal resistance Eqn.(3)
of wiring levels 5.333 (K · mm2)/W

tB See Figure 2 12µm
kBEOL Conductivity of wiring levels 2.25W/(m · K)

Rth−heat Effective thermal resistance Eqn.(5)
Aheater Heater area Area of grid cell

cp Coolant heat capacity 4183J/(kg · K)
ρ Coolant density 998kg/m3

V̇ Volumetric flow rate 0.1-1 l/min per cavity
h Heat transfer coefficient 37132W/(m2 · K)
wc See Figure 2 50µm
tc See Figure 2 100µm
ts See Figure 2 50µm
p See Figure 2 100µm

In our target systems shown in Figure 1, we assume the TSVs are
located within the crossbar. Placing the TSVs in the central section of
the die provides an advantage on the thermal design as well, as TSVs
reduce the temperature due to the low thermal resistivity of Cu. We
assume there are 128 TSVs within the crossbar block connecting each
two layers. Feasible TSVs for microchannels of 100µm height and
100µm pitch have a minimal pitch of 100µm as well due to aspect
ratio limits. We assume each TSV occupies a space of 50µmx50µm,
and the TSVs have a minimum spacing requirement of 100µm.

Previous work has studied granularity and accuracy of TSV mod-
eling [6]. The study shows that using a block-level granularity for
TSVs, i.e., assigning a TSV density to each block based on the
functionality of the unit, constitutes a reasonable trade-off between
accuracy and simulation time. Thus, based on the TSV density of
the crossbar, we compute the joint resistivity of that area combining
the resistivity values of interlayer material and Cu. We do not
alter the thermal resistivity values for the regions without TSVs or
microchannels. We assume that the effect of the TSV insertion to
the heat capacity of the interface material is negligible, which is a
reasonable assumption considering the total area of TSVs constitutes
a very small percentage of the total area of the material.

B. Modeling the Pump and Liquid Flow Rate

All the microchannels are connected to a pump to receive the
coolant. We assume a 12V DC-pump, Laing DDC [14], which has
suitable dimensions, flow rates, and power consumption for this
type of liquid cooling. The power consumption of the pump across
the five flow rate settings we use is shown in Figure 3 (right y-
axis). The pressure drop for these flow rates changes between 300-
600 mbar [14]. We assume that the total flow rate of the pump is
equally distributed among the cavities, and among the microchannels.
DC pumps typically have low efficiency. Also, the flow rate in the
microchannels further decreases because the the pressure drop in
the small microchannels is larger than its value in the pump output
channel. In this work, we assume a global reduction in the flow rate
by 50% to account for the loss due to all of these factors. In Figure 3,
we show the per cavity flow rates for the 2- and 4-layered 3D systems
after applying the reduction factor.

IV. JOINT FLOW RATE CONTROL AND JOB SCHEDULING

In this section, we provide the details of our energy-efficient
thermal management technique for 3D systems with liquid cooling.
The goals of our technique are: (1) Tuning the liquid flow rate to meet
the heat removal demand of the current workload and reducing the
energy consumption; (2) Minimizing the thermal imbalances across
the chip to reduce the adverse effects of variations on reliability,
performance, and cooling efficiency. To achieve these goals, we
propose joint flow rate control and job scheduling. Figure 4 provides
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Fig. 4. Overview of the technique.

a flow chart of our method. We monitor the temperature at regular
intervals for all the cores in the 3D system. Based on the forecasted
change in maximum temperature, the controller is responsible for
adjusting the coolant flow rate. In addition, the scheduler performs
temperature-aware load balancing to reduce the thermal gradients.

Temperature Monitoring and Forecasting:
Monitoring temperature provides our technique with the ability to

adapt the controller and job scheduler decisions. We assume each
core has a thermal sensor. One way to utilize the thermal feedback
is to react to temperature changes. A typical impeller pump like the
one we use ([14]) takes around 250-300ms to complete the transition
to a new flow rate. Due to the time delay in adjusting the flow rate, a
reactive policy is likely to result in over-/under-cooling—the thermal
time constant on a 3D system like ours is typically less than 100ms.
Thus, for the liquid flow rate controller, we forecast temperature into
the near future, and adjust the flow rate control on time to meet the
heat removal requirement.

We use autoregressive moving average (ARMA) [5] to predict the
maximum temperature for the next interval. Predicting maximum
temperature is sufficient to pick the suitable liquid flow rate to
apply, as the flow rate is fixed among the channels. Note that our
job scheduler balances the temperature, therefore the temperature
difference among cores is minimized. ARMA forecasts the future
value of the time-series signal based on the recent history (i.e.,
maximum temperature history in this work), therefore we do not
require an offline analysis. The prediction is highly accurate because
of the serial correlation within most workloads and the slow change
in temperature due to the thermal time constants. Furthermore, the
rate of change of maximum temperature is typically even slower,
resulting in easier prediction. In our experiments, we use a sampling
rate of 100ms, and predict 500ms into the future.

If the trend of the maximum temperature signal changes and
the predictor cannot forecast accurately, we reconstruct the ARMA
predictor, and use the existing model until the new one is ready.
Such cases occur when the workload dramatically changes (e.g.,
day-time and night-time workload patterns for a server). To achieve
fast and easy detection, we apply the the sequential probability ratio
test (SPRT) [10]. SPRT is a logarithmic likelihood test to decide
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Fig. 5. Flow rate requirements to cool a given Tmax.

whether the error between the predicted series and measured series
is diverging from zero [10], [5]—i.e., if the predictor is no longer
fitting the workload, the difference function of the two time series
would increase. As the maximum temperature profile changes slowly,
we need to update the ARMA predictor very infrequently.

Liquid Flow Rate Control:
The input to the controller is the predicted maximum temperature,

and the output is the flow rate for the next interval. Then, considering
that we have discrete flow rate settings for the pump, we first analyze
the effect of each flow rate for both 3D systems (2- and 4-layered).

Figure 5 shows which flow rate (per cavity) should be applied
when the maximum temperature is Tmax so that the temperature is
guaranteed to cool below the target operating temperature of 80oC.
In this figure, the dashed lines show the discrete flow rate settings,
while the triangular and circular shaped data points refer to minimum
rate to maintain the desired temperatures.

Based on this analysis, we see that for a given system and
maximum temperature, we already know which flow rate setting is
able to cool the system to the target temperature level. We set-up a
look-up table indexed by temperature values, and each line holds a
flow rate value. At runtime, depending on the maximum temperature
prediction, we pick the appropriate flow rate from the table. As
the maximum temperature prediction is highly accurate (well below
1oC), this way we can adjust the cooling system to meet the changes
in the heat removal demand on time. To avoid rapid oscillations, once
we switch to a higher flow rate setting, we do not decrease the flow
rate until the predicted Tmax is at least 2oC lower than the boundary
temperature between two flow rate settings. The runtime overhead of
using a look-up table based controller is negligible, considering that
the cost is only limited to a look-up from a small-sized table.

Job Scheduling:
Our job scheduler is a temperature-aware version of load balancing.

Dynamic load balancing is a common policy used in multicore
schedulers today. While frequent load balancing eliminates contention
and long thread waiting times in the queues, it does not consider
the location of the cores. However, a core’s thermal behavior is
strongly correlated with where it is placed on the chip, and the power
consumption of the neighboring units.

We assume short threads, which is a common scenario in server
workloads running on multiprocessor systems [9], [8]. For instance,
in real-life workloads running on the UltraSPARC T1, the thread
length (i.e., continuous execution time without any interrupt) has been
reported to vary between a few to several hundred milliseconds [8].
Thus, since we consider threads with short lengths and similar
execution time, we use number of threads for computing the job
queue length of each core. Note that, depending on the available
information, our approach can be extended for other workload metrics
such as instruction count per thread.

To address the thermal asymmetries of cores in a 3D system, we
introduce Weighted Load Balancing. We do not change the priority



TABLE II. WORKLOAD CHARACTERISTICS

Benchmark Avg L2 L2 FP
Util (%) I-Miss D-Miss instr

1 Web-med 53.12 12.9 167.7 31.2
2 Web-high 92.87 67.6 288.7 31.2
3 Database 17.75 6.5 102.3 5.9
4 Web & DB 75.12 21.5 115.3 24.1
5 gcc 15.25 31.7 96.2 18.1
6 gzip 9 2 57 0.2
7 MPlayer 6.5 9.6 136 1
8 MPlayer&Web 26.62 9.1 66.8 29.9

and performance aware features of the load balancing algorithm, but
only modify how the queue lengths are computed. Each core has a
queue to hold the incoming threads, and the weighted queue length
of a core is computed as:

liweighted = liqueue · wi
thermal(T (k)) (8)

liqueue is the number of threads currently waiting in the queue
of core i, and wi

thermal(T (k)) is the thermal weight factor. The
weight factor is a function of the current maximum temperature of
the system. For a given set of temperature ranges, the weight factors
for all the cores are computed in a pre-processing step and stored in
the look-up table. For example, consider a 4-core system, where the
average power values for the cores to achieve a balanced 75oC are
p1, p2, p3, and p4, and p1 = p4 > p2 = p3. This means cores 2
and 3 should run fewer number of threads per unit time to balance
temperature. Thus, we take the multiplicative inverse of the power
values, normalize them, and use them as thermal weight factors.

V. EXPERIMENTAL RESULTS

The 3D multicore systems we use in our experiments are based on
the 90nm UltraSPARC T1 processor [16]. The power consumption,
area, and the floorplan of UltraSPARC T1 are available in [16].
UltraSPARC T1 has 8 multi-threaded cores, and a shared L2-cache
for every two cores. Our simulations are carried out with 2-, and
4-layered stack architectures. We place cores and L2 caches of the
UltraSPARC T1 on separate layers (see Figure 1). Separating cores
and memory is a preferred design scenario for shortening wires
between the cores and caches and achieving higher performance.

First, we gather workload characteristics of real applications on
an UltraSPARC T1. We sample the utilization percentage for each
hardware thread at every second using mpstat for half an hour,
and record the length of user and kernel threads using DTrace [18].
We use various real-life benchmarks including web server, database
management, and multimedia processing. The web server workload
is generated by SLAMD [20] with 20 and 40 threads per client
to achieve medium and high utilization, respectively. For database
applications, we experiment with MySQL using sysbench for a
table with 1 million rows and 100 threads. We also run the gcc
compiler and the gzip compression/decompression benchmarks as
samples of SPEC-like benchmarks. Finally, we run several instances
of the mplayer (integer) benchmark with 640x272 video files as
typical examples of multimedia processing. A detailed summary of
the benchmarks is in Table II, showing average system utilization,
cache misses, and floating point (FP) instructions. Misses and FP
count are per 100K instructions. The workload statistics collected on
the UltraSPARC T1 are replicated for the 4-layered 16-core system.

SPARC’s peak power is close to its average value [16]. Thus, we
assume that the instantaneous dynamic power consumption is equal
to the average power at each state (active, idle, sleep). The active
state power is taken as 3 Watts [16]. The cache power consumption
is 1.28W per each L2, as computed by CACTI [22] and verified by
the values in [16]. We model crossbar power by scaling the average

TABLE III. THERMAL MODEL AND FLOORPLAN PARAMETERS

Parameter Value
Die Thickness (one stack) 0.15mm
Area per Core 10mm2

Area per L2 Cache 19mm2

Total Area of Each Layer 115mm2

Convection Capacitance 140 J/K
Convection Resistance 0.1 K/W
Interlayer Material Thickness 0.02 mm
Interlayer Material Thickness (with channels) 0.4 mm
Interlayer Material Resistivity (without TSVs) 0.25 mK/W

power value according to the number of active cores and the memory
accesses. To account for the temperature effects on leakage power,
we use the polynomial model proposed in [21].

Many systems have power management capabilities to reduce the
energy consumption. We implement Dynamic Power Management
(DPM), especially to investigate the effect on thermal variations. We
utilize a fixed timeout policy, which puts a core to sleep state if
it has been idle longer than the timeout period (i.e., 200ms in our
experiments). We set a sleep state power of 0.02 Watts, which is
estimated based on sleep power of similar cores.

We use HotSpot Version 4.2 [19] as the thermal modeling tool. We
use a sampling interval of 100 ms, and all simulations are initialized
with steady state temperature values. The model parameters are
provided in Table III. Modeling methodology for the interlayer
material to include TSVs and the microchannels has been described
in Section III. In our experiments, we compare air-cooled and liquid-
cooled 3D systems. For the conventional system, we use the default
characteristics of a modern CPU package in HotSpot.

We assume that each core has a temperature sensor, which is able
to provide temperature readings at regular intervals (e.g., 100ms).
Modern OSes have a multi-queue structure, where each CPU core is
associated with a dispatch queue, and the job scheduler allocates the
jobs to the cores according to the current policy. In our simulator,
we implement a similar infrastructure, where the queues maintain the
threads allocated to cores and execute them.

We compare our technique to other well-known policies in terms
of temperature, energy, and performance. Dynamic Load Balancing
(LB) balances the workload by moving threads from a core’s queue
to another if the difference in queue lengths is over a threshold. LB
does not have any thermal management features. Reactive Migration
initially performs load balancing, but upon reaching a threshold
temperature, which is set to 85oC in this work, it moves the
currently running thread from the hot core to a cool core. Our novel
temperature-aware weighted load balancing method is denoted as
TALB. We also compare liquid cooling systems with air cooling
systems (denoted with (Air)). In the plots Var refers to variable flow
rate and Max refers to with using a maximum (worst-case) flow rate.

Figure 6 shows the average percentage of time spent above the
threshold across all the workloads, percentage of time spent above
threshold for the hottest workload, and energy for the 2-layered 3D
system. We demonstrate both the pump energy and the total chip
energy in the plot. Note that, for the air-cooled system, there is also
an additional energy cost due to the fans, which is beyond the focus
of this work and not included in the plot. The energy consumption
values are normalized with respect to the load balancing policy
on a system with air cooling. We see that temperature-aware load
balancing combined with liquid flow control achieves 10% energy
savings on average in comparison to setting the worst-case flow rate.
For low utilization workloads, such as gzip and MPlayer, the total
energy savings (including both chip and pump energy) reach 12%,
and the reduction in cooling energy exceeds 30%.

Figure 7 shows the average and maximum frequency of spatial and
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Fig. 6. Hot spots (left-axis) and energy (right-axis) for all the policies. (*)
denotes our novel policy.
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Fig. 7. Thermal variations (with DPM). (*) denotes our novel policy.

temporal variations in temperature, respectively, for all the policies.
We evaluate the spatial gradients by computing the maximum differ-
ence in temperature among all the units at every sampling interval.
Similarly, for thermal cycles, we keep a sliding history window for
each core, and compute the cycles with magnitude larger than 20oC.
In the experiments in Figure 7, we run DPM in addition to the thermal
management policy. Our weighed load balancing technique (TALB)
is able to minimize both temporal and spatial thermal variations much
more effectively than other policies.

For our multicore 3D systems, we compute throughput as the per-
formance metric. Throughput is the number of threads completed per
given time. As we run the same workloads in all experiments, when
a policy delays execution of threads, the resulting throughput drops.
Most policies we have run in this work have a similar throughput
in comparison to default load balancing. Thread migration, however,
reduces the throughput especially for high-utilization workloads be-
cause of the performance overhead of frequent temperature-triggered
migrations. The overhead of migration disappears for the liquid
cooled system, as the coolant flowing at the maximum rate is able
to prevent all the hot spots, and therefore no temperature-triggered
migrations occur. Figure 8 compares the policies in terms of energy
and performance, both for the air and liquid cooling systems. For
3D systems with liquid cooling, our technique is able to improve the
energy savings without any effect on the performance.

VI. CONCLUSION

Liquid cooling is a promising solution to overcome the elevated
thermal problems of 3D chips, but intelligent control of the coolant
flow rate is needed to achieve energy-efficiency. In this paper we
have presented a novel controller that is able to select a minimal
coolant injection rate to guarantee a bounded maximum temperature
in 3D MPSoCs under variable workload conditions. Our method
minimizes the energy consumption of the liquid cooling subsystem.
The controller is integrated with a novel job scheduler which balances
the temperature across the system to prevent the thermal variations
and to improve cooling efficiency. Our experimental results show that
the joint flow rate control and job scheduling technique maintains the
temperature below the desired levels, while reducing cooling energy
by up to 30% and achieving overall energy savings up to 12%.
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