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Abstract

In the paper' we describe a new approach to gen-
eration of orthogonal transforms that self-adapt to
arbitrary shapes. The new algorithms are derived
from flowgraphs of standard fast transform algo-
rithms by a suitable modification of their substruc-
tures. For simplicity we show how to derive a
shape-adaptive transform from the discrete Walsh-
Hadamard transform (DWHT) flowgraph. We com-
pare performance and computational complexity of
new algorithms with those of several well-known
approaches. It can be clearly seen that for DCT
the proposed approach gives a very beneficial per-
formance/complexity ratio compared to other well-
known techniques.

1 Introduction

All image and video compression standards today
are based on uniform partitioning of data into rect-
angular blocks. The schemes suffer from two ba-
sic drawbacks. First, for very low bit rates block
boundaries emerge. Secondly, bit flow organization
around rectangular blocks does not allow for flexible
manipulation of data streams. One of approaches
to alleviate the problems consists in image parti-
tioning into irregularly-shaped regions, followed by
separate compression of each region. The benefit
is that with bit rate reduction distortion increases
uniformly within the whole region since it is treated
as an entity. Additionally, a segment-sequential
transmission or storage becomes possible facilitat-
ing such functionalities as object-by-object progres-
sive transmission or database query by object. Two
approaches to the region transformation have been
dominant to date: extrapolation of data followed by
a standard transform and shape-adaptive transform
2, 3, 5].

In the paper we propose a new approach to fast
shape-adaptive orthogonal transforms generation.
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From flowgraphs of fast DWHT and DCT algo-
rithms we derive their new shape-adaptive variants,
section 2. We study the complexity of the shape-
adaptive DCT-like transform with respect to some
well-known algorithms, section 3. In section 4 we
show that the new method has good energy com-
paction properties.

2 New algorithm

For our purposes we can assume that image sam-
ples either belong to a region, or to its background.
The underlying idea in the new shape-adaptive al-
gorithm is the replacement of some operations of a
fast orthogonal transform algorithm in such a way
that the background data samples are ignored, while
the overall transform remains orthogonal.

Consider the following matrix representation of a
fast orthogonal transform algorithm:

T=Tx-...Tip1-Ti - Tisg-...To-T1. (1)

Let’s assume that products Tk -... T;41,and T;_4 -
... Ty - Ty are proportional to orthogonal matrices,
and that the matrix T; is orthogonal. If the matrix
T; is replaced by another orthogonal matrix Q;,
then obviously the new transform:

T=Tk-...Tit1 Qi Ti_q-...Ty-Ty.

represents also an orthogonal transform, although
different from that represented by T.

We need to define the new matrix Q; in such a
way that the overall transform T be shape-adaptive.
We impose the following two requirements:

1. To be defined inside a region, T must not mix
samples inside and outside of the region bound-
ary.

2. To maximize the computational efficiency of
the algorithm, T must not process the back-
ground samples at all.

Let x = [z(0) ... (N — 1)] be the input vector
of the i-th step of a fast orthogonal transform algo-
rithm described by an N x N matrix T;. Suppose
that the input sample z(k) belongs to background



and we wish that it appear at position j at the out-
put. Then, in order that z(k) not be “mixed” with
samples from the region, column & of Q; should con-
sist of zeros, except for [Q;]; r equal 1 to pass z(k)
to the output. At the same time second condition
implies that all entries in the row j, except [Q:] .
can be set to zero. So, the matrix Q; takes the
following form:

oo ---  qo,k—1 0  qgok+1
Q= | 10 G-1h-1 0 @i—1k41
* 0 - 0 1 0
qdj+1,0 q5+1,k+1

gji+1,k—1 O

The orthogonality of Q; is guaranteed if the matrix
Q] obtained from Q; by the rejection of column &
and row j is orthogonal as well. If there are more
samples at the input to T;, the same idea can be
applied to Q) again.

The special case of N=2 is a very impor-
tant one since a 2x2 matrix Q; describes a two-
point butterfly. Two-point butterflies are build-
ing blocks of many fast orthogonal transform algo-
rithms. Namely, when any input sample belongs to
the background the T;’s simplify to

Vlz[()l],orVS:[(l)(l)]. @)

With the above permuting butterflies, background
samples can be passed through at the same position
(V1) or they can be moved around (Vg) without
affecting samples from the region.

Due to its particular simplicity, we will use the
Discrete Walsh-Hadamard (DWHT) algorithm to
demonstrate the proposed approach. Probably
the most elegant definition of the N-point non-
normalized DWHT when N is a power of 2 is given
by the following recursion [1]:

Tnpp 0 Inse  Inge ]
Ty = :
o [ 0 Twp ] { Ingz ~Ing

where subscripts show dimensions of submatrices,
and T; = [1]. For N = 8 the recursion stops af-
ter formulation of the algorithm as a product of 3
matrices: T = T3 - Ty - Ty, where e.g.:

1000 1 0 0 0
0100 0 1 0 0
0010 0 0 1 0
T, -|0001 0 0 0 1
=11 000 -1 0 0 o0}
0100 0 -1 0 0
0010 0 0 -1 0
(0001 0 0 0 -1 |

Operations performed by the three matrices above
can be described by a flowgraph presented in Fig. 1.

The flowgraph shows that each algorithm stage con-
sists of four independent operations (butterflies).
For example, the third butterfly from the first stage
(marked by bold lines in Fig. 1) can be described
by the following matrix:

100000 00
010000 00
001000 10
000100 00
Ts=l000010 00 (3)
000001 00
001000 -10
(000000 01|

Fig. 2 shows a two-point multiplierless butterfly
and its equivalent form. Based on the equivalent
form from Fig. 2 matrix Ty 3 can be decomposed
into two ones, an orthogonal matrix:

10 0 000 0 0O
01 0 000 0 0
00 v2/2 00 0 v2/2 0
00 0 100 0 0
00 0 010 0 0}
00 0 001 0 0
00 v2/2 00 0 —/2/2 0
00 0 000 0 1]

followed by a diagonal one performing multiplica-
tions by v/2. So, if sample z(6) at the input to T 3
belongs to background, then there exist only two
possible replacements for T} 3:

10 0 00 0 0 0]
001 0 000O0O0
00 v2 00000
Q1_00010000
B=100 0 0100 0]
00 0 00100
00 0 000O0T10
|00 0 0000 1|
and
10 0 00 0 0 0]
01 0 000UO0O0
00 0 00O0T1F0
s |00 0 10000
Qs=100 0 01000
00 0 00100
00 v2 00000
|00 0 0000 1|

Note that in column 6 the non-zero entry equals
1 although it should be V2. This is done to save
computations as value of background sample is ir-
relevant.

At the output of the first stage the background
sample z(6) will appear as a sample with index 2
or 6. This means that the corresponding butter-
fly from the second stage should be replaced by a



permuting butterfly. The same reasoning applies to
the subsequent stages. The resulting DWHT-based
transform completely ignores the background sam-
ple z(6).

3 Implementation and com-
plexity of the new method

Flowgraphs of DCT algorithms are not so regular
as that of the DWHT one [6], nevertheless, the only
important complication is due to the appearance
of non-trivial orthogonal butterflies, which can be
transformed into permuting butterflies, too. The
shape-adaptive algorithm consists of two stages.
The first stage generates a decision table. In the
second stage calculations are performed; each but-
terfly is preceded by a switch that decides what type
of operation is done (usual DCT or permuting but-
terfly). The switch uses the decision table from the
first stage. So, our estimate is that the computa-
tional complexity of the new algorithm is approxi-
mately that of two DCT algorithms.

Among other methods the lowest computational
complexity is attained by data extrapolation tech-
niques followed by a rectangular DCT; their com-
plexity is that of one DCT. The method of Sikora
and Makai [5] is the only shape-adaptive method
that have computational complexity comparable to
the new algorithm, when small data blocks and fast
DCT algorithms are used. However, a technical re-
alization of all necessary DCT algorithms is com-
plicated, while computation of DCTs directly from
the definition makes Sikora’s method computation-
ally complex.

The computational complexity of other shape--
adaptive transform methods tested here is much
greater; for KLT and Gilge method it is of the order
of O(N®) for N x N-point segments. For compari-
son, complexity of Sikora’s method computed from
the DCT definition is O(N?), while that of the DCT
and new method is O(N?log, N).

4 Experimental results

To evaluate the performance of the new algorithm
we have performed experiments with synthetic re-
gion shapes applied to synthetic data. In addi-
tion to the proposed DCT-like shape-adaptive al-
gorithm we have software-simulated and tested 6
approaches: KLT, Gilge’s approach, Sikora’s ap-
proach, and DCT with extrapolation based on
mirror-image extension and zero padding.

Fig. 3 shows the basis restriction error € as a
function of p, the fraction of the highest-energy
coefficients used for image reconstruction, for two
synthetic shapes: regular “ellipse” and highly ir-
regular “atol”. To generate the synthetic data we

have used a 2-D AR process based on Markov-
1 model in horizontal and vertical directions with
model parameter p = 0.9, similarly to [4]. The KLT
clearly outperforms the other methods. Note the
very close performance of Sikora’s and Gilge’s meth-
ods in the case of ellipse but better performance
of Gilge’s approach (by about 2dB) for atol. The
new DCT-like algorithm performs about 1dB below
Gilge’s and Sikora’s methods for ellipse, while for
atol it attains Sikora’s performance for lower com-
pression but loses up to 1dB for higher compression.
The mirror-image and zero-padding DCTs perform
much worse at lower compression for ellipse; for
higher compression, however, mirror-image DCT
performs similarly to our algorithm but in this range
all the differences are small anyway. For atol mirror-
image DCT performs slightly better than our algo-
rithm at high compression but loses up to 1dB for
lower compression.

5 Summary and conclusions

We have presented a new class of fast shape-adap-
tive orthogonal transforms. We have discussed an
example from this class, a shape-adaptive transform
derived from DCT flowgraph. We have compared
its computational complexity with those of other
well-known shape-adaptive transforms and we have
evaluated its performance experimentally.

The method of Sikora [5] seems to be currently
the most promising approach for shape-adaptive
transformation. However, when applied to coding of
large regions the technique becomes computation-
ally complex. In contrast, the proposed algorithm
has the complexity of about two DCTs, only. Algo-
rithm’s performance has been shown to be slightly
inferior to that of Sikora’s method.
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Figure 1: 8-point DWHT algorithm.
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Figure 2: Standard multiplierless two-point butterfly
and its representation by an orthonormal operation
followed by connection multipliers.
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Figure 3: Basis restriction error ¢ [dB] as a function of fraction p of highest-energy coefficients retained for
2-D Markov AR process with p=0.9 for (a) ellipse; and (b) atol.



