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ABSTRACT

The paper presents a space-variable POCS-based (pro-
jection onto convex sets) method for the reconstruc-
tion of a regularly-sampled image from its irregularly-
spaced samples. Such reconstruction is often needed
in image processing and coding, for example in stereo
vision and motion compensation. The proposed ap-
proach applies two operators sequentially: bandwidth
limitation and sample substitution, and is based on
our earlier work. The contribution of this paper is
the space-variable implementation of bandwidth lim-
itation operator, which has been postulated previ-
ously. The operator is realized in the simplest pos-
sible way as a filter with two sets of coefficients, a
measure of local density of irregular grid determines
which set is used. The technique is efficient compu-
tationally although at the cost of increased memory
requirements. Experimental results demonstrate that
indeed, the new technique is much better in terms
of PSNR, convergence speed, and visual quality than
methods described previously.

1. INTRODUCTION

For working properly a typical display equipment for
visualization of space-discrete signals requires that data
to be presented are evenly distributed along display
axes. Similarly, uniform sample distribution in space
and/or time is a necessary condition for majority of
digital signal processing methods and algorithms. On
the other hand, a natural result of some advanced
signal processing techniques is an irregularly sampled
signal, e.g. A/D conversion at very high clock speeds,
time- or space-variant filtering by stretching or con-
tracting filter impulse responses, motion compensated
frame interpolation in video, image interpolation in
stereovision, some color coding techniques etc. At
the same time simplistic approaches to interpolation
of data on uniform sampling grids often give unac-
ceptable results.
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The emerging applications caused that high-quality
methods for interpolation of evenly distributed sam-
ples from irregularly sampled signals have recently
drawn attention of signal processing community [1, 2,
3, 4, 5]. However, as it is pointed out in [4], the meth-
ods does not adapt to local image properties, which re-
sult in trade-offs in image quality between regions that
are ’easy’ and ’difficult’ to approximate. For example,
the method from [4] is based on repetitive filtering of
data; fine-tuned filters give better appearance to ap-
proximated images, however, they fail completely to
reconstruct regions where sampling grid is too sparse.
On the other hand, filters with greater attenuation
of medium and high image frequencies, thus blurring
somewhat images, work better in such image regions,
which results even in higher PSNR, values.

In this paper a high-quality method for interpo-
lating of evenly distributed samples from irregularly
sampled signals based on POCS approach that uses
space variable filters is presented, section 2. Namely,
one of two POCS steps, the repetitive image filtering
is done by a FIR filter having two sets of coefficients,
one for spectrum limitation at Nyquist frequency, and
the other for a filter with approximately two times
narrower bandwidth. A simple grid density function
is introduced, its local value implies which set of fil-
ter coefficients is used for image filtering. As can be
seen from Fig.2, section 3, the approach indeed im-
proves convergence and final PSNR of the algorithm.
The filter is working on 4 times denser sampling grid
for approximating continuous-space image, relatively
high memory cost of the method is its only drawback,
if compared to that from [4]. Otherwise, the method
is very simple, and relatively time-efficient.

2. METHOD

Let g = {g(x),x = (z,y)T € R?} be a continuous 2-D
projection of the 3-D world onto an image plane and
let go» = {g9(x),x € A} be a discrete image obtained



from g by sampling over a lattice A [6]. Let’s assume
that g is band-limited, i.e., G(f) = F{g}=0 for f ¢ Q
where F is the Fourier transform, f = (f1, f2)7 is a
frequency vector and Q C R? is the spectral support
of g. If the lattice A satisfies the multi-dimensional
Nyquist criterion [6], the Shannon sampling theory
allows to perfectly reconstruct g from gp. However,
in the case of irregular sampling the theory is not
applicable. Therefore, the general goal is to develop
a method for the reconstruction of g from an irreg-
ular set of samples gy = {g(x;),x; € ¥ C R?%,i =
1,..., K}, where ¥ is an irregular sampling grid.

2.1. POCS-based reconstruction algorithm

We use the POCS methodology [7] to reconstruct im-
age g. This methodology involves a set theoretic for-
mulation, i.e., finding a solution as an intersection of
property sets rather than by a minimization of a cost
function. We use the following sets [1, 4, 5, §]:

e Ay - set of all images g such that at x; € ¥,
i = 1,...,K (irregular sampling grid) g(x;) =
gu(xi),

e Ay - set of all band-limited images g, i.e., such
that G(f) =0 for f & Q.

If the membership in Ag can be assured by a sample
replacement operator R (to enforce proper image val-
ues on V), and the membership in A; — by suitable
bandwidth limitation (low-pass filtering) B, then the
iterative reconstruction algorithm can be expressed as
follows [1]:

k+1

g = BRg¢"=Blg"+Su(g—g")], (1)

where g* is the reconstructed image after k iterations
and Sy is a sampling operator that extracts image
values (luminance/color) on the irregular grid V.

In order to implement equation (1) on a computer,
a suitable discretization must to be applied. Since our
goal is the reconstruction of image samples obtained
from motion or disparity compensation, a 1/2-, 1/4-
or 1/8-pixel precision of motion or disparity vectors is
usually sufficient. Therefore, it has been proposed to
implement (1) on an oversampled grid matching that
precision [4, 5, §]:

gt = Blok, + ASw/an (9u/ar — 95,)]- (2)
where 5 is implemented on Ap, that is a Px P-times
denser (oversampled) lattice than A, and P equals not
more than 16 depending on motion/disparity vector
precision. Clearly, A is a sub-grid of Ap,i.e., x € A =
x € Ap. gw/A, is the nearest-neighbor interpolation
of gy on Ap, defined at each x; € ¥ as follows:

9u /Ap (v) = {g\p (i)

0 otherwise.

if |x; — vl < Ilx; — 2,

(3)

forally,z € Ap. Similarly, Sy /4, denotes the nearest-
neighbor sampling, i.e., sampling on y € Ap that is
nearest to x; € ¥. In other words, the implementa-
tion (2) is performed on a denser lattice Ap and the
positions of the irregular samples from ¥ are quan-
tized to the nearest position on Ap. This allows us
to avoid the cumbersome interpolations done in [1]
under the assumption that a suitable value of P is
selected.

2.2. Adaptation of the relaxation coefficient

The choice of the relaxation coefficient A in equation
(2) has a direct impact on the convergence proper-
ties of the algorithm; the greater the A, the faster
the convergence, but only up to some A, above
which the algorithm becomes unstable. Experiments
have shown that the value of A\p,4, in (2) is closely re-
lated to the properties of the irregular sampling grid.
Namely, the algorithm has been most prone to insta-
bility in image regions where irregular sampling grid
is the densest. Clearly, when increasing A above A4z,
the algorithm starts to diverge in those image regions
where the number of irregular samples per area is the
highest. That is why it is proposed to introduce an
additional A-correcting term in equation (2) as follows
[4, 5]:

gﬁl = B[gﬁp + (AN dw)Sw/r, (9w/a, — g/]{p)]- (4)

where dy are samples of a function describing local
density of irregular grid. The algorithm implementa-
tions based on (4) allow higher values of A4z, and
therefore faster convergence than those based on for-
mulation (2). As it turns out, the values of Apqz
become only marginally dependent on the degree of
variation in the local densities of irregular grids.

To be a good descriptor of local grid density, the
function d should equal 1 where the grid is regular,
should be greater than 1 in areas where there are more
samples of irregular grid than those of regular one,
and no more than 1 when converse is true. Experi-
ments show that the actual definition of the function
is not critical; various functions d seem to work almost
equally well.

2.3. Implementation
2.3.1. Lowpass filtering operator

Properties of the low-pass filter implementing the B
operator in (4) are crucial for the algorithm’s per-
formance. Let’s assume for now that the relaxation
parameter A equals 0. Then, the algorithm (4) degen-
erates to repetitive filtering of the initial data set. In
frequency domain, such a repetitive filtering is equiva-
lent to a repetitive multiplication by filter’s frequency



response that results in increasing amplification of the
signal for frequency bands where filter’s magnitude
response is greater than 1, and increasing attenua-
tion where this response is less than 1. Non-ideal
filter frequency response influences algorithm stabil-
ity, therefore in [5] two constraints has been imposed
on it. Firstly, the filter should be ’passive’, i.e., its
frequency response should satisfy:

|H(w)| <1,Vw (5)

This requirement is particularly important for fre-
quency w = 0 since images intensities are non-negative,
and, moreover, have large DC component. Indeed, it
has been observed that for filters that amplify image
DC component, formula (4) is unstable.

Secondly, it is desirable that for passband frequen-
cies, |H (w)| be equal to 1.0, or very close to it. In such
a situation, the relaxation coefficient A in (4) need not
compensate for the attenuation of past results. Once
more, this is particularly important for the DC com-
ponent of an image. Hence, the second constraint is:

|H(0)] = 1. (6)

This means that the frequency response of the filter
has (local) maximum for w = 0.

At a glance, it seems that the amount of filter at-
tenuation in the stopband is not critical, since the
repetitive filtering enhances it quite effectively. Ex-
periments show, however, that good attenuation is im-
portant for the removal of high-frequency components
of recent corrections in (4). Clearly, it appears that for
best results the error weights in passband and stop-
band in the Remez exchange algorithm for equiripple
FIR filters should be approximately the same.

An important result of [4] is that generally very
good filters fail to operate correctly in image areas
where local density of irregular sampling grid is too
low. The best space-invariant filter seems to be the
compromise one, the overall sharp and contrasty in-
terpolated image apperance is in contradiction with
sizes and intensities of false black spots in ill-defined
image regions. That is why the use of space-variable
filters is analyzed in the paper.

2.3.2. Local grid density function

It has been observed in [4] that the actual definition
of the local density grid function dg in (4) has little
influence on the performance of the whole algorithm.
This means that a simplified approach to its defini-
tion should work as well. Therefore, the function dg
can be obtained by smoothing out (or spreading) the
following ‘presence’ function (3):

I(x) = sign{gu/n, ()},  x=[z,y]"

i.e., the function that is equal to 1 at nearest-neighbour
positions from ¥, and zero otherwise. The smoothing
filter should have non-negative impulse response, as
local density function cannot be negative, and should
retain the signal energy. We are implementing two
smoothing filters, one obtained from impulse response:

hi(z) = [0.05,0.17,0.56,0.17,0.05],

described earlier in [4, 5] is used for computing dg in
(4); the other one used for evaluating local grid den-
sity to control the space-variable bandwidth limiting
operator is based on filter

he(z) = (25/17)[0.05,0.17,0.24,0.17,0.05).

The smoothing filters are defined as follows: h(z) =
P2hy(x)*ha(z)*...xhp(x), where * is the convolution
operator (P — 1 times self-convolution and suitable
gain). This 1-D filter horizontal filter is convolved
with its transposed (vertical) sibling to obtain a sep-
arable 2-D FIR filter. Both density grid functions,
including dy, are therefore obtained by the following
filtering:

dy(z,y) = 9(x,y) * h(z) * h(y).

To avoid problems with divisions by zero in (4), all
“unused” samples of the resultant density grid func-
tion dg in (4), i.e., not coinciding with positions in ¥,
have been set to 1.0.

3. EXPERIMENTAL RESULTS

The method has been implemented in Matlab, and
tested on a pair of ITU-R 601-resolution stereoscopic
images Flowerpot, Fig.3, in the context of disparity-
compensated interpolation: the right image has been
reconstructed by applying disparity field to the ap-
proximation of the left image. Namely, grid samples
of the approximated left images have been obtained
by reverse application of disparity field to the right
image, and then by bicubic interpolation, which tech-
nique eliminates errors of disparity field [4].The algo-
rithm has been tested for oversampling ratio P = 4.
The space-variable bandwidth limiting operator B
(4) has been realized in the simplest possible way as a
pair of separable low-pass FIR filters: basic one with
passband around Nyquist frequency, and narrowband
one, choice of filter for generating a pixel has been
done on the basis of local grid density function value.
The filters have been designed using the Remez ex-
change algorithm for linear-phase equiripple FIR fil-
ters with some modifications. Namely, although the
method allows easy determination of band edges and
ratio of ripples in the passband and stopband, there is
no direct way to impose the constraint that filter fre-
quency response have maximum at w = 0. However,
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Figure 1: Frequency responses of filters used for con-
struction of space variable bandwidth limiting opera-
tor B in (4).

this requirement has appeared to be crucial for the
efficiency of the whole algorithm. The desired filter
property has been obtained by splitting filter pass-
band into two parts: one from frequency 0 to 0.017,
and the second from 0.027 to the required passband
edge, frequency response in the second band has been
described not as a flat one, but rising from some value
1 — a to 1, a has been found experimentally. Addi-
tionally, error weights in filter bands have been set to
100 for the band from 0 to 0.01w, and to 1 for the
remaining two bands, and band edges slightly mod-
ified. Relatively short 17-tap filters have been used,
the transition band of the regular filter has been orig-
inally set to 0.75/P and 1.25/P of Nyquist frequency,
ie. from (3/16)7 to (5/16)mw, compare [8, 4, 5]). It
appeared that reasonable narrowband filter passband
and transition band could not be narrower than ap-
proximately half of those for the regular filter, Fig.1.
Then, filter coefficients have been normalized by di-
viding them by their sum, i.e., by H(0). In this way,
the conditions (5) and (6) have been met.

Results for the space-variable filter have been com-
pared to those for a fixed filter, here they have been
obtained using the same filter with the narrowband fil-
tration switched off. Relaxation coefficient has been
set to A = 0.7, higher values are possible, but they
result in stronger oscillations in PSNR, curves. The
treshold between regular and narrowband filtration
has been set experimentally to 0.67, i.e. narrowband
filtration is executed in regions where on the average
they are less than approximately 2 irregular samples
in the area associated with 3 regular grid positions
(grid A). As can be seen from Fig.2, higher perfor-
mance of space-variable filter in terms of PSNR and
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Figure 2: Evolution of the luminance reconstruction
error of Flowerpot image interpolated using space-
variable and fixed filters.

Figure 3: Original right image from the stereo pair
Flowerpot.

convergence rate is evident.

What is even more important, the new realization
of B operator (4) seems to solve problems with locally
ill-defined sampling grids. In Fig.4 excerpts from the
original image, and from interpolated after 13 itera-
tions ones are shown. The excerpts contain areas of
strongly disturbed irregular grid. As can be seen, the
interpolated image for fixed filter exhibits the same
type of errors as filters from [4], black spots on bor-
ders between near and far objects, while the image
processed by the space-variable filter is almost error-
free. Moreover, details lost under black spots in the
former image are somehow reconstructed in the latter
one. There is a small window detail on the right side
of the image that is better reproduced by the fixed
filter, nevertheless, the overall performance improve-
ment, due to space-variable method is clearly visible.



4. CONCLUSION

We have presented the space-variable implementation
of interpolating regularly sampled images from irreg-
ular grids based on POCS methodology. The new
technique gives much better results in terms of PSNR,
convergence rate, and visual quality than approaches
in which bandwidth limitation operator is fixed (not
space-variable). The simplest realization of such band-
width limitation operator has been described, being
a filter with two sets of coefficients, one used on well-
defined parts of the irregular grid, and the other for
processing sparcely sampled regions. The implemen-
tation is time efficient, but requiring a lot of computer
memory. It is then interesting how this approach
will work when applied to sophisticated, but time and
memory efficient frequency-domain technique from [4].
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Figure 4: 60 x 180-pixel excerpts from original Flow-
erpot image (center), and its interpolations: space-
variable (top), and fixed filter (bottom).



