REAL-TIME RENDERING OF MULTIPLE VIEWS
USING STANDARD GRAPHICS HARDWARE
Chun-Weij Chan

Dec 15, 2005
Boston University
Department of Electrical and Computer Engineering

\ Technical report No. ECE-2005-05 /

BOSTON
UNIVERSITY

REAL-TIME RENDERING OF MULTIPLE VIEWS
USING STANDARD GRAPHICS HARDWARE

Chun-Wei Chan

BOSTON
UNIVERSITY

Boston University
Department of Electrical and Computer Engineering
8 Saint Mary’s Street
Boston, MA 02215
www.bu.edu/ece

Dec 15, 2005

Technical report No. ECE-2005-05

Summary

The objective of this research is to improve the speed of processing multiview
images before displaying them on automultiscopic display devices such as the
“Synthagram” from Stereographics Corp. Displaying these images without
hardware support takes a lot of time and thus is not in real time. In this report, we
describe the process of pre-processing and rendering multiview images,
investigate means of accomplishing both using general CPU (central processing
unit) as well as GPU (graphics processing unit) under OpenGL, and compare
performance of different approaches. Although none of the investigated methods
is capable of real-time performance (i.e., at least 30 frames per second) for full-
screen images, it is clear that GPU-based pre-processing and rendering under

OpenGL outperforms CPU-based approach by at least an order of magnitude.

Contents

4. Shader Language

5. Results and Conclusions

List of figures and tables

1. Figure 1 Block diagram of mulltiview rendering...........ccoooeeeieeeiiiiiennnnn. 2
2. Figure 2 CPU-based multiview rendering...........ccceevvvvviiiieeeeeeeeeiiinnnn, 3
3. Figure 3 GPU-based multiview rendering............ccoovvuuiieieeeeeeeeeeeiinnnnn. 5
4. Figure 4 Typical steps in graphics processingon a GPU..................... 9

5. Table 1 Experimentally-measured performance in frames/sec for various

implementations of multiview renderingccoceeiieeiiiiiiiiee, 11

1 Chun-Wei Chan

1. Introduction

Multiview autostereoscopic displays, also called automultiscopic displays,
such as the “Synthagram” from Stereographics Corp., enable visualization of 3D
scenes by rendering several views (9 in the case considered) captured from the
said scene. In order to generate a displayable image capable of causing 3D
sensation, the 9 original views are combined together in a process called
“interzigging”; each subpixel (i.e., color component of a pixel — R, G or B) in the
final image is extracted from one of the 9 source pictures. Since in the process of
combining the 9 source images a single image of the same resolution is
produced, it is clear that subsampling occurs which must be preceded by

lowpass filtering in order to prevent aliasing.

Today, there are primarily two autostereo technologies: one based on the
idea of microlens, also called lenticular, of which the “Synthagram” is an
example, and the other based on the idea of parallax barrier, i.e., opaque sheet
placed over a screen with narrow slits cut out. Both the lenticules and the slits
serve as a light-directing layer that allows viewer’s eyes to see different sets of

pixels on the screen.

The aliasing mentioned before may manifest itself as false colors at sharp
object boundaries, colored noise throughout the image or even spurious patterns

in textured areas. Given screen parameters, such as
e number of views,
e pixel pitch,
e lenticule or slit pitch and angle of orientation,

optimal anti-aliasing filters can be designed []. We assume that such filters are
given and we are concerned only with applying them to the original images, and
then with the subsampling and multiplexing. A block diagram describing the

whole approach is shown in Fig. 1.

Real-time rendering of multiple views using openGL

Alooritivm

9 Views

® filtering

‘ LowPafs Filter

rsrubrsarmplirngr |
2= O Patterns ==
multiplexing

Figure 1 Block diagram of multiview rendering

Although the three steps of multiview rendering, namely, pre-filtering,
subsampling and multiplexing can be implemented in CPU on any computer, for
many applications the rendering speed is as important as the rendering quality.
This research shows that the multiview rendering process can be significantly
accelerated by modern graphics hardware, such as available in a typical
computer graphics card. This report describes three implementations of the
multiview rendering, one by a general CPU and two by a GPU, and presents a

quantitative comparison of the methods’ performance.

3 Chun-Wei Chan

2. Computer Graphics Processing

First, we discuss how the computer graphics works. The basic hardware
components and data flow involved in rendering multiview images using a CPU

are shown in Fig. 2.

Compulter Craphics

Figure 1 CPU-based multiview re'ndering

As Fig. 1 shows, in CPU-based multiview rendering images are first loaded
from storage device into system memory. If the images need to be modified (e.g.,
anti-alias filtering), they are transferred to the CPU using the system bus, and
after calculations are completed the new data are sent back to system memory.
Since the goal is to show the resulting picture on the screen, the data are sent to
the graphics card and then output to the display device. There are several steps
here that can slow down the process. One is loading images from a hard drive,
but in this project we assume the data have already been stored in the system

memory. This is not unreasonable because in the envisaged 3D applications

Real-time rendering of multiple views using openGL

images are captured by 9 cameras, that are likely to save the data directly in the
system memory at a fixed memory address. The images can be accessed
directly from systems memory without loading them from a storage device again.
The second noticeable slowdown is outputting the data to a graphics card, and
displaying the images on a screen. Here the bottleneck is in the data passing
through the system bus to the graphics card. This problem can be only solved by
faster hardware. The third and most important slowdown are calculations
performed by the CPU. Assume that each of the 9 images is of n1 x n2
dimension, and that the anti-aliasing filters are of f1 x f2 dimension. The
complexity is of the order O(n1xn2xf1xf2), because the number of, e.g.,

multiplications, needed is:

convolution n1xn2xf1 xf2

3 color components n1xn2xf1xf2x3

9 images nN1xn2xflxf2x3x9
For example:

n1=1024,n2=1024,f1=7,f2=7

n1xn2xflxf2x3x9=1,387,266,048 multiplications

Even if the image size is small, for example 256x256, it takes a long time to
complete these calculations. We have implemented a CPU-based multiview
rendering and measured the speed of processing images of various sizes. The
experimentally-measured number of processed frames per second are shown in
Table 1. Clearly, the achieved rendering rate is from being in real time (about 30

frames/sec and above) and we need to consider another approach.

An alternative to CPU-based processing is GPU-based processing bypassing

the CPU and performing all the calculations directly on a graphics card. In the

5 Chun-Wei Chan

GPU mode, calculations are all done by a GPU which is the core of a graphics
card and is all pipelined. The CPU performs only some data and instruction
management. Moving this job from the CPU to a GPU is beneficial because the
pipeline architecture is a better fit to image processing despite GPU’s lower clock
rate than that of a typical CPU. Another reason is the fact that while the
performance increase of CPUs changes rather slowly, the performance of
graphics cards is changing dramatically every year. Below, we show in Fig. 3 a

typical data flow and hardware involved in GPU-based multiview rendering.

Computer Craphics

Figure 3 GPU-based multiview rendering

Below we investigate two approaches to the use of GPU in multiview rendering,
one based on the OpenGL language and one based on the Shader language.

Real-time rendering of multiple views using openGL

3. OpenGL

In order to maximally exploit graphics hardware capabilities with the lowest
programming effort, typically either OpenGL or DirectX programming language is

used. We use OpenGL in this project for a number of reasons listed below.

a. OpenGL

OpenGL is the premier environment for developing portable, interactive
2D and 3D graphics applications. Since its introduction in 1992, OpenGL
has become the industry's most widely used and supported 2D and 3D
graphics application programming interface (API), bringing thousands of
applications to a wide variety of computer platforms. OpenGL fosters
innovation and speeds application development by incorporating a broad
set of rendering, texture mapping, special effects, and other powerful
visualization functions. Developers can leverage the power of OpenGL
across all popular desktop and workstation platforms, ensuring wide

application deployment.

b. Industry standard
An independent consortium, the OpenGL Architecture Review Board,
guides the OpenGL specification. With broad industry support, OpenGL is

the only truly open, vendor-neutral, multiplatform graphics standard.

c. Stable
OpenGL implementations have been available for more than seven years
on a wide variety of platforms. Additions to the specification are well
controlled, and proposed updates are announced in time for developers to
adopt changes. Backward compatibility requirements ensure that existing

applications do not become obsolete.

d. Reliable and portable
All OpenGL applications produce consistent visual display results on any
OpenGL API-compliant hardware, regardless of operating system or

windowing system.

7 Chun-Wei Chan

e. Evolving
Because of its thorough and forward-looking design, OpenGL allows new
hardware innovations to be accessible through the API via the OpenGL
extension mechanism. In this way, innovations appear in the APl in a
timely fashion, letting application developers and hardware vendors

incorporate new features into their normal product release cycles.

f. Scalable
OpenGL API-based applications can run on systems ranging from
consumer electronics to PCs, workstations, and supercomputers. As a
result, applications can scale to any class of machine that the developer

chooses to target.

g. Easy to use
OpenGL is well structured with an intuitive design and logical commands.
Efficient OpenGL routines typically result in applications with fewer lines of
code than those that make up programs generated using other graphics
libraries or packages. In addition, OpenGL drivers encapsulate information
about the underlying hardware, freeing the application developer from

having to design for specific hardware features.

h. Well-documented
Numerous books have been published about OpenGL, and a great deal of

sample code is readily available, making information about OpenGL

inexpensive and easy to obtain.

For our project, it is very important that convolution is a simple function call
under OpenGL; only a filter must be specified. The problem in our case,
however, is that we do not need to filter one image only, but we need filter 9
images at a time and then combine them together though subsampling and
multiplexing. In other words, while the image has been passed through a filter,
the filtered image should be sent back and stored in memory. This step makes
the processing slow down. The reason is that the card we tested does not allow a

user to store so much data in its memory. Thus, the performance of this

Real-time rendering of multiple views using openGL

approach depends strictly on the amount of memory a graphics card possesses.
As can be seen in Table 1, there is a significant performance difference between
high-end (Wildcat Il 5110) and entry-level (Quadro FX500) cards. However, the
performance of GPU multiview rendering under OpenGL is faster than that of
CPU-based rendering by the factor of about 5-10. A further speed-up may be
possible if one can accelerate storing the filtered image data before the final

multiplexing.

9 Chun-Wei Chan

4. Shader Language

Another approach to using the GPU for multiview rendering is implement the
method in a language called “shader language”. This language has been
designed for programming GPUs, just like C is for CPUs. Before starting
programming a GPU lets analyze how a GPU works. The discussion below is in

view of Fig. 4.

CDU Drocessing

[| |
n |
| | » [| L -
[| [
[| [| u
Vertices g B il
Transtorm Assemble
. [|
Vertex Processing
B
I
L] Rasterize
= a n
I]
T d T
1 L] -
3 [D I
HHHHHH Interpolate
Domonnoe

Fragment Processing

Figure 4 Typical stef)s in graphics processing on a GPU -

First, vertices are input into a GPU and transformed according to the view
port, and assembled. This processing is called vertex processing. Then, the GPU
performs rasterization and interpolation to finish the image, called fragment
processing. In this project, although we call ours 3D images, we only process 2D
image data. In other words, we only focus on fragment processing program. The

code is very easy to write and is shown in the Appendix. In this method, we still

Real-time rendering of multiple views using openGL

have the problem of storing the filtered image data in graphic cards memory.
With our cards we can store at most 9 images of less than 1024x1024 pixels.
The memory bottleneck skews out performance results but is expected to be less
of an issue with newer graphics cards that today employ even 512MB or onboard
RAM.

We wrote our own convolution code using the shader language and tested it
on the Nvidia card. We could not test this approach on the Wildcat card since it is
an older card that does not support newer OpenGL functions exploited in the

shader language implementation.

11 Chun-Wei Chan

5. Results and Conclusions

The performance results for the CPU-based multiview rendering as well as for
the GPU-based rendering under OpenGL and under shader language is shown

in Table 1 below.

Pesults

CPU : Intel Xeon 1.7G 256k L2 cache (2001)
GPU : 3Dlabs Wildcat Il 5110 300MHz 128MB Memary (2001)

Implementation 256:256 | 512512 | 1024x1024
2D Convolution by CPU 0.431 0.104 0.026
OpenGL Function 5.495 1.163 0.294
(frames/sec)

CPU : Intel Xeon 3.2G 512k L2 cache 1M L3 cache (2003)
GPU : nVidia Quadro FX500 350MHz 128MB Memory (2003)

Implementation 256256 | 512612 | 1024x1024
2D Convolution by CPU 0.854 0.206 0.051
OpenGL Function 3.362 0.778 0.195
Shader Language by GPU 4.891 1.753 0.545

fr c

| [1L]]
Table 1 Experimentally-measured performance in frames/sec for various
implementations of multiview rendering.

Based on the performance results in Table 1 we can conclude that:

a. CPU-based multiview rendering is very slow and is very far from real-time

performance.

b. GPU-based multiview rendering using OpenGL is up to an order of
magnitude faster than the CPU-based rendering. Although the 3Dlabs
Wildcat Il 5110 is a fairly old card, it is a high-performance card that easily
outperforms the newer but entry-level Nvidia card. Still, the performance of

the Wildcat card is not real-time, especially for larger images. The

Real-time rendering of multiple views using openGL

performance would be even slower at 1600x1200 pixels, resolution of our

“Synthagram” SG202 screen for which the rendering was intended.

c. The GPU-based rendering exploiting our own convolution implemented
using the shader language works well and is faster than the OpenGL
implementation by a factor of about 2-3. It seems that this performance

gain increases with the increasing images size.

d. Combining the OpenGL and shader language solutions, we believe it
should be possible to reach real-time performance for 256x256-pixel
images on newer high-end cards. In the comparison table, we only focused
on improving the convolution speed in order to make the comparison fair
(the CPU-based method cannot store images on the graphics card). Also,
not that the sub-sampling pattern did not consist of binary numbers (0 or
1), and this added complexity in multiplications. Should the memory size
permit storage of filtering results on the graphics card and should binary
sub-sampling masks be permitted, the performance of the GPU approach

could be further improved.

13 Chun-Wei Chan

Appendix — C code

/***

SC913 REAL-TIME RENDERING OF MULTIPLE VIEWS USING OPENGL
Chun-Wei Chan

There are three ways to do this algorithm implementation.
1. Convolution by CPU

2. Convolution by OpenGL function

3. Convolution by Shader Language

Usage : glconv.exe <method #> <input> <pattern> <Image Width> <Image Height> <# of Images>

<method #> as listed above
<input> Input file name, | combine 9 images into one RGB file. It is just for easy to bring
Users can easily use ImageMagic to build this. For example:
convert Grille1.bmp -resize 256x256! pa1.bmp
convert Grille2.bmp -resize 256x256! pa2.bmp
convert Grille3.bmp -resize 256x256! pa3.bmp
convert Grille4.bmp -resize 256x256! pa4.bmp
convert Grille5.bmp -resize 256x256! pa5.bmp
convert Grille6.bmp -resize 256x256! pa6.bmp
convert Grille7.bmp -resize 256x256! pa7.bmp
convert Grille8.bmp -resize 256x256! pa8.bmp
convert Grille9.bmp -resize 256x256! pa9.bmp
convert -append pal.bmp pa2.bmp pa3.bmp pad.bmp pad.bmp
a6.bmp pa7.bmp pa8.bmp pa9.bmp gr256.bmp

convert gr256.bmp gr256b.rgb

I T T I

<pattern> Pattern file name

<Image Width> Each single image's width
<Image Height> Each single image's height

<# ofimages> Number of images to be combined

Example:
glconv.exe 1 gr256b.rgb pat256b.rgb 256 256 9

And this program doesn't use any library for any specific OS, so this should be run well on Linux or MacOS X,
as long as their graphics card support OpenGL.

P
*
*
*
*
*
*
*
*
*
*
*
*

***/

#include <iostream>

#include "windows.h"

#include <string.h>

#include "glew.h" /ffor gl extension

#include "glut.h" //insure using the lastest version, put glut in the same directory
#include <gl\glu.h>

#include <gl\gl.h>

/I Due to some opengl functions not easy to put parameters in, so | set some global variables
float start,end;

int testFrames = 10;

float fps = 0;

Real-time rendering of multiple views using openGL

int filterD = 7; [ffilter dimension
float Ipfilter{7][7]={ 0, 0, 0, 0, 0, 0, 0,

0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,1,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0};

Iiloat slpfilterr[7]={ 0, 0, 0, 1, 0, 0, O}; //for separate filter

Iiloat slpfilterc[7]={ 0, 0, 0, 1, 0, 0, 0};

float *IpfilterRGB, *slpfilterrRGB, *slpfiltercRGB;

int pindex = 0;

unsigned char* blank;
GLhandleARB gIProgObj;
GLhandleARB fragShader;

typedef struct {
char *file_name_in;
char *file_name_pattern;
char *file_name_out;
int num_of_img;
int simgWidth;
int simgHeight;
unsigned char *buf, *imgPtr, *imgOut, *imgTem, *patPtr;
int slen; //single frame size
int len;

} imgSeq|nfo;

typedef struct {
int impMethod;
int scrWidth;
int scrHeight;
GLuint *tex;

} glinfo;

Ilimplementation method
I/screen width

[ltexture

imgSeq|nfo isi;
glinfo gli;

static const char *glsl2DConvolution = {
"uniform sampler2D tex, pat;"
"void main(void)"

g

//should manually change this for different size
" const float offset = 1.0 / 256.0;"

/" const float offset = 1.0 / 512.0;"

/" const float offset = 1.0 / 1024.0;"

" const float Ipfilter[49] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,}"

/*

0.0,0.0,0.0,"

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0,

15 Chun-Wei Chan

" 0.0, 0.0, 0.0, 0.0,
0.0,0.0,0.0,"

" 0.0, 0.0, 0.0, 1.0,
0.0,0.0,0.0"

" 0.0, 0.0, 0.0, 0.0,
0.0,0.0,0.0"

" 0.0, 0.0, 0.0, 0.0,
0.0,0.0,0.0"

" 0.0, 0.0, 0.0, 0.0,
0.0,0.0,00}"

vec2 texCoord = gl_TexCoord[0].xy;"

vec4 ¢ = texture2D(tex, texCoord);"

" vecd f1 = texture2D(tex, texCoord + vec2(-offset*3, offset*3));"

" vecd f2 = texture2D(tex, texCoord + vec2(-offset*2, offset*3));"

vecd f3 = texture2D(tex, texCoord + vec2(-offset*1, offset*3));"

" vecd f4 = texture2D(tex, texCoord + vec2(0, offset*3));"
" vec4 f5 = texture2D(tex, texCoord + vec2(offset*1, offset*3));"

" vecd 6 = texture2D(tex, texCoord + vec2(offset*2, offset*3));"

" vecd 7 = texture2D(tex, texCoord + vec2(offset*3, offset*3));"

" vec4 f8 = texture2D(tex, texCoord + vec2(-offset*3, offset*2));"
" vec4 f9 = texture2D(tex, texCoord + vec2(-offset*2, offset*2));"
" vec4 f10 = texture2D(tex, texCoord + vec2(-offset*1, offset*2));"
" vec4 f11 = texture2D(tex, texCoord + vec2 0, offset*2));"
" vecd f12 = texture2D(tex, texCoord + vec?(offset*1, offset*2));"

" vecd f13 = texture2D(tex, texCoord + vec?(offset*2, offset*2));"

vecd f14 = texture2D(tex, texCoord + vec?(offset*3, offset*2));"

—_— = ==

" vecd f15 = texture2D(tex, texCoord + vec2(-offset*3, offset*1));"
" vecd 16 = texture2D(tex, texCoord + vec2(-offset*2, offset*1));"
" vecd f17 = texture2D(tex, texCoord + vec2(-offset*1, offset*1));"
" vecd f18 = texture2D(tex, texCoord + vec2(0, offset*1));"
" vec4 f19 = texture2D(tex, texCoord + vec2(offset*1, offset*1));"
" vecd f20 = texture2D(tex, texCoord + vec2(offset*2, offset*1));"
" vecd f21 = texture2D(tex, texCoord + vec2(offset*3, offset*1));"
" vecd f22 = texture2D(tex, texCoord + vec2(-offset*3, 0));"
" vec4 23 = texture2D(tex, texCoord + vec2(-offset*2, 0));"
" vecd f24 = texture2D(tex, texCoord + vec2(-offset*1, 0));"
" vecd f25 = texture2D(tex, texCoord + vec2(0,0));"
" vecd f26 = texture2D(tex, texCoord + vec2(offset*1, 0));"
" vecd f27 = texture2D(tex, texCoord + vec2(offset*2, 0));"
" vec4 28 = texture2D(tex, texCoord + vec2(offset*3, 0));"
" vecd 29 = "
" vecd f30 =

texture2D(tex, texCoord + vec2(-offset*3,

texture2D(tex, texCoord + vec2(-offset*2, -offset*1));"

-offset*1));
)

((-

((-
vecd f31 = texture2D(tex, texCoord + vec2(-offset*1,
vecd 32 = texture2D(tex, texCoord + vec2(
vec4 33 = texture2D(tex, texCoord + vec2(offset*1,
vecd f34 = texture2D(tex, texCoord + vec2(offset*2,
vecd £35 = texture2D(tex, texCoord + vec2(offset*3,

vecd f36 =
vecd f37 =
vecsd f38 =

texture2D(tex, texCoord + vec2(-offset*3,
texture2D(tex, texCoord + vec2(-offset*2,
texture2D(tex, texCoord + vec2(-offset*1,

-offset*1));"

0, -offset*1));"
-offset*1));"
-offset*1));"
-offset*1));"

-offset*2));"
-offset*2));"
-offset*2));"

Real-time rendering of multiple views using openGL

" vecd 39 = texture2D(tex, texCoord + vec2(0, -offset*2));"
" vecd f40 = texture2D(tex, texCoord + vec2(offset*1, -offset*2));"
" vecd f41 = texture2D(tex, texCoord + vec2(offset*2, -offset*2));"
" vecd f42 = texture2D(tex, texCoord + vec?(offset*3, -offset*2));"
" vecd f43 = texture2D(tex, texCoord + vec2(-offset*3, -offset*3));"
" vec4 f44 = texture2D(tex, texCoord + vec2(-offset*2, -offset*3));"
" vecd f45 = texture2D(tex, texCoord + vec2(-offset*1, -offset*3));"
" vecd 46 = texture2D(tex, texCoord + vec2(0, -offset*3));"
" vecd f47 = texture2D(tex, texCoord + vec?(offset*1, -offset*3));"
" vecd f48 = texture2D(tex, texCoord + vec2(offset*2, -offset*3));"
" vec4 f49 = texture2D(tex, texCoord + vec2(offset*3, -offset*3));"

[* example for 3x3 f||ter
" vec4 bl = texture2D(tex, texCoord + vec2(-offset, offset))
vecd | = texture2D(tex, texCoord + vec2(-offset, 0.0));"
vecd tl = texture2D(tex, texCoord + vec2(-offset, offset))
" vecd t = texture2D(tex, texCoord + vec2(0.0, offset));"
vecd tr = texture2D(tex, texCoord + vec2(offset, offset)
vecd r = texture2D(tex, texCoord + vec2(offset, 0.0));"
vecd br = texture2D(tex, texCoord + vec2(offset, offset)) "

" vecd b =texture2D(tex, texCoord + vec2(0.0, -offset));"

" gl_FragColor = Ipfilter[4]*c + Ipfilter[6]*bl + Ipfilter[3]*] + Ipfilter[0]*t] + Ipfilter[1]*t + Ipfilter[2]*tr +
Ipfilter[5]*r + Ipfilter[8]*br + Ipfilter[7]*b;"
*

"gl_FragColor = f1*Ipfilter{0]+ f2*Ipfilter{1] + f3*Ipfilter[2] + f4*Ipfilter[3] + f5*Ipfilter[4] + f6*Ipfilter[5] +
fr*ipfilter[6] + f8*Ipfilter(7] + fO*Ipfilter[8] + f10%Ipfilter[9] + f11*Ipfilter[10] + f12*Ipfilter[11] + f13*Ipfilter[12] +
f14*|pfilter[13] + f15*Ipfilter[14] + f16~Ipfilter[15] + f17*Ipfilter[16] + f18*Ipfilter{17] + f19*Ipfilter[18] + f20*Ipfilter[19] +
f21*Ipfilter[20] + f22*Ipfilter[21] + f23*Ipfilter[22] + f24*Ipfilter[23] + f25*Ipfilter[24] + f26*Ipfilter[25] + f27*Ipfilter[26] +
28%Ipfilter[27] + f29*Ipfilter[28] + f30*Ipfilter[29] + f31*Ipfilter[30] + f32*Ipfilter[31] + f33*Ipfilter[32] + f34*Ipfilter[33] +
35*Ipfilter[34] + f36*Ipfilter[35] + f37~Ipfilter[36] + f38*Ipfilter[37] + f39*Ipfilter{38] + f40*Ipfilter[39] + f41*Ipfilter[40] +
f42*|pfilter[41] + f43*Ipfilter[42] + f44*Ipfilter[43] + f45*Ipfilter[44] + fA6*Ipfilter[45] + f47*Ipfilter[46] + f48*Ipfilter[47] +
f49*pfilter[48];"
/*
" gl_FragColor = f1*Ipfilter[0] + f2*Ipfilter[1] + f3*Ipfilter[2] + f4*Ipfilter[3] + f5*Ipfilter[4] + f6*Ipfilter[5] + f7*Ipfilter[6]"
" f8*Ipfilter[7] + f9*Ipfilter[8] + f10*Ipfilter[9] + f11*Ipfilter[10] + f12*Ipfilter[11] + f13*Ipfilter[12] + f14*Ipfilter[13] +
" f15*Ipfilter[14] + f16*Ipfilter[15] + f17*Ipfilter[16] + f18*Ipfilter{17] + f19*Ipfilter[18] + f20*Ipfilter[19] +
f21*Ipfilter[20] + "
" f22*Ipfilter[21] + f23*Ipfilter[22] + f24*Ipfilter[23] + f25%Ipfilter[24] + f26*Ipfilter[25] + f27*Ipfilter[26]
f28*Ipfilter[27] + "
" f29%pfilter[28] + f30*Ipfilter[29] + f31*Ipfilter[30] + f32*Ipfilter{31] + f33*Ipfilter[32] + f34*Ipfilter[33]
35*pfilter[34] + "
" f36*Ipfilter[35] + f37*Ipfilter[36] + f38%Ipfilter[37] + f39*Ipfilter{38] + f40*Ipfilter[39] + f41*Ipfilter[40]
f42*Ipfilter[41] + "
" f43*Ipfilter[42] + f44*Ipfilter[43] + f45Ipfilter[44] + f46*Ipfilter[45] + f47*Ipfilter[46] + f48"Ipfilter[47]
f49*Ipfilter[48];"
¥

+

+

+

+

vec4 p = texture2D(pat, gl_TexCoord[1].xy);"
i gl_FragColor = gl_FragColor * p / 255.0;"// doesn't work!

%

void loadImgFile(){
FILE *fr, *frp;

17 Chun-Wei Chan

fr=fopen(isi.file_name_in,"rb");

if(fr'=NULL){printf("\n Input File : %s" isi.file_name_in);
Jelse{printf("Open <%s> Failed\n"isi.file_name_in);}
isi.buf = (unsigned char *)malloc(isi.len);

fread(isi.buf, isi.len, 1, fr);

frp=fopen(isi.file_name_pattern,"rb");

if(frp!=NULL){printf("\n Pattern File : %s"isi.file_name_pattern);
Jelse{printf("Open <%s> Failed\n"isi.file_name_pattern);}
isi.patPtr = (unsigned char *)malloc(isi.len);

fread(isi.patPtr, isi.len, 1, frp);

fcloseall();

}

//0OpenGL image format is from bottom to top, so | do flip
void flipVertical(){
isi.imgPtr = (unsigned char *)malloc(isi.len);
int one_line_size = isi.sImgWidth * 3;
for(inti = 0; i <isi.num_of_img; i++){
isi.buf += isi.slen - one_line_size;
for(int h = 0; h < isi.siImgHeight; h++){
memcpy(isi.imgPtr, isi.buf, one_line_size);
isi.imgPtr += one_line_size;
isi.buf -= one_line_size;

isi.buf +=isi.slen;

isi.imgPtr -= isi.len;

}

/ffor some cards, texture only can be stored 9 or less
//so | do not use that
void bindTextures(){
gli.tex = (GLuint *)malloc(isi.num_of_img);
glGenTextures(9, &gli.tex[0]);
/*
for (int loop=0; loop<2; loop++){
IlglActiveTexture(GL_TEXTUREQ + loop);
glBindTexture(GL_TEXTURE_2D, gli.tex[loop]);
glTeximage2D(GL_TEXTURE_2D, 0, 3, isi.slmgWidth, isi.simgHeight, 0, GL_RGB,
GL_UNSIGNED_BYTE, isi.imgPtr);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
isi.imgPtr += isi.slen;

isi.imgPtr -= isi.len;
¥
}

//method 1 Convolution by CPU
void origConv(){
inth, v, fh, fv;
int midf = (filterD+1)/2 - 1;
int fvalue, ishift, fshift;
float temR, temG, temB, tem;

Real-time rendering of multiple views using openGL

for(h=0;h<isi.slen;h++){
isi.imgOuth] = 0;
}

for(int ii=0;ii<isi.num_of_img;ii++){
for(h = filterD; h < isi.sImgHeight-filterD; h++){
for(v = filterD; v < isi.sImgWidth-filterD; v++){

}

}
}

ishift = (h*isi.sImgWidth + v)*3;

temR = 0;temG = O;temB = 0;

for(fh = 0;th < filterD; fh++){

for(fv = 0;fv < filterD; fv++){

fvalue = Ipfilter{fh][fv];
fshift = ((h+fh-midf)*isi.sImgWidth + (v+fv-midf))*3;
temR += fvalue*isi.imgPtr{fshift];
temG += fvalue*isi.imgPtr{fshift + 1];
temB += fvalue®isi.imgPtr(fshift + 2];

}

}

I/ apply pattern

tem = temR * ((float)isi.patPtr{ishift] / 255);
if(tem>255) tem = 255;

else if(tem<0) tem = 0;

isi.imgTem(ishift] = (unsigned char)tem;

tem = temG * ((float)isi.patPtr(ishift+1] / 255);
if(tem>255) tem = 255;

else if(tem<0) tem = 0;

isi.imgTem(ishift+1] = (unsigned char)tem;

tem = temB * ((float)isi.patPtr[ishift+2] / 255);
if(tem>255) tem = 255;

else if(tem<0) tem = 0;

isi.imgTem(ishift+2] = (unsigned char)tem;

isi.imgPtr += isi.slen;
isi.patPtr += isi.slen;
for(h=0;h<isi.slen;h++)
isi.imgOut[h] += isi.imgTem[h];
memcpy(isi.imgTem, blank, isi.slen);

isi.imgPtr -= isi.len;
isi.patPtr -= isi.len;

}
/*

Method 2 Convolution by OpenGL function

for some old cards only extension can be used, such as 3Dlabs Wildcatll

for newer cards, Convolution function is in ARB_Image

Build Filter -> Enable Filter -> DrawPixels -> Disable Filter -> ReadPixels -> store in Tmp

¥

(do not swapbuffer)

void call2DConvolutionFunc(){
float tem = 0;

loop >l

19

Chun-Wei Chan

}

inti;
memcpy(isi.imgOut, blank, isi.slen);

/ffor cards using extension
glEnable(GL_CONVOLUTION_2D_EXT);
//glEnable(GL_SEPARABLE_2D_EXT);

/ffor cards using ARB_image
IlglEnable(GL_CONVOLUTION_2D);
IlglEnable(GL_SEPARABLE_2D);

for(int n=0; n<isi.num_of_img; n++){
glClear (GL_COLOR_BUFFER_BIT| GL_DEPTH_BUFFER _BIT);
glRasterPos2f(-1.0, -1.0);
glDrawPixels(isi.sImgWidth, isi.simgHeight, GL_RGB, GL_UNSIGNED_BYTE, isi.imgPtr);

Iffor cards using extension
glDisable(GL_CONVOLUTION_2D_EXT);
llgIDisable(GL_SEPARABLE_2D_EXT);

/ffor cards using ARB_image
//gIDisable(GL_CONVOLUTION_2D);
I/gIDisable(GL_SEPARABLE_2D);

glReadPixels(0, 0, isi.sImgWidth, isi.simgHeight, GL_RGB, GL_UNSIGNED_BYTE, isi.imgTem);

for(i=0; i<isi.slen; i++){
tem = (float)isi.imgTem([i] * ((float)isi.patPtr{i] / 255);
if(tem>255) tem=255;
else if(tem<0) tem = 0;
isi.imgTem(i] = (unsigned char)tem;
isi.imgOut(i] += isi.imgTem(i];
}
memcpy(isi.imgTem, blank, isi.slen);
isi.imgPtr += isi.slen;
isi.patPtr += isi.slen;
}
isi.imgPtr -= isi.len;
isi.patPtr -= isi.len;

/ffor cards using extension
glDisable(GL_CONVOLUTION_2D_EXT);
//gIDisable(GL_SEPARABLE_2D_EXT);

/ffor cards using ARB_image
IlgIDisable(GL_CONVOLUTION_2D);
/lgIDisable(GL_SEPARABLE_2D);

glClear (GL_COLOR_BUFFER_BIT| GL_DEPTH_BUFFER BIT) ;

glRasterPos2f(-1.0, -1.0);

IlgIRasterPos2f(-1.0 + ((float)pindex*20/isi.slmgWidth), -1.0); test if it works well
glDrawPixels(isi.sImgWidth, isi.simgHeight, GL_RGB, GL_UNSIGNED_BYTE, isi.imgOut);

void display ()}

glClear (GL_COLOR_BUFFER_BIT| GL_DEPTH_BUFFER_BIT) ;
if(gli.impMethod == 1){

Real-time rendering of multiple views using openGL

origConv();

glRasterPos2f(-1.0, -1.0);

IlgIRasterPos2f(-1.0 + ((float)pindex*20/isi.sImgWidth), -1.0); test if it works well

glDrawPixels(isi.sImgWidth, isi.simgHeight, GL_RGB, GL_UNSIGNED_BYTE, isi.imgOut);
Jelse if(gli.impMethod == 2){

call2DConvolutionFunc();
Jelse if(gli.impMethod == 3){

glEnable(GL_TEXTURE_2D);

//Build Shader Language Link

glProgObj = glCreateProgramObjectARBY();

fragShader = glCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB);

glShaderSourceARB(fragShader, 1, &glsi2DConvolution, NULL);

glCompileShaderARB(fragShader);

glAttachObjectARB(glProgObj, fragShader);

glLinkProgramARB(gIProgQObj);

GLint progLinkSuccess;

glGetObjectParameterivARB(gIProgObj, GL_OBJECT_LINK_STATUS_ARB,
&progLinkSuccess);

if (IprogLinkSuccess){

printf("Filter shader could not be linked\n");
exit(1);

}

//End Build Link

for(int convLoop = 0; convLoop<isi.num_of_img; convLoop++){
glActiveTexture(GL_TEXTUREDO);
glBindTexture(GL_TEXTURE_2D, gli.tex[0]);
glTeximage2D(GL_TEXTURE_2D, 0, 3, isi.simgWidth, isi.sImgHeight, 0, GL_RGB,

GL_UNSIGNED_BYTE, isi.imgPtr);

glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER,GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER,GL_LINEAR);
isi.imgPtr += isi.slen;

glUniform1iARB(glGetUniformLocationARB(gIProgObj, "tex"), convLoop);
glUseProgramObjectARB(glProgObj);

glBegin(GL_QUADS);
glTexCoord2f(0, 0); glVertex2f(
glTexCoord2f(1, 0); glVertex2f(
glTexCoord2f(1, 1); glVertex2f(
glTexCoord2f(0, 1); glVertex2f(
glEnd();

-1,-1);
1,-1);
1, 1);
-1, 1);

glUseProgramObjectARB(0);
IlglActiveTextureARB(GL_TEXTUREQ_ARB + convLoop);
glCopyTexSublmage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 0, isi.sImgWidth, isi.siImgHeight);

glBegin(GL_QUADS);
glTexCoord2f(0, 0); glVertex2f(- ;
glTexCoord2f(1, 0); glVertex2f(;
glTexCoord2f(1, 1); glVertex2f(
glTexCoord2f(0, 1); glVertex2f(-
glEnd();

glReadPixels(0, 0, isi.smgWidth, isi.simgHeight, GL_RGB, GL_UNSIGNED_BYTE,

1,-1)
1,-1);
1, 1)
1, 1):

isi.imgTem);
float tem = 0;

21

Chun-Wei Chan

}

for(int i=0; i<isi.slen; i++){
tem = (float)isi.imgTem([i] * ((float)isi.patPtr{i] / 255);
if(tem>255) tem=255;
if(tem<0) tem = 0;
isi.imgTem(i] = (unsigned char)tem;
isi.imgOut[i] += isi.imgTem[];
}
memcpy(isi.imgTem, blank, isi.slen);
isi.patPtr += isi.slen;

}

glDisable(GL_TEXTURE_2D);

glClear (GL_COLOR_BUFFER_BIT| GL_DEPTH_BUFFER BIT) ;

glRasterPos2f(-1.0, -1.0);

glDrawPixels(isi.sImgWidth, isi.simgHeight, GL_RGB, GL_UNSIGNED_BYTE, isi.imgOut);
isi.imgPtr -= isi.len;

isi.patPtr -= isi.len;

}
glutSwapBuffers();

void keyboard(unsigned char key, int x, int y){

switch(key){
case 27:
exit(0);
break;
default:
pindex = 0;
start = glutGet(GLUT_ELAPSED_TIME) * 0.001;
printf("\nStart Time = %f", start);
for(inti = 0; i<testFrames; i++){
display();
end = glutGet(GLUT_ELAPSED_TIME) * 0.001;
printf("\nDisplay Frame # %d Time = %f", i+1, end);
pindex++;
}
fps=testFrames/(end-start);
printf("\nFPS = %f (%d frames)\n", fps, testFrames);

}

void set2DConvolutionFilter(){

/*

IpfilterRGB = (float *)malloc(filterD*filterD*3);

/[for separate filter

IIslpfilterrRGB = (float *)malloc(filterD*3);

I/slpfiltercRGB = (float *)malloc(filterD*3);

for(int i=0; i<filterD; i++){

for(int j=0; j<filterD; j++){

IpfilterRGBJ(i*filterD+j)*3] = Ipfilter{i][j];
IpfilterRGB|(i*filterD+j)*3+1] = Ipfilter[i][j];
IpfilterRGB|(i*filterD+j)*3+2] = Ipfilter[i[j];

for separate filter
slpfilterrRGBI(i*filterD+i)*3] = slpfilterr(i];
slpfilterrRGB][(i*filterD+i)*3+1] = slpfilterr]i];
slpfilterrRGB[(i*filterD+i)*3+2] = slpfilterr[i];
slpfiltercRGB[(i*filterD+i)*3] = slpfilterc(i];
slpfiltercRGBJ(i*filterD+i)*3+1] = slpfilterc]i];

Real-time rendering of multiple views using openGL

slpfiltercRGB((i*filterD+i)*3+2] = slpfilterc(i];
¥
}

Il for cards using extension

glConvolutionFilter2DEXT(GL_CONVOLUTION_2D, GL_RGB, filterD, filterD, GL_RGB, GL_FLOAT,
IpfilterRGB);

IlglSeparableFilter2DEXT(GL_SEPARABLE_2D_EXT, GL_RGB, filterD, filterD, GL_RGB, GL_FLOAT,
slpfilterrRGB, slpfiltercRGB);

I/glEnable(GL_CONVOLUTION_2D_EXT);

Il for cards using ARB_image

//giConvolutionFilter2D(GL_CONVOLUTION_2D, GL_RGB, filterD, filterD, GL_RGB, GL_FLOAT,
IpfilterRGB);

IlglSeparableFilter2D(GL_SEPARABLE_2D, GL_RGSB, filterD, filterD, GL_RGB, GL_FLOAT, slpfilterrRGB,
slpfiltercRGB);

I/glEnable(GL_CONVOLUTION_2D);
}

void setDefault() {
gli.impMethod = 2;
isi.num_of_img =9;
/*
if(gli.impMethod < 3){
isi.file_name_in = "gr640.rgb";
isi.file_name_out = "gr640out.rgh";
isi.file_name_pattern = "pat640.rgb";
isi.sImgWidth = 640;
isi.sImgHeight = isi.sImgWidth * 0.75;
Ifisi.slmgHeight = 144;
Jelse{*/
isi.file_name_in = "gr256b.rgb";
isi.file_name_out = "gr256bout.rgb";
isi.file_name_pattern = "pat256b.rgb";
isi.simgWidth = 256;
isi.slmgHeight = isi.sImgWidth;
I
}

void setlnit(){
gli.scrWidth = isi.siImgWidth;
gli.scrHeight = isi.slmgHeight;
isi.slen = isi.slmgWidth * isi.simgHeight * 3;
isi.len = isi.slen * isi.num_of_img;
isi.imgOut = (unsigned char *)malloc(isi.slen);
isi.imgTem = (unsigned char *)malloc(isi.slen);
blank = (unsigned char *)malloc(isi.slen);
for(int i=0;i<isi.slen;i++){

blank([i]=0;

}

memcpy(isi.imgOut, blank, isi.slen);
memcpy(isi.imgTem, blank, isi.slen);

}

void main (int argc, char** argv) {
setDefault();

23 Chun-Wei Chan

if (argc>=8) isi.file_name_out = argv[7];

if (arge>=7) isi.num_of_img = atoi(argv[6]);
if (argc>=6) isi.sImgHeight = atoi(argv[5]);
if (argc>=5) isi.sImgWidth = atoi(argv[4]);

if (argc>=4) isi.file_name_pattern = argv([3];
if (arge>=3) isi.file_name_in = argv[2];

if (arge>=2) gli.impMethod = atoi(argv[1]);

setinit();

glutinitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH) ;
glutinitWindowSize (gli.scrWidth, gli.scrHeight) ;
glutlnitWindowPosition (350,1) ;

glEnable(GL_DEPTH_TEST);

loadImgFile();
flipVertical();
if(gli.impMethod == 1){
gli.win[0] = glutCreateWindow(" ~ 2D Convolution using openGL ~ 2D Convolution by CPU");
Jelse if(gli.impMethod == 2){
gli.win[0] = glutCreateWindow(" ~ 2D Convolution using openGL ~ 2D Convolution by openGL
Function");
GLenum err = glewlnit();
if(GLEW_OK = err)
printf("Error: %s\n", glewGetErrorString(err));
if(glewlsSupported("GL_EXT_convolution"))
printf("GL_EXT_convolution is supported! \n");
else
printf("GL_EXT_convolution isn't supported!\n");
set2DConvolutionFilter();
Jelse if(gli.impMethod == 3){
gli.win[0] = glutCreateWindow(" ~ 2D Convolution using openGL ~ 2D Convolution by Shader
Language");
GLenum err = glewlnit();
if(GLEW_OK = err)
printf("Error: %s\n", glewGetErrorString(err));
if(glewlsSupported("GL_EXT_convolution"))
printf("GL_EXT_convolution is supported! \n");
else
printf("GL_EXT_convolution isn't supported!\n");
bindTextures();

}

glutDisplayFunc (display) ;
glutKeyboardFunc(keyboard);
glutMainLoop () ;

