

Lensless Microscopy Enabled by Nanowire LEDs (Project SPA1.2: started Sept 2009)

Prof. Stephen Hersee* - student Ashwin Rishinaramangalam*

Prof. Jamesina Simpson - student Cesar Mendez,

Prof. Payman Zarkesh-Ha - student Aliakbar Darabi,

Prof. Pradeep Sen - student Jiawei Xu,

Prof. Majeed Hayat* - student David Ramirez*

Electrical & Computer Engineering Dept

***Center for High Technology Materials**

University of New Mexico

- **The Future of Smart Light**
- **Live-cell imaging for drug discovery**
- **The Lensless Microscope project (SPA1.2)**
	- ^o **How to miniaturize a microscope**
	- ^o **Objectives and Timing**
	- ^o **Progress**
- **Concluding remarks**

The Future of Smart Light Systems

ERC Smart Light Systems: Increased Functionality of Light, Health, Communications, Energy Savings

Initial deployment, fixed systems in Smart Rooms

Some of these Smart Light Systems will be miniaturized and ruggedized, and deployed in Smart Traffic or PORTABLE applications

Portable BIO-IMAGING and BIO-SENSOR Systems will be needed in future

Portable Health Monitoring:

- **Air/Water monitoring for bio-hazards**
- **Light intensity & spectrum monitor and correction**
- **Blood oxygenation, heart rate, Live-cell imaging**

Lensless Microscope Project SPA1.2

Key Technical Problem: During live-cell imaging (example cell mitosis), the light typically used mercury lamp illumination can kill cells (phototoxicity) and stop mitosis. This limits usefulness of bio-microscopy for drug discovery.

ERC SOLUTION

SPA1.1 (John Wen, Kim Boyer, Alexy Khodjakov, RPI & Wadsworth)

Develop SMART LIGHT microscope illumination that analyzes an image then adapts. Achieves optimum intensity, spectrum and pulse-duration, to allow LONG DURATION observation of live cells without phototoxicity

LONGER TERM SPA1.2 (Steve Hersee, UNM + SPA1.1 team + simulation team)

Miniaturize microscope and incorporate illumination strategies and algorithms from from SPA1.1. Objective: *in vivo* live-cell imaging !

Microscope is miniaturized by removing lenses and all moving parts – to give a solid-state, rugged chip

Use dense arrays of individuallyaddressable nanowire LEDs (see project MP1.1) to form light emitter/detector matrix

Microscope becomes a ~ mm size, nearfield, digital imaging instrument that works in the Fresnel diffraction (near field) range

Optical resolution $(-1 \mu m)$ is controlled by **spacing between nanowire LED emitters and by advanced digital image processing.**

- **"EMIT": forward bias, light emitted**
- **"DETECT": reverse bias, detects light**
- **"OFF":**

Digital image builds pixel-by-pixel (pixel size \sim 1 μ m)

- LED 2 emits light which scatters from object close to array surface.
- LEDs 1 and 3 are reverse biased and detect scattered light.
- Photocurrent from LEDs 1 and 3 is stored by ROIC then sent to computer

The revolutionary nanowire LED uses a scalable MOCVD process

(a) Scalable GaN nanowire process allows vertical (0001) growth of defect free GaN nanowires (MP1.1) (b) Growth of core-shell LED around nanowire

- **No threading defects - high internal efficiency**
- **Vertical (0001) emission high external efficiency**
- **Nanowire GaN sidewalls are atomically smooth {1-100} planes (m-planes) - eliminates QCSE, high internal efficiency.**
- **MQW active region area much larger than LED footprint, high efficiency**
- **Polarized emission possible**
- **Individually addressable NW LED arrays**

The Lensless microscope is a complex engineering system. We are starting the design process with a 4-part simulation.

- **1. Optics (Prof. Jamesina Simpson, Cesar. Mendez)**
	- How does light propagate with no lenses? is Fresnel diffraction model (cf. contact aligner) appropriate?
	- Design LEDs for low optical leakage to nearest neighbor
	- Where do we put detectors for most light capture (single-sided or doublesided array)?
- **2. Detection (Prof. Majeed Hayat, David. Ramirez)**
	- Best detector? Reverse-biased nanowire LED or Si APD on CMOS ROIC?
- **3. ROIC design (Prof. Payman Zarkesh-Ha, Aliakbar Darabi)**
	- Minimum bump-bond pitch for ROIC (read out integrated circuit) ?
	- How much on-chip vs. off-chip functionality?
- **4. Off-chip image reconstruction (Prof. Pradeep Sen, Jiawei Xu)**
	- Advanced image processing algorithms, (digital FOVEA, double-sided, pseudo-3D imaging)

FDTD (Finite-Difference Time-Domain) numerical methods approach

Solves Maxwell's equations within each cell of grid

The result is 6 coupled scalar equations for 6 vector field components: $E_{\mathsf{x}},\, E_{\mathsf{y}},\, E_{\mathsf{z}},\, H_{\mathsf{x}},\, H_{\mathsf{y}},\, H_{\mathsf{z}}$

Computing Power

- Three supercomputers at UNM Center for Advanced Research Computing (CARC): www.hpc.unm.edu
- Access to **Encanto** at the New Mexico Computing Applications Center (World's 12th fastest computer)
- Access to **Bigben** at the Pittsburgh Supercomputing Center

Optics Simulation reveals critical LED design areas

The FDTD optics simulation shows that optical leakage depends critically on the **n-side metal thickness** and the **growth mask thickness.**

NOTE: This model can be configured for nano-scale or macro-scale and could be useful for modeling other ERC SMART LIGHT systems.

ISSUE: The refractive index of the cell is close to water.

Reflected light intensity will be small

Digital FOVEA: Display only regions that are of interest

Pseudo-3D Imaging: Image the same object from both sides, using different LEDs – to create pseudo-3D

The lensless microscope is a **transformational** engineering system - a miniaturized, rugged, portable microscope that will eventually be small enough (~mm) for *in-vivo* observations (first working prototype target: 2012 – 2013)

The project is integrated with the ERC bio-imaging thrust in live-cell imaging and will incorporate the smart illumination optimization strategies that are being developed for desk-top bio-microscopy

This project vertically integrates revolutionary ERC materials and device technology (scalable GaN nanowires and core-shell LEDs) into a portable bio-imaging system

Please visit poster SPA1.2 for more discussion

References

- ◆ "The Controlled Growth of GaN Nanowires", S.D. Hersee, X. Sun, X. Wang, *Nano Lett.*, **6**, 1808 – 1811 (2006).
- ◆ "Unusually strong space-charge-limited current in thin wires", A.A. Talin, F. Leonard, B.S. Swartzentruber, X. Wang, S.D. Hersee, *Phys. Rev. Lett.,* **101**, 076802 (2008)
- ◆ "GaN nanowire light emitting diodes based on templated and scalable nanowire growth process", S.D. Hersee, M. Fairchild, A Rishinaramangalam, M. Ferdous, L. Zhang, P. Varangis, B. Swartzentruber, A.A. Talin, *Electronics Letters,* **45** (2009) 75
- ◆ "Electrical transport in GaN nanowires grown by selective epitaxy", A.A. Talin, B.S. Swartzentruber, F. Leonard, X. Wang, S.D. Hersee, *J. Vac Sci & Technol. B*, **27** (2009) 2040-2043

Intellectual Property

◆ **Patent Application Filed:** "Solid State Microscope", S.D. Hersee (4/2008)

◆ **Patent Awarded:** 7,521,274 B2: "Pulsed Growth of Catalyst-Free GaN Nanowires and Application in Group III-Nitride Semiconductor Bulk Material", S.D. Hersee, X. Sun, X. Wang, (2009)