
TUNING MATLAB FOR

BETTER PERFORMANCE

Kadin Tseng

Boston University

Scientific Computing and Visualization

 Serial Performance gain

 Due to memory access

 Due to caching

 Due to vector representations

 Due to compiler

 Due to other ways

 Parallel performance gain is covered in the MATLAB

Parallel Computing Toolbox tutorial

Where to Find Performance Gains ?

2 Tuning MATLAB for Better Performance

Performance Issues Related to Memory Access

Tuning MATLAB for Better Performance 3

Each MATLAB array is allocated in

contiguous address space.

What happens if you don’t

preallocate array x ?

x = 1;

for i=2:4

 x(i) = i;

end

To satisfy contiguous memory

placement rule, x may need to be

moved from one memory segment

to another many times during

iteration process.

How Does MATLAB Allocate Arrays ?

4

Memory
Address

Array

Element

1 x(1)

… . . .

2000 x(1)

2001 x(2)

2002 x(1)

2003 x(2)

2004 x(3)

.

10004 x(1)

10005 x(2)

10006 x(3)

10007 x(4)

Tuning MATLAB for Better Performance

 Preallocating array to its maximum size prevents all

intermediate array movement and copying described.

 >> A=zeros(n,m); % initialize A to 0

 >> A(n,m)=0; % or touch largest element

 If maximum size is not known apriori, estimate with

upperbound. Remove unused memory after.

 >> A=rand(100,100);

 >> % . . .

 >> % if final size is 60x40, remove unused portion

 >> A(61:end,:)=[]; A(:,41:end)=[]; % delete

Always preallocate array before using it

5 Tuning MATLAB for Better Performance

 For efficiency considerations, MATLAB arrays are allocated in

contiguous memory space. Arrays follow column-major rule.

 Preallocate array to avoid data movement.

 Bad: Good:

Example

6

n=5000;

tic

for i=1:n

 x(i) = i^2;

end

toc

Wallclock time = 0.00046 seconds

n=5000; x = zeros(n, 1);

tic

for i=1:n

 x(i) = i^2;

end

toc

Wallclock time = 0.00004 seconds

not_allocate.m allocate.m

The timing data are recorded on older cluster. The actual times on

your computer may vary depending on the processor.

Tuning MATLAB for Better Performance

MATLAB uses pass-by-reference if passed array is used without

changes; a copy will be made if the array is modified. MATLAB calls it

“lazy copy.” Example:

function y = lazyCopy(A, x, b, change)

If change, A(2,3) = 23; end % forces a local copy of a

y = A*x + b; % use x and b directly from calling program

pause(2) % keep memory longer to see it in Task Manager

On Windows, use Task Manager to monitor memory allocation history.

>> n = 5000; A = rand(n); x = rand(n,1); b = rand(n,1);

>> y = lazyCopy(A, x, b, 0); % no copy; pass by reference

>> y = lazyCopy(A, x, b, 1); % copy; pass by value

Lazy Copy

7 Tuning MATLAB for Better Performance

Performance Issues Related to Caching

Tuning MATLAB for Better Performance 8

Cache

• Cache is a small chunk of fast memory between the main memory

and the registers

 secondary cache

 registers

 primary cache

 main memory

Code Tuning and Optimization 9

Cache (2)

• If variables are fetched from cache, code will run faster since cache

memory is much faster than main memory

• Variables are moved from main memory to cache stages

Code Tuning and Optimization 10

Cache (3)

• Why not just make the main memory out of the same stuff as cache?

• Expensive

• Runs hot

• This was actually done in Cray computers

• Liquid cooling system

• Currently, special clusters (on XSEDE.org) available with very

substantial flash main memory for I/O-bound applications

Code Tuning and Optimization 11

Cache (4)

• Cache hit

• Required variable is in cache

• Cache miss

• Required variable not in cache

• If cache is full, something in there must be thrown out (sent back to

main memory) to make room

• Want to minimize number of cache misses

Code Tuning and Optimization 12

Cache (5)

…

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

Main memory

“mini” cache
holds 2 lines, 4 words each

for i=1:10

 x(i) = i;

end

a

b

…

Code Tuning and Optimization 13

Cache (6)

…

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

• will ignore i for simplicity
• need x(1), not in cache cache miss
• load line from memory into cache
• next 3 loop indices result in cache hits

for i=1:10

 x(i) = i;

end

a

b

…

x(1)

 x(2)

x(3)

x(4)

Code Tuning and Optimization 14

Cache (7)

…

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

• need x(5), not in cache cache miss
• load line from memory into cache
• free ride next 3 loop indices cache
 hits

for i=1:10

 x(i) = i;

end

a

b

…

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

Code Tuning and Optimization 15

Cache (8)

…

• need x(9), not in cache --> cache miss
• load line from memory into cache
• no room in cache!
• replace old line

for i=1:10

 x(i) = i;

end

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

a

b

Code Tuning and Optimization 16

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9)

x(10)

a

b

…

Cache (9)

• Multidimensional array is stored in column-major order:

 x(1,1)

 x(2,1)

 x(3,1)

 .

 .

 x(1,2)

 x(2,2)

 x(3,2)

 .

 .

Code Tuning and Optimization 17

 Best if inner-most loop is for array left-most index, etc. (column-
major)

 Bad: Good:

For-loop Order

18

n=5000; x = zeros(n);

for i = 1:n % rows

 for j = 1:n % columns

 x(i,j) = i+(j-1)*n;

 end

end

Wallclock time = 0.88 seconds

n=5000; x = zeros(n);

for j = 1:n % columns

 for i = 1:n % rows

 x(i,j) = i+(j-1)*n;

 end

end

Wallclock time = 0.48 seconds

forij.m forji.m

Tuning MATLAB for Better Performance

 For a multi-dimensional array, x(i,j), the 1D representation of the
 same array, x(k), follows column-wise order and inherently
 possesses the contiguous property

Compute In-place

19

 Compute and save array in-place improves performance and

reduces memory usage

 Bad: Good:

x = rand(5000);

tic

y = x.^2;

toc

Wallclock time = 0.30 seconds

x = rand(5000);

tic

x = x.^2;

toc

Wallclock time = 0.11 seconds

Caveat: May not be worthwhile if it involves data type or size changes …

not_inplace.m inplace.m

Tuning MATLAB for Better Performance

 Bad:

 Good:

 Better performance to use vector than loops

for i=1:N

 x = 10;

 .

 .

end

x = 10;

for i=1:N

 .

 .

end

Code Tuning and Optimization 20

 Bad:

 Good:

 Reduces for-loop overhead

 More important, improve chances of pipelining

 Loop fisssion splits statements into multiple loops

for i=1:N

 x(i) = i;

end

for i=1:N

 y(i) = rand();

end

for i=1:N

 x(i) = i;

 y(i) = rand();

end

Code Tuning and Optimization 21

Avoid if statements within loops

 Bad:

 if has overhead

 cost and may inhibit

 pipelining

 Good:

for i=1:N

 if i == 1

 %perform i=1 calculations

 else

 %perform i>1 calculations

 end

end

Code Tuning and Optimization 22

%perform i=1 calculations

for i=2:N

 %perform i>1 calculations

end

Divide is more expensive than multiply

• Intel x86 clock cycles per operation

• add 3-6

• multiply 4-8

• divide 32-45

• Bad:

• Good:

c = 4;

for i=1:N

 x(i)=y(i)/c;

end

s = 1/c;

for i=1:N

 x(i) = y(i)*s;

end

Code Tuning and Optimization 23

Function Call Overhead

 Bad:

 Good:

for i=1:N

 myfunc(i);

end

myfunc2(N); function myfunc2(N)

 for i=1:N

 do stuff

 end

end

Code Tuning and Optimization 24

Function m-file is precompiled to lower overhead for

repeated usage. Still, there is an overhead . Balance

between modularity and performance.

function myfunc(i)

 do stuff

end

Minimize calls to math & arithmetic operations

 Bad:

 Good:

for i=1:N

 z(i) = log(x(i)) + log(y(i));

 v(i) = x(i) + x(i)^2 + x(i)^3;

end

for i=1:N

 z(i) = log(x(i) * y(i));

 v(i) = x(i)*(1+x(i)*(1+x(i)));

end

Code Tuning and Optimization 25

Special Functions for Real Numbers

26

MATLAB provides a few functions for processing real number specifically.

These functions are more efficient than their generic versions:

 realpow – power for real numbers

 realsqrt – square root for real numbers

 reallog – logarithm for real numbers

 realmin/realmax – min/max for real numbers

n = 1000; x = 1:n;

x = x.^2;

tic

x = sqrt(x);

toc

Wallclock time = 0.00022 seconds

n = 1000; x = 1:n;

x = x.^2;

tic

x = realsqrt(x);

toc

Wallclock time = 0.00004 seconds

 isreal reports whether the array is real

 single/double converts data to single-, or double-precision

square_root.m real_square_root.m

Tuning MATLAB for Better Performance

Vector Is Better Than Loops

27

 MATLAB is designed for vector and matrix operations. The use of
for-loop, in general, can be expensive, especially if the loop count is
large and nested.

 Without array pre-allocation, its size extension in a for-loop is costly
as shown before.

 When possible, use vector representation instead of for-loops.

i = 0;

for t = 0:.01:100

 i = i + 1;

 y(i) = sin(t);

end

Wallclock time = 0.1069 seconds

t = 0:.01:100;

y = sin(t);

Wallclock time = 0.0007 seconds

for_sine.m vec_sine.m

Tuning MATLAB for Better Performance

>> A = magic(3) % define a 3x3 matrix A

A =

 8 1 6

 3 5 7

 4 9 2

>> B = A^2; % B = A * A;

>> C = A + B;

>> b = 1:3 % define b as a 1x3 row vector

b =

 1 2 3

>> [A, b'] % add b transpose as a 4th column to A

ans =

 8 1 6 1

 3 5 7 2

 4 9 2 3

Vector Operations of Arrays

28 Tuning MATLAB for Better Performance

>> [A; b] % add b as a 4th row to A

ans =

 8 1 6

 3 5 7

 4 9 2

 1 2 3

>> A = zeros(3) % zeros generates 3 x 3 array of 0’s

A =

 0 0 0

 0 0 0

 0 0 0

>> B = 2*ones(2,3) % ones generates 2 x 3 array of 1’s

B =

 2 2 2

 2 2 2

Alternatively,

>> B = repmat(2,2,3) % matrix replication

Vector Operations

29 Tuning MATLAB for Better Performance

>> y = (1:5)’;

>> n = 3;

>> B = y(:, ones(1,n)) % B = y(:, [1 1 1]) or B=[y y y]

B =

 1 1 1

 2 2 2

 3 3 3

 4 4 4

 5 5 5

Again, B can be generated via repmat as

>> B = repmat(y, 1, 3);

Vector Operations

30 Tuning MATLAB for Better Performance

>> A = magic(3)

A =

 8 1 6

 3 5 7

 4 9 2

>> B = A(:, [1 3 2]) % switch 2nd and third columns of A

B =

 8 6 1

 3 7 5

 4 2 9

>> A(:, 2) = [] % delete second column of A

A =

 8 6

 3 7

 4 2

Vector Operations

31 Tuning MATLAB for Better Performance

Vector Utility Functions

32

Function Description

all Test to see if all elements are of a prescribed value

any Test to see if any element is of a prescribed value

zeros Create array of zeroes

ones Create array of ones

repmat Replicate and tile an array

find Find indices and values of nonzero elements

diff Find differences and approximate derivatives

squeeze Remove singleton dimensions from an array

prod Find product of array elements

sum Find the sum of array elements

cumsum Find cumulative sum

shiftdim Shift array dimensions

logical Convert numeric values to logical

sort Sort array elements in ascending /descending

order

Tuning MATLAB for Better Performance

• Integral is area under function in range of 0 to /2

• Equals to sum of all rectangles (width times height of bars)

33

hhiadxxdxx
m

i

m

i

iha

hia

b

a
))(cos()cos()cos(

2
1

11
)1(

mid-point of increment

cos(x)

h

; % range

; % # of increments

; % increment

Tuning MATLAB for Better Performance

𝜋

% integration with for-loop

tic

 m = 100;

 a = 0; % lower limit of integration

 b = pi/2; % upper limit of integration

 h = (b – a)/m; % increment length

 integral = 0; % initialize integral

 for i=1:m

 x = a+(i-0.5)*h; % mid-point of increment i

 integral = integral + cos(x)*h;

 end

toc

34

X(1) = a + h/2 X(m) = b - h/2

a

h

b

Tuning MATLAB for Better Performance

% integration with vector form

tic

 m = 100;

 a = 0; % lower limit of integration

 b = pi/2; % upper limit of integration

 h = (b – a)/m; % increment length

 x = a+h/2:h:b-h/2; % mid-point of m increments

 integral = sum(cos(x))*h;

toc

35

X(1) = a + h/2 X(m) = b - h/2

a

h

b

Tuning MATLAB for Better Performance

Integration Example Benchmarks

36

 Timings (seconds) obtained on Intel Core i5 3.2 GHz PC

 Computational effort linearly proportional to # of increments.

increment m for-loop Vector

10000 0.00044 0.00017

20000 0.00087 0.00032

40000 0.00176 0.00064

80000 0.00346 0.00130

160000 0.00712 0.00322

320000 0.01434 0.00663

Tuning MATLAB for Better Performance

37

Boundary Conditions:

Analytical solution:

0
y

u

x

u

2

2

2

2

10 010

101

100

y yuyu

x exsinxu

x xsinxu

),(),(

)(),(

)(),(

1y0 1;x0 exsinyxu y

)(),(

Tuning MATLAB for Better Performance

Discretize equation by centered-difference yields:

Finite Difference Numerical Discretization

38

where n and n+1 denote the current and the next time step, respectively,

while

For simplicity, we take

mj m; i
4

uuuu
u ,1,2,,1,2,

n

1i,j

n

1i,j

n

1,ji

n

1,jin

ji

1

,

1m

1
yx

), yjx(iu

m; jm) i,y(xuu

n

ji

nn

i,j 1,0,1,2,1,0,1,2,

Tuning MATLAB for Better Performance

Computational Domain

39

,m1,2,j ,m;1,2, i
4

uuuu
u

n
1i,j

n
1i,j

n
1,ji

n
1,ji1n

ji

,

0u(1,y)

0u(0,y)

)(),(xsinxu 0

 exsin()u(x,1)

x, i

y, j

Tuning MATLAB for Better Performance

Five-point Finite-difference Stencil

40

 x

 Interior cells.

Where solution of the Laplace

equation is sought.

 Exterior cells.

Green cells denote cells where

homogeneous boundary

conditions are imposed while

non-homogeneous boundary

conditions are colored in blue.

 x x

 x

 x

 o

 x x

 x x

 o

Tuning MATLAB for Better Performance

SOR Update Function

41

How to vectorize it ?

1. Remove the for-loops

2. Define i = ib:2:ie;

3. Define j = jb:2:je;

4. Use sum for del

% equivalent vector code fragment

jb = 2; je = n+1; ib = 3; ie = m+1;

i = ib:2:ie; j = jb:2:je;

up = (u(i ,j+1) + u(i+1,j) + ...

 u(i-1,j) + u(i ,j-1))*0.25;

u(i,j) = (1.0 - omega)*u(i,j) + omega*up;

del = sum(sum(abs(up-u(i,j))));

% original code fragment

jb = 2; je = n+1; ib = 3; ie = m+1;

for i=ib:2:ie

 for j=jb:2:je

 up = (u(i ,j+1) + u(i+1,j) + ...

 u(i-1,j) + u(i ,j-1))*0.25;

 u(i,j) = (1.0 - omega)*u(i,j) +omega*up;

 del = del + abs(up-u(i,j));

 end

end

Tuning MATLAB for Better Performance

Solution Contour Plot

42 Tuning MATLAB for Better Performance

SOR Timing Benchmarks

43 Tuning MATLAB for Better Performance

 For global sum of 2D matrices: sum(sum(A)) or sum(A(:))

 Example: which is more efficient ?

 A = rand(1000);

 tic,sum(sum(A)),toc

 tic,sum(A(:)),toc

 No appreciable performance difference; latter more compact.

 Your application calls for summing a matrix along rows (dim=2)

 multiple times (inside a loop). Example:

 A = rand(1000);

 tic, for t=1:100,sum(A,2);end, toc

 MATLAB matrix memory ordering is by column. Better performance if
sum by column. Swap the two indices of A at the outset.

 Example: B=A’; tic, for t=1:100, sum(B,1);end, toc (See twosums.m)

Summation

44 Tuning MATLAB for Better Performance

Logical Array helpful for Vectorization

45

 Sometimes, logical array is used to retain target array’s shape

 Scalar example: Vector example:

a = rand(4,3);
b =rand(size(a));
c = zeros(size(b));
b(1,3) = 0; b(3,2) = 0;
for j=1:3
 for i=1,4
 if (b(i,j) ~= 0) then
 c(i,j) = a(i,j)/b(i,j);
 end
 end
end

% e is true (1) for all b not = 0
e = b~=0
 e =
 1 1 0
 1 1 1
 1 0 1
 1 1 1
c(e) = a(e)./b(e) % c = 0 ∀ b
= 0
c =
 0.9768 1.4940 0
 2.3896 0.4487 0.0943
 0.7821 0 0.2180
 11.3867 0.0400 1.2741

Tuning MATLAB for Better Performance

 Generally better to use function rather than script

 Script m-file is loaded into memory and evaluate one line at a time.

Subsequent uses require reloading.

 Function m-file is compiled into a pseudo-code and is loaded on

first application. Subsequent uses of the function will be faster

without reloading.

 Function is modular; self cleaning; reusable.

 Global variables are expensive; difficult to track.

 Don’t reassign array that results in change of data type or shape

 Limit m-files size and complexity

 Structure of arrays more memory-efficient than array of structures

Other Tips

46 Tuning MATLAB for Better Performance

 Maximize memory availability.

 32-bit systems < 2 or 3 GB

 64-bit systems running 32-bit MATLAB < 4GB

 64-bit systems running 64-bit MATLAB < 8TB

 (96 GB on some Katana nodes)

 Minimize memory usage. (Details to follow …)

Memory Management

47 Tuning MATLAB for Better Performance

 Use clear, pack or other memory saving means when possible. If

double precision (default) is not required, the use of ‘single’ data type

could save substantial amount of memory. For example,

 >> x=ones(10,'single'); y=x+1; % y inherits single from x

 Use sparse to reduce memory footprint on sparse matrices

 >> n=3000; A = zeros(n); A(3,2) = 1; B = ones(n);

 >> tic, C = A*B; toc % 6 secs

 >> As = sparse(A);

 >> tic, D = As*B; toc % 0.12 secs; D not sparse

 Be aware that array of structures uses more memory than structure of

arrays. (pre-allocation is good practice too for structs!)

Minimize Memory Usage

48 Tuning MATLAB for Better Performance

 For batch jobs, use “matlab –nojvm …” saves lots of memory

 Memory usage query

 For Linux:

 scc1% top

 For Windows:

 >> m = feature('memstats'); % largest contiguous free block

 Use MS Windows Task Manager to monitor memory allocation.

 On multiprocessor systems, distribute memory among processors

Minimize Memory Uage

49 Tuning MATLAB for Better Performance

 mcc is a MATLAB compiler:

 It compiles m-files into C codes, object libraries, or
stand-alone executables.

 A stand-alone executable generated with mcc can run
on compatible platforms without an installed MATLAB or
a MATLAB license.

 On special occasions, MATLAB access may be denied
if all licenses are checked out. Running a stand-alone
requires NO licenses and no waiting.

 It is not meant to facilitate any performance gains.

 coder ― m-file to C code converter

Compilers

50 Tuning MATLAB for Better Performance

mcc example

51

How to build a standalone executable on Windows

>> mcc –o twosums –m twosums

How to run executable on Windows’ Command Promp (dos)

Command prompt:> twosums 3000 2000

Details:

• twosums.m is a function m-file with 2 input arguments

• Input arguments to code are processed as strings by mcc. Convert

 with str2double: if isdeployed, N=str2double(N); end

• Output cannot be returned; either save to file or display on screen.

• The executable is twosums.exe

Tuning MATLAB for Better Performance

MATLAB Programming Tools

52

 profile - profiler to identify “hot spots” for performance
enhancement.

 mlint - for inconsistencies and suspicious constructs in

 m-files.

 debug - MATLAB debugger.

 guide - Graphical User Interface design tool.

Tuning MATLAB for Better Performance

MATLAB Profiler

53

To use profile viewer, DONOT start MATLAB with –nojvm option

>> profile on –detail 'builtin' –timer 'real'

>> serial_integration2 % run code to be profiled

>> profile viewer % view profiling data

>> profile off % turn off profiler

Turn on profiler. Time reported

in wall clock. Include timings

for built-in functions.

Tuning MATLAB for Better Performance

How to Save Profiling Data

54

Two ways to save profiling data:

1. Save into a directory of HTML files

 Viewing is static, i.e., the profiling data displayed correspond to a

 prescribed set of options. View with a browser.

2. Saved as a MAT file

 Viewing is dynamic; you can change the options. Must be viewed

 in the MATLAB environment.

Tuning MATLAB for Better Performance

Profiling – save as HTML files

55

Viewing is static, i.e., the profiling data displayed correspond to a

prescribed set of options. View with a browser.

>> profile on

>> serial_integration2

>> profile viewer

>> p = profile('info');

>> profsave(p, ‘my_profile') % html files in my_profile dir

Tuning MATLAB for Better Performance

Profiling – save as MAT file

56

Viewing is dynamic; you can change the options. Must be viewed in

the MATLAB environment.

>> profile on

>> serial_integration2

>> profile viewer

>> p = profile('info');

>> save myprofiledata p

>> clear p

>> load myprofiledata

>> profview(0,p)

Tuning MATLAB for Better Performance

MATLAB Editor

57

MATLAB editor does a lot more than file creation and editing …

 Code syntax checking

 Code performance suggestions

 Runtime code debugging

Tuning MATLAB for Better Performance

Running MATLAB

58

• scc1% matlab -nodisplay –nosplash –r “n=4, myfile(n); exit”

• Add –nojvm to save memory if Java is not required

• For batch jobs on the SCC, put above command in a batch script

• Visit http://www.bu.edu/tech/about/research/training/scv-software-

packages/matlab/matlab-batch for instructions on how to run

MATLAB batch jobs.

Tuning MATLAB for Better Performance

http://www.bu.edu/tech/about/research/training/scv-software-packages/matlab/matlab-batch/
http://www.bu.edu/tech/about/research/training/scv-software-packages/matlab/matlab-batch/
http://www.bu.edu/tech/about/research/training/scv-software-packages/matlab/matlab-batch/
http://www.bu.edu/tech/about/research/training/scv-software-packages/matlab/matlab-batch/
http://www.bu.edu/tech/about/research/training/scv-software-packages/matlab/matlab-batch/
http://www.bu.edu/tech/about/research/training/scv-software-packages/matlab/matlab-batch/
http://www.bu.edu/tech/about/research/training/scv-software-packages/matlab/matlab-batch/
http://www.bu.edu/tech/about/research/training/scv-software-packages/matlab/matlab-batch/

Multiprocessing with MATLAB

59

• Explicit parallel operations

 MATLAB Parallel Computing Toolbox Tutorial

 www.bu.edu/tech/research/training/tutorials/matlab-pct/

• Implicit parallel operations

• Require shared-memory computer architecture (i.e., multicore).

• Feature on by default. Turn it off with

 scc1% matlab –singleCompThread

• Specify number of threads with maxNumCompThreads

 (deprecated in future).

• Activated by vector operation of applications such as hyperbolic or
trigonometric functions, some LaPACK routines, Level-3 BLAS.

• See “Implicit Parallelism” section of the above link.

Tuning MATLAB for Better Performance

http://www.bu.edu/tech/research/training/tutorials/matlab-pct/
http://www.bu.edu/tech/research/training/tutorials/matlab-pct/
http://www.bu.edu/tech/research/training/tutorials/matlab-pct/

Where Can I Run MATLAB ?

60

• There are a number of ways:

• Buy your own student version.

• http://www.bu.edu/tech/desktop/site-licensed-

software/mathsci/matlab/faqs/#student

• Check your own department to see if there is a computer

• lab with installed MATLAB

• With a valid BU userid, the engineering grid will let you gain

• access remotely.

• http://collaborate.bu.edu/moin/GridInstructions

• If you have a Mac, Windows PC or laptop, you may have to

• sync it with Active Directory (AD) first:

• http://www.bu.edu/tech/accounts/remote/away/ad/

• acs-linux.bu.edu, scc1.bu.edu

• http://www.bu.edu/tech/desktop/site-licensed-

• software/mathsci/mathematica/student-resources-at-bu

Tuning MATLAB for Better Performance

http://www.bu.edu/tech/desktop/site-licensed-software/mathsci/matlab/faqs/
http://www.bu.edu/tech/desktop/site-licensed-software/mathsci/matlab/faqs/
http://www.bu.edu/tech/desktop/site-licensed-software/mathsci/matlab/faqs/
http://www.bu.edu/tech/desktop/site-licensed-software/mathsci/matlab/faqs/
http://www.bu.edu/tech/desktop/site-licensed-software/mathsci/matlab/faqs/
http://collaborate.bu.edu/moin/GridInstructions
http://www.bu.edu/tech/accounts/remote/away/ad/

 (www.bu.edu/tech/research)

www.bu.edu/tech/accounts/special/research/accounts

•

•

• Web-based tutorials

(www.bu.edu/tech/research/training/tutorials)

 (MPI, OpenMP, MATLAB, IDL, Graphics tools)

• HPC consultations by appointment

• Yann Tambouret (yannpaul@bu.edu)

• Katia Oleinik (koleinik@bu.edu)

• Kadin Tseng (kadin@bu.edu)

61 Tuning MATLAB for Better Performance

http://www.bu.edu/tech/research
http://www.bu.edu/tech/accounts/special/research/accounts
http://www.bu.edu/tech/research/training/tutorials
mailto:yannpaul@bu.edu
mailto:koleinik@bu.edu
mailto:kadin@bu.edu

