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Abstract

This paper presents a gradient-based approach to the
multi-constraint estimation of dense two-dimensional
(2-D) motion. The formulation is based on feature-
invartance along motion trajectories and applies mo-
tion smoothness constraint to reduce ill-posedness. It
permits the use of various tmage features as the in-
put, for example intensity and colours, or sub-bands of
a spectral decomposition. The proposed cost function
18 minimized using a sequence of quadratic approxima-
tions of the matching error and solving the resulting
linear system by deterministic relaxation. The proposed
algorithm is a generalization of the Horn and Schunck
algorithm to the case of vector data. Results of appli-
cation of the proposed technique to the estimation of
2-D motion from TV images are shown. The obtained
motion fields are applied to motion-compensated tem-
poral interpolation resulting in significant but localized
improvements.

1. INTRODUCTION

The calculation of dense 2-D motion is usually for-
mulated with respect to a single cue like intensity or lu-
minance. If this cue is locally characterized by little or no
detail, motion vectors cannot be reliably computed and
are usually derived from their neighbours by smoothing.
Since typically images also contain colour information, it
is reasonable to expect that the colour cue may contain
additional detail. Such detail is usually highly correlated
with the intensity, thus is not expected to solve the aper-
ture problem [1], but it may reduce ill-posedness [2] as-
sociated with the local lack of intensity detail, and thus
improve robustness of motion estimation. In this paper,
I address the problem of using additional colour cue to
improve robustness of estimation of dense 2-D motion.

Wohn et al. [3] and Mitiche et al. [4] have proposed
multi-constraint methods that augment the single-cue in-
formation with signals derived from it (e.g., derivatives,
contrast, entropy) or with additional cues (e.g., colour).
In both proposals a solution to multi-constraint equa-
tions was found using the least-squares approach. Wohn
et al. computed motion vectors using gradient magni-
tude, curvature, moments and colour of an image, and
subsequently applied smoothing to the resulting motion

field. They reported lack of reliability of the method,
but Mitiche et al. later attributed those findings to an
improper choice of constraints based on directional deriva-
tives. They, in turn, used contrast, entropy, average, vari-
ance and median of an image to conclude a “reasonable
performance of the method even in the presence of moder-
ate noise”. Later, a Bayesian approach to the estimation of
dense 2-D motion from colour images [5] was proposed. In
that approach, the multi-constraint matching modeled by
an ensemble of independent, identically distributed (éid)
Gaussian random variables was combined with a motion
smoothness constraint based on a Markov random field
(MRF) model. The resulting cost function was solved us-
ing the computationally demanding method of simulated
annealing.

The work presented here aims at incorporating colour
information into a more efficient gradient-based frame-
work. The goal is achieved by applying a sequence of
quadratic approximations [6] to the Bayesian-formulated
cost function proposed in [5]. Each approximation results
in a linear system solved using deterministic relaxation.
Such an approach is far less demanding computationally
than simulated annealing, and implemented over a hierar-
chy of resolutions is expected to be even faster and pro-
vide nearly optimal solutions [7]. Moreover, the resulting
algorithm is fully parallelizable, thus can be efficiently ex-
ecuted on SIMD (Single Instruction - Multiple Data) ar-
chitectures. Another goal of this work is to demonstrate
practical benefits of using additional colour cue in the es-
timation of dense 2-D motion.

2. PROBLEM FORMULATION

Let the input consist of K streams of data. The in-
dividual streams may correspond to separate visual cues,
like intensity and colour, or they may be derived from one
signal, for example sub-bands obtained through spectral
decomposition. The formulation presented below is gen-
eral and encompasses both cases as well as other types of
input data. Let the individual streams, also called compo-
nents, be gx (k=1,...,K), and thus let g = [g1, g2, ..., K]
denote the total input signal'. Let x = [z,y]T and t be

T Terms signal and image will be used interchangeably in
the paper since individual components do not need to
correspond to meaningful images, e.g., image entropy or
moments.



spatial and temporal positions, respectively, in the input
signal. Let the signal g be spatio-temporally sampled with
gk (i, t;) denoting the i-th element (pixel) at j-th time in-
stant of k-th component. Consequently, the dynamics of
the input image can be described using motion (displace-
ment) fields d instead of instantaneous velocities. These
fields consist of motion trajectories, non-linear in general,
which provide a mapping of signal elements between two
(or more) time instants. Since it is impossible to calcu-
late motion trajectories over continuum of positions, the
sequence of motion fields d is also sampled, however not
necessarily on the same structure as the input signal g.
Thus, d(x;,t;) denotes i-th trajectory at j-th time instant.
Let the motion field at any time instant contain M vectors.

2.1 MODELS

Estimation of dense 2-D motion is an example of in-
verse problem often encountered in computer vision. Like
other such problems, it is ill-posed, and thus requires a
substantial degree of modeling. Firstly, it requires a model
of the relationship between input data and estimated val-
ues, called here a structural model. Secondly, to reduce
ill-posedness, it requires a model of the estimated quan-
tity itself, in this case a motion model.

As the structural model I will use the standard as-
sumption about invariance of an image feature along mo-
tion trajectories. Note, that this assumption is suitable
for some features, while it may be unjustified for others.
The invariance assumption has been successfully used for
luminance and chrominance components of an image [5],
based on the observation that colour content in objects is
unlikely to move differently than intensity. The assump-
tion holds exactly for the true (unknown) motion field and
for an underlying image from which the observed image
g is derived if such artifacts as occlusions, illumination
variability or object distortions are absent. In a practi-
cal system, however, there is always a certain fluctuation
of intensity (or colour) along motion trajectories, which is
due to optical system imperfections, noise in the camera,
aliasing due to sampling, etc.

In this paper I will be concerned with a linear motion
model (described below) in which motion trajectories are
3-D vectors. Each such vector has two degrees of freedom
because its temporal coordinate is 7' (temporal sampling
period for g). Thus, a displacement field d of 2-D vectors,
which are spatial projections of the 3-D vectors, is sought.
Consider estimation of motion field d at time instant ¢ from
two images'. Let image at t_ = t — o - T be the preceding
image and image at t4 = t+ (1 — a) - T be the following
one, where o = At/T and At is the temporal distance
between the preceding image and the motion field. With
the above assumptions, the error resulting from matching
two images of component gr using d can be expressed
through the displaced component difference (DCD) defined
fore=1,..., M as

ffkﬁ'(d) = fgvk (a:i—l—(l—a)d,(a:i, t), t+)—§k (a:l —ad(:ci, t), t_),

0

t The proposed multi-constraint approach can be easily ex-
tended to more than two images.

where gx is a spatially interpolated version of gx needed for
locations not on the sampling structure of g. Note that the
double subscript k, ¢ above signifies the k-th component of
the error at spatial position x;. It is difficult to identify
properties of 7, but since in uniform areas (no artifacts)
7 is expected to be largely caused by noise, aliasing, etc.,
it would seem reasonable to use a random variable, e.g.,
Gaussian, as a model. Such modeling has been successfully
applied in the context of Bayesian formulation [8]. In
this work it is assumed that although matching errors
Ty, for the same pixel i are not independent, they are
uncorrelated enough to expect additional information from
complementary colour cues.

Despite the fact that motion trajectories are rarely
linear at a macroscale, they are usually very close to lin-
ear at a certain microscale. Thus, it is assumed that for a
sufficiently small 7" motion trajectories are close to linear
and can be modeled by vectors. Also, since minimization
of the DCD (1) is insufficient for reliable motion estimation
due to ill-posedness [2] and aperture effect [1], usually an
assumption about motion field smoothness [2] is incorpo-
rated into the formulation. The departure from smooth-
ness of a motion vector at location (:ci, t) can be described
by the following error term

D (d(@it) — d(@, 1) (d(wi, 1) — d(w;, 1), (2)

JEN:

where superscript T denotes transposition and #; is a half-
neighbourhood of spatial location x; containing only east-
ern and southern neighbours of ;. Note that error (2)
is a discrete approximation of a squared magnitude of the
gradient [2].

2.2 COST FUNCTION

The goal is to find a motion field which best explains
the observed images g:_ and g, and simultaneously con-
forms to a priori properties imposed by the motion model.
This can be expressed through minimization of a cost func-
tion which combines error terms (1) and (2):

mc}n ZZ)‘% Th,i(d) + Ag Z(di —d;)"(di —d;), (3)

i=1 k=1 JEN:

where Ag, and Ag4 are weights, and d; = d(z;, t) is used to
simplify notation.

Minimization (3) is a special case of Bayesian estima-
tion of dense 2-D motion proposed in [5], where a poste-
rior: probability of a motion field d given images g:_, g:,
is maximized. In the Bayesian formulation, each ff;“' is
modeled by a random variable while displacement field d
is modeled by a random field (random process). It can be
shown [5] that for i¢d Gaussian random variables and the
first-order MRF model, minimization (3) results.

Minimization (3) can be also viewed as regularization,
where the smoothness term reduces ambiguity in match-
ing. Note that (3) extends the discretized form of Horn
and Schunck’s formulation [2] to the case of vector data.



3. SOLUTION METHOD

Minimization (3) was originally solved in [5] for the
case of discrete state space using the method of simulated
annealing. Under certain conditions this method is able to
find the global optimum of any cost function by executing
a random search through the space of solutions. Due to
randomness of the search, however, stochastic relaxation
requires a very high computational effort.

In this paper, I propose to solve (3) using determin-
istic relaxation. This approach is similar to the one used
by Horn and Schunck [2] except for the type of approxi-
mation used to linearize the matching error . Horn and
Schunck have used Taylor expansion of ¥ at d = 0, whereas
I propose to expand it around an operating point d = d.
Assuming local linearity of the component gx and disre-
garding higher than first-order elements, the following ap-
proximation holds for the :-th pixel of the k-th component:

?ky,;(d) ~ ?;w(d) + Vg?kyi(d) . (di — d,‘), (4)
where the spatial gradient is defined as follows:

~ [
v Tk,z‘(d) = |:~ I
¢ Tﬁ,i(d)
6j(x,—agix,,t),t_)a + Bj(xl-l-(l—gic'l(.r“t),t_*,) (1 _ O./)
8g(xi—ad(w;,t),t_ dg(xi+(1—a)d(w; 1)t
g(& agx ) )a+ (& +( a; (&4,t) +)(1—0z)

(5)
Note that approximation (4) simplifies to the one used by
Horn and Schunck for K=1, d; = 0 and bilinear interpo-
lation used to obtain g.

With this approximation, the cost function E under
minimization in (3) becomes quadratic in d, and thus the
necessary condition for optimality can be established for
each vector d; through:

OF;
od;

K
=2 Ao, [Frid) + ViTni(d) - (di — di)]VaFn,i(d)

k=1

+ 8)\d[d,‘ — Ez] =0,

_ (6)
with d; being an average vector calculated over four neigh-
bours around x;, but without x; itself. The above equation
can be rewritten in matrix form:

DILR; + DILD;:(d; — d;) + 4)\q(d; — d;) =0, (7)

where R; and D; are vectors of DCDs and their gradients
at pixel i, respectively, and L is a diagonal matrix of
weights Ag, :

71,i(d) Viri(d)
Ri: . . s D,:: . . s L: .
Tx,i(d) VaTr,i(d) 0 - gk

Equation (7) can be rearranged to obtain

d; = d; — (47\q] + DT LD,) ' [4)\q(d: — d;) + DI LR.],

Agr - 0

where [ is the identity matrix. This equation must be
satisfied by each vector d; and there are typically several
thousands of them. The resulting linear system is sparse,
thus instead of simultaneously solving all equations, a re-
laxation method, like Jacobi or Gauss-Seidel, can be used.

Let superscript n» denote iteration number. Then, displace-
ment vector d; can be calculated iteratively as follows
d’ =d; — (4AqI + D] LD;) '[4)\q(d; —d, )+ D LR},

. (8)
where d; is a spatial average obtained in the previous it-
eration. The algorithm starts from some initial d (e.g.,
zero vector field) and iteratively calculates an estimate of
d. Upon convergence, the resulting estimate is used as the
new d, and the process is repeated. The adaptation of d to
the previous solution is very important for the calculation
of derivatives (5). With every new d, which is expected
to be better than the previous one, unless the algorithm
diverges, a more accurate estimate of derivatives is ob-
tained due to displacement compensation. In the original
Horn and Schunck algorithm there is no such compensa-
tion when calculating derivatives. For fast motion this may
lead to incorrect gradient estimates since derivatives may
be calculated over an object in one image and over back-
ground in the other. Very significant improvements due to
the use of motion-compensated derivatives in the single-
constraint case have been reported in [6] (similar method
has been proposed by Nagel and Enkelman [9]). A detailed
expansion of iterative equation in (8) can be found in the
Appendix.

It can be shown that iteration (8) is equivalent to min-
imization (3) executed using the Gauss-Newton method.
However, if it is assumed that d= d, i.e., the operating
point is computed at each iteration as an average from the
previous estimate, then the following iteration results

d' =d; — (4X¢] + D] LD;) ' D LR;, (9)
which is a multi-constraint variant of the Horn-Schunck al-

gorithm with motion-compensated derivatives. Note that
in (9) the vectors D; and R; are now evaluated at d = d.

4. EXPERIMENTAL RESULTS

The algorithm presented above has been applied to
several colour image sequences in the Y-C1-C2 format
(k = 1,2,3). In this format image fields are 2:1 line-
interlaced and chrominances C1, C2 are horizontally sub-
sampled by 2 relative to luminance Y. Fig.l.a shows a
luminance (Y) window of 224 pixels by 144 lines from
one field of sequence “pingpong”, while Fig.1.b shows the
chrominance C1 for the same window. Both are shown
with lines and pixels appropriately interpolated for proper
aspect ratio. Note that in Fig.l.a it is difficult to iden-
tify the racket boundaries due to similar luminance of the
racket and the shirt. In Fig.1.b, however, the racket can be
localized more easily because it is of different colour than
the shirt. This additional chrominance detail is expected
to be helpful when used in the multi-constraint approach.

The multi-constraint algorithm with K'=3 has been
compared with the algorithm based on luminance only i.e.,
for K=1. Both have been implemented in a hierarchical
framework [10] over 4 levels of resolution with 2x2 sub-
sampling between levels. The image pyramid has been
obtained by a cascade of three Gaussian filters, each with
5 independent coefficients and a variance of 2.5. The ratio
Ad/Ag, over hierarchy of resolutions was controlled simi-
larly to the multiscale MRF model from [7]. To calculate



interpolated values of gj, bicubic interpolation [11] was
used. The tradeoff between matching quality and motion
field smoothness was established by the ratio Ag/Ag, = 6
for k=1,2,3, and Ag/A4, =2 for the luminance-only case.

The proposed method has been tested in the context
of motion-compensated interpolation. First, the original
sequence has been temporally subsampled by a factor of 2,
and motion fields have been estimated from the remaining
images. Then, the missing images have been reconstructed
using motion-compensated temporal interpolation.

Fig.2 shows examples of motion fields estimated from
the sequence “pingpong” using luminance information Y
(a) only, and using all three components Y-C1-C2 (b). The
Y-based algorithm results in incorrect motion estimates in
the center where fast motion of the racket (Fig.1.a) occurs.
The Y-C1-C2-based algorithm (b) produces vectors with
orientations consistently closer to the true motion. This
improvement is confirmed in Fig.3 where reconstructed lu-
minance images using the Y-based (a) and Y-C1-C2-based
(b) motion estimation are shown. Note a much improved
rendition of the hand with the racket. The improvement
is even more pronounced when viewed on a colour TV
monitor. It can be examined closer by looking at the re-
construction error (difference between the reconstructed
image and the original one) depicted for the luminance
component in Figs.4.a and 4.b, where the degree of de-
parture from grey (brighter or darker) is proportional to
the error. Note again a significant reduction of the recon-
struction error for images recovered using Y-C1-C2-based
motion estimation. One should also expect a reduction of
the reconstruction error for the chrominance components.
This i1s confirmed in Figs.4.c and 4.d which show the C1
component of the error (the error for C2 component is
similar).

Both algorithms have been also applied to the esti-
mation of known motion. Subjectively, the improvement
due to the use of colour was localized, however substan-
tial. Also, in terms of the mean-squared error the use of
colour was beneficial. For examples with synthetic motion
obtained using simulated annealing, please consult [3].

The fact that motion estimates derived from simul-
taneous constraints on Y, Cl1 and C2 give consistently
smaller error for all three image components indicates that
they are closer to the true motion field than the ones de-
rived from luminance only. The improvement, however, is
limited to the areas where colour detail provides additional
information. In this work all three constraints were used
homogeneously across the image increasing the computa-
tional demand by about three. Since the improvement due
to colour is usually localized, it would be beneficial to ex-
ploit this additional information only when it is significant,
for example by monitoring colour derivatives.

5. SUMMARY AND CONCLUSIONS

A multi-constraint gradient-based approach to the
estimation of dense 2-D motion has been proposed in
the paper. The resulting algorithm has been shown to
be a generalization of the Horn and Schunck method
to the vector data case. The proposed method uses

motion-compensated image gradient, instead of a non-
compensated one, thus increasing estimation robustness
at boundaries of fast moving objects. The multi-constraint
estimation has been compared with the single-constraint
estimation on several colour image sequences in the Y-
C1-C2 format. It has consistently provided better motion
estimates than the luminance-based algorithm, and has
resulted in significantly improved quality of images recon-
structed through motion-compensated interpolation. The
method, however, is more involved computationally than
estimation based on one image component. Currently,
means to reduce method’s complexity are investigated.

APPENDIX

In order to expand the equation (8), inverse of the 2 X
2 matrix A = 4\ql + DI LD; must be found. To simplify
derivations in this appendix, dependence of 7,7, 7Y and
V7 on 1 and d will be temporarily omitted, as well as
dependence of d, d, d on i. The summations extend from
1 to K unless otherwise indicated.

By carrying out matrix multiplications it can be
shown that:

A= |:4)\d + Ek igkf\g:’\:ﬁ)Q
Dk Aak TET,
Thus, the inverse of A is
_Ek )\gkrﬁrif 4 +Ek )‘gk(ri)2 ’
with |A| being the determinant defined as follows

41 =" Ao [0 (G + () + vy - 7Y

gy
Ek AgpTETY ]

4)\d + Zk )\gk (;5)2

1<k
+ 1677
(A1)
This form of |A| has been obtained by decomposing the
original summation over rectangle (k=1,..., K;I=1,..., K)

into summations over lower and upper triangles (summa-
tion along the main diagonal gives zero). It can be easily
demonstrated that matrix B = DiTLRi is defined as fol-
lows:

B=aXg(d—d)+ Y X, TiVas.
k

It remains to carry out the multiplication of A~' and
B. After somewhat tedious calculations one obtains the
following iterative update equation:
"t =d" - A7
> Aae (Tr + VETR(d" — d)) (4XaT5 + 3, Ag, TV ch1)
S g (Th + VETR(d" — d)) (4XaT8 = > Ag Trern) |
(A.2)
where ¢ = ?}fﬁy — ?z?f. Recall that iterative equation
(A.2) is valid for the i-th vector and that values of 7, 77,
7¥ and Vg7 are computed for d. Modification to obtain
equation (9) is obvious.

For the case of scalar input data, i.e., K = 1, the
summations with respect to [ in (A.1) and (A.2) give zero
(ck,x = 0), thus resulting in an iterative equation of the
modified Horn-Schunck algorithm presented in [6].
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Fig. 1 Test image “pingpong”: (a) luminance Y; (b) chrominance C1.
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(a)

(b)

Fig. 2 Motion estimates obtained with Y constraint only (a); and with Y-C1-C2 constraints (b).
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(b)

Fic 3 Reconstructed lnmminance imaces neine Yobased (a): and V-C1-C2-based e<timation (b))




(c) (d)
Fig. 4 Luminance Y (a,b) and chrominance C1 (c,d) reconstruction error using Y-based (a,c); and
Y-C1-C2-based estimation (b,d).




