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Abstract

This paper describes a new approach to the problem of motion estimation for the coding of
image sequences. The goal is to obtain an efficient description (parametrization) of temporal
variations between two successive images in a sequence. To achieve this we propose to use
the standard hypothesis of luminance constancy along a motion trajectory simultaneously
introducing a polynomial representation of illumination variations. The estimation process
consists of two iteratively alternating stages: a region-based estimation of apparent 2D motion
parameters and an estimation of 2D illumination variations. Such an approach reduces the
residual reconstruction error after motion compensation due to improved estimation of motion
parameters.

1 Introduction

In the coding of image sequences, apparent motion permits the reconstruction of an image
through motion compensation; only the preceding image and motion information have to
be known. The information about pixel movements may be local, as in the case of pel-
recursive methods, or global, as in correspondence methods. Usually, it is assumed in motion
estimation/analysis that temporal variations between two successive images in a sequence
are due to object motion and occlusion effects in the original 3D scene [1],[2]. Under this
hypothesis, two similar regions from images at times ¢ and £+ 1 can be matched using motion
models, for example through a displacement and a transformation (e.g., zoom).

In practice, the hypothesis of luminance invariance along a motion trajectory rarely holds
since there exist other, than object motion, sources that induce temporal variations between
two images (e.g., lighting, noise). Thus, although often used, this hypothesis may not lead to
reliable motion estimates and consequently may reduce the efficiency of motion compensation
and the quality of reconstructed images.



The goal of this study is to re-examine the hypothesis of luminance invariance in motion
estimation in the context of image sequence coding. More precisely, the improvement of
the reconstructed image quality without a significant increase in bit rate is the target. We
hope to achieve this by augmenting the constant luminance model with new parameters that
take into account luminance variability of a point along its motion trajectory. We propose
a mean-squared reconstruction error as the minimization criterion. The algorithm developed
has been tested on various image sequences and shown to improve results when compared
with constant luminance model. Here, we show results for one real sequence.

The paper is divided as follows. In Sections 2 and 3 models and estimation method for 2D
motion are described. Sections 4 and 5 introduce a model for illumination variations and a
method to calculate parameters of such a model. Section 6 presents some simulation results.

2 Models for apparent 2D motion

Two different motion models are used in this study. The first model is the constant motion

model (M1):
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where (d,,d,) are displacements of a pixel at location p'= (x,y). This model is characterized
by translation parameters (t,,1,).

To account better for more complex motion, a model incorporating divergence and rotation
is needed (see also [3],[4]). Such a model, called a simplified linear model (A 2), is expressed

as follows:
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where k, 8 are divergence and rotation parameters, respectively, and (z,,y,) are coordinates
of the center of gravity of a region under consideration.

Let ® be a parameter vector for a given model. Then, @y = (t,,1,)" and @y =
(tz,ty, k,0)" are parameter vectors for models M1 and M2, respectively.

At this point we would like to stress that the method of estimating the illumination
variations is independent of the motion model presented above.

3 Estimation of motion

Motion estimation used in this study is based on interleaved iterations of a gradient method
and of deterministic relaxation. The estimation process is initialized using motion parameters
from the preceding frame. To identify regions over which motion models are defined, quadtree
image segmentation is used. Such a segmentation is simple in implementation and requires
low bit rate for transmission. Initial segmentation uses square regions of 32x32 pixels. Later
in the process, a division of regions that are insufficiently compensated is carried out.

The criterion used to estimate motion is the motion-compensated pixel difference defined
for pixel at p and time ¢ as follows [5]:

- -

DFD(p,d) = I (§) — I(7 — d) (3)

where I, represents the luminance value at point (p— cf) obtained by bilinear interpolation of
the discretized image I;. In practice this error is rarely zero for two reasons:



e motion estimation is not exact in the sense of the optimization criterion (the global
minimum of the error function is not perfectly achieved),

e the global minimum of the error function is not zero (this minimum depends on the
motion model and segmentation used).

The first point above expresses the dependence of motion estimation on the minimization
algorithm. In various experiments we have observed that the achieved minima are very
close to the global minimum of the error function. Thus, one cannot expect to improve
the results substantially by just modifying the minimization algorithm. The second point
suggests that the error function above may not be suitable for the task of estimating motion
under illumination variations. Thus, we modify in the next section this error function by
incorporating a more complex model of temporal variations between images. In order to
achieve this we propose an illumination variations model.

For more details on the motion estimation method used, please consult [4] and [6] (also
see Fig. 1).
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Figure 1: Block diagram of apparent 2D motion estimation.

4 Model of illumination variations

If a displacement estimate d for pixel at location p is known, the reconstruction error equals
DFD(p,d) with DF D defined in (3). The estimate d is calculated by a suitable minimization
of the squared reconstruction error

d = arg min[ DF D*(p, d)). (4)
d

We assume that the estimated displacement d is sufficiently close to the true motion, and
consequently that the reconstruction error DF D(p, c?) is due only to illumination variations
and perhaps to some occlusion effects. We cannot separate these two effects, as we do not
explicitly model occlusions. Note that the vector d is often different from a projection of the

3D motion vector onto the image plane [7].

4.1 Variation of apparent illumination over a region

Given motion model @, for each region ¥; we can estimate model parameters by executing
the following minimization:

¢ = argmin[ Y DFD*(j, do)]. (5)
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The optimal parameter vector & does not give, however, a zero reconstruction error over
region ¥
3" DFD*(F,dy) # 0 (6)
ﬁEﬂj
due to the effects mentioned before. From the above relationships it is clear that modeling
of variations of apparent illumination must depend on estimated motion as well as on image
segmentation.

4.2 Polynomial approximation of illumination variations

-

The reconstruction error DF D(p, dz) comprises errors due to real illumination variation as
well as errors due to occlusion effects and noise. If the noise is assumed to possess Gaussian
properties, then other sources of error, e.g., illumination effects, can be considered determinis-
tic and thus can be modeled (at least partially) by a polynomial. Disregarding terms of order

higher than 1, the reconstruction error DF D(p, dg) for pixel at location p can be modeled as
follows

P L) =7+ 7 (2 —3g) + 72+ (v — yg) + a(p), (7)

where I' = (70,71,72)" is the parameter vector describing the illumination variation model.
a(p) is the residual error for pixel at location p that depends not only on I' but also on
estimated motion parameters ® and region ¥; under consideration.

4.3 Error criterion

The predicted image can be calculated using parameter vectors ® and T’

jt-|—1(ﬁ) = th(ﬁ_ CZD) + V(ﬁa F)J, (8)
where |z] is defined as follows:

integer part of (z + 1), if 0 <z <255,
lz] =2 0, if x <0, (9)
255, if & > 255.

In coding, the goal is to obtain the best possible quality of a reconstructed image given
a bit rate. Thus, a quality measure or criterion must be proposed in order to carry out
optimization. We think that a very reasonable criterion for each pixel at location p and time
t 1s the following modified reconstruction error that incorporates the illumination variations
model

E(f) = Ly~ Iin
= Iiy1 — [Li(P—do) + (P, T)]. (10)

By accumulating pixel errors E(p) over each region ¥;, and then by accumulating region
errors over the whole image, mean-squared error can be calculated as follows:

MSRE = = 3 3 (I — L5~ da) +4(7.T)))" (1)

9;€8 ped;

Note that above S represents segmentation of the image into regions and N is the total
number of pixels in the image.



From the point of view of motion estimation, accounting for illumination variations causes
modification of the reconstruction error on a region by region basis due to the introduction of
the term v(p,I'). Thus, the minimum value of the error function is reduced or, in the worst
case, unchanged. This modification results in:

1. Direct reduction of the reconstruction error due to the introduction of the term ~.

2. Increase in efficiency of motion compensation in regions where impact of illumination
variations is substantial.

3. Increase of the number of parameters to be estimated; the estimation process becomes
more difficult.

5 Estimation scheme

The estimation of illumination variations must be incorporated into the motion estimation
scheme described in Section 3. Two approaches are possible:

1. joint estimation of motion and illumination variations using a global optimization method,

2. separate estimation of motion and of illumination variations through alternating (inter-
leaved) processing.

We chose the second approach for two reasons. Firstly, fewer unknowns have to be found
at each of the two stages, and thus each estimation should be easier to carry out separately.
Secondly, illumination variations cannot be evaluated unless a feasible motion field is known.
The best we can do is to estimate such a field without accounting for illumination variations.
We have observed in experiments without the illumination model that the residual error is
small and noise-like in numerous regions. It is substantial only where illumination variations
are present (or occlusions, which are not considered here). Thus, we propose to estimate
a motion field first without accounting for illumination variations. Then, we suggest to
introduce a posteriori the phase of illumination variations estimation. Since illumination
variations obtained should be significant only in the areas where the luminance invariance
assumption has failed, they can be applied only locally at the subsequent motion estimation
stage; homogeneous use of illumination variations is not needed. With the compensation of
illumination effects, the subsequent motion estimation can be thought of as being applied in
the context of the standard invariant intensity assumption. The general estimation diagram
is presented in Fig. 2.
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Figure 2: Block diagram for joint estimation of motion and illumination variations.



As shown in Fig. 2, new vector @ is estimated for each region at each iteration by updating
the previously calculated vector ®. This is executed through the following update:

! = '+ GYTY) (12)

where G' is the gradient of the cost function (11) with respect to ®. Once the new ® has
been estimated, and a segmentation has been carried out, the new vector I' is calculated for
each region. To do so, the following iterative update is executed:

' = 1(e*) (13)

where T is a function to be derived by minimizing the mean-squared error (11) with respect
to I'. The iterative updates (12) and (13) are executed in an alternating fashion. Thus, a
new vector @ is expected to affect an estimate of I', and a new vector I' should improve the
new estimate of ®. The iterative process stops if lack of change in estimated parameters is
detected.

Taking the partial derivatives of (11) with respect to 79, 71, 72 and for each region ¥,
(to obtain a derivable function, we eliminate function |.| in equation (11)) , the following
relationships can be obtained:

> [(DFD(p,d) — %) — mi(z — zg) = 72(y — y4)] =0,

Zl[(DFD(ﬁ, d) —0)(x — 2g) — 1z — 24)* — v2(x — 24)(y — yg)] = 0, (14)
Z,[(DFD@’ d) = %0)(y — yg) — 12z — 29)* — (x — 25)(y — y,)] = 0.

Since regions over which estimates are calculated are squares, we have Eﬁeﬁj('y —y,) =
Ypeo; (T — 2g) = Ygeo,(x — 24)(y — yg) = 0, and hence the above equations can be rewritten
as follows:

-

1 —
Yo = FZDFD([?, )7

J ped;

Y ses; DFD(F, d)(x — z,)
— j 15
” S e (@ 2)? (15)

=

pILERY DFD(p,d)(y — yg)
Yseo; (¥ — Yg)?

where N; is the number of points in region ;. Note that equations above form a detailed
version of equation (13). Corresponding equations for the estimation of motion can be found
in [4] and [6].

Improvements due to the new estimate of illumination variations I't1) can be interpreted

Y2 =

in two ways:
e immediate reduction of the reconstruction error,

e improved motion estimate; this improvement is obtained in the motion estimation loop

(Fig. 2).



6 Results and conclusion

Results presented below have been obtained by applying the proposed method to the real
image sequence “campagne” (original image shown in Fig. 3.a). This sequence has been
acquired by a camera mounted on a moving car (divergent motion in the whole image). In
the left part of the image, another car approaches the camera. Thus, the relative motion is
substantial, especially within the car and the sign post. The sequence also contains significant
illumination variations within the car at left, and several occlusions and noisy areas within
the trees.

The results obtained show that our algorithm is capable of detecting areas with variation of
illumination within the car and the trees (Figs. 3.c and 3.d). Consequently, the reconstruction
error and the number of regions obtained from quadtree segmentation are reduced (Table 1).
Figs. 3.e and 3.f show vector fields obtained for models M1 and M2, respectively. Figs. 3.g and
3.h show corresponding differences between vector field obtained using illumination variation
model and without such a model. It can be seen that the illumination variation model
modifies motion estimates, especially in image areas were such variation is present, so that
the reconstruction error is reduced.

The above results show usefulness of the proposed illumination variation model incorpo-
rated into an image coding algorithm based on motion compensation.
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