
'

&

$

%

ADVANCED MOTION MODELING FOR 3D VIDEO

CODING

NIKOLA BOŽINOVIĆ

Dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

BOSTON

UNIVERSITY

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

ADVANCED MOTION MODELING FOR 3D VIDEO CODING

by

NIKOLA BOŽINOVIĆ

B.S., University of Nǐs, 2000
M.S., Boston University, 2001

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2006

ii

Approved by

First Reader

Janusz Konrad, Ph.D.
Associate Professor of Electrical and Computer Engineering

Second Reader

John W. Woods, Ph.D.
Professor of Electrical, Computer, and Systems Engineering
Rensselaer Polytechnic Institute

Second Reader

W. Clem Karl, Ph.D.
Professor of Electrical and Computer Engineering and
Professor of Biomedical Engineering

Fourth Reader

Maja Bystrom, Ph.D.
Associate Professor of Electrical and Computer Engineering

iv

To Mina,
my little star.

v

vi

Acknowledgments

For the accomplishment of this thesis, I have to thank the following:

First and foremost, I offer my sincerest gratitude to my advisor, Prof. Janusz Kon-

rad, for his vigorous intellectual support, discriminating guidance, and exacting editorial

standards, which challenged me to do my absolute best - even when I was quite sure I

was already giving it. Working with him during the last six years has been nothing but a

source of immense inspiration and pleasure.

Prof. John W. Woods, to whom I am deeply grateful for two reasons: his outstanding

contribution to the field in which I worked for better part of my graduate work, and for

his insightful comments and suggestions that made my dissertation manuscript so much

better.

Prof. Clem Karl and Prof. Maja Bystrom for their stimulating hours of advice and

their refinement of the thesis details that would have easily escaped my attention.

My excellent mentors and collaborators during three exciting summers I spent at Uni-

versity of Nice, Prof. Michael Barlaud, and Microsoft Research Asia in Beijing, Dr Feng Wu

and Mr. Jizheng Xu. Their inspiring discussions and warm hospitality will be remembered.

My friend and colleague, Mirko Ristivojevic, for flexibility in sharing the same lab space

for five years with me, no less than for his great flexibility and brilliance in sharing ideas.

I would also like to thank all my other colleagues at Boston University for their shrewd

observations and unselfish support.

Dragomir Nikolitch Charitable Fund and Studenica Foundation, for the scholarship

they granted me.

Prof. William Oliver, for helping me and my wife find our place at Boston University,

and – in the absence of our own families here – for being like a family to us.

My parents Dušan and Olivera, and my brother, Neša, for their relentless belief in me.

Finally, I would like to express my deepest love to my wife, Mina, without whom this

accomplishment would not mean nearly as much.

vii

viii

ADVANCED MOTION MODELING FOR 3D VIDEO CODING

(Order No.)

NIKOLA BOŽINOVIĆ

Boston University, College of Engineering, 2006

Major Professor: Janusz Konrad, Ph.D.,

Associate Professor of Electrical and Computer Engineering

ABSTRACT

Driven by new multimedia applications and the growing demand for more flexible and

efficient transmission of video, a new approach to video coding has been recently proposed

as an alternative to classical hybrid schemes. Instead of sequential frame-based predictive

processing, the new approach is based on spatio-temporal 3D transforms, open-loop non-

predictive processing, and embedded quantization and coding. This thesis investigates

motion modeling for this new coding environment, as well as the impact of such modeling

on both coder design and performance.

The first aspect of this thesis deals with video coding based on 3D discrete cosine trans-

form (DCT). We analyze 3D DCT spectrum properties of a globally translating image and

show how to use its characteristic footprint for fast and efficient video coding. Previous

approaches to 3D DCT video coding have lead to rather modest compression gains due to

a limited use of motion characteristics in the transform domain. We develop a coefficient

scanning order that adapts to motion, unlike the fixed zig-zag scanning of JPEG. We com-

bine this adaptive scanning with a new 3D quantization model to design a low-complexity

3D DCT video coder. The new coder consistently outperforms MPEG-2 both subjectively

and objectively (by more than 1.5 dB) at about 25% reduced complexity, while approaching

the performance of MPEG-4 (within 0.8 dB) at less than half computational complexity.

The second aspect of this thesis involves the role of motion in emerging video coders

ix

based on 3D discrete wavelet transform (DWT) and motion-compensated temporal filtering

(MCTF). Motion invertibility, central to the optimality of lifted MCTF implementation,

is first investigated. We introduce a metric for invertibility error between two motion

fields. We develop advanced motion inversion methods and demonstrate their effectiveness

in improving the update lifting step. Experimental results confirm that a better motion

inversion, quantified by lower invertibility error, leads to an increase in coding gain up to

0.5 dB over simpler inversion techniques. We propose a new method for occlusion-aware

modeling and estimation of motion fields and use it to create an adaptive 3D DWT coding

structure. Implicit modeling of occluded/uncovered areas, combined with the use of longer

wavelet kernels, improves both the prediction and update lifting steps and results in the

overall compression gain of up to 1 dB over a non-adaptive coder.

The role of motion in 3D DWT coding motivates our exploration of advanced spatial

motion models. We improve the performance of standard deformable triangular meshes

through topology modification and an enhanced estimation algorithm. We also introduce

a motion model based on hierarchical cubic splines and demonstrate its benefits in terms

of motion-compensated prediction over the traditional block-constant model, especially at

very low (176 × 144 and lower) spatial resolutions. We introduce and implement a new

hierarchical mixture motion model for spatially-scalable motion representation that uses

cubic spline-based motion at lower spatial resolutions and variable-size block matching

at higher resolutions. Experimental results demonstrate up to 1 dB performance gain of

the mixture motion model over the all-block model at lower spatial resolutions without a

negative impact on the full resolution performance. Overall, the best scalable results are

obtained using either one or two spline-based motion layers at the lowest spatial resolutions

of the mixture motion model.

x

Contents

1 Introduction 1

1.1 Outline of the thesis . 7

2 Theoretical background and prior work 9

2.1 Introduction to video compression . 9

2.1.1 Hybrid video coding . 10

2.1.2 3D transform video coding . 12

2.2 Motion modeling and estimation . 13

2.2.1 Block-based motion estimation . 14

2.2.2 Deformable mesh-based motion estimation 16

2.3 Common transforms . 19

2.3.1 Discrete cosine transform (DCT) . 19

2.3.2 Discrete wavelet transform (DWT) 21

2.3.3 Lifting implementation of the wavelet transform 23

2.4 Overview of prior research . 24

3 Motion analysis and video coding in 3D DCT domain 33

3.1 Introduction . 33

3.2 Interpretation of uniform image translation in the Fourier domain 34

3.3 Interpretation of uniform image translation in the DCT domain 38

3.4 Motion estimation in DCT domain . 42

3.5 3D DCT video coding . 44

3.5.1 3D DCT coefficient quantization . 45

3.5.2 3D DCT coefficient scanning order 46

xi

3.5.3 3D DCT support adaptation . 50

3.5.4 Alternatives to DCT-based motion estimation 52

3.5.5 Entropy coding . 52

3.5.6 Computational complexity . 53

3.6 Experimental results . 55

3.6.1 Motion estimation . 55

3.6.2 Quantization and scanning order . 56

3.6.3 Video compression . 60

3.7 Summary and conclusions . 63

4 Subband video coding: Beyond 3D DCT 71

4.1 Introduction . 71

4.2 Wavelet video coder: design and properties 72

4.2.1 Scalability of wavelet video coders 73

4.3 Motion compensated temporal filtering (MCTF) 75

4.3.1 Transversal MCTF implementation 77

4.3.2 Lifting MCTF implementation . 86

4.4 Interpretation of the lifted MCTF . 88

4.5 Importance of motion trajectories (to invert or not to invert?) 90

4.6 Conclusions . 93

5 Invertible motion for wavelet video coding 95

5.1 Introduction . 95

5.2 The importance of motion invertibility . 96

5.3 Motion invertibility error metrics . 98

5.4 Motion inversion algorithms . 100

5.4.1 Motion inversion based on collinearity assumption 101

5.4.2 Motion inversion based on neighbor-frame-copy method 102

5.4.3 Nearest-neighbor motion inversion 103

xii

5.4.4 Spline-based motion inversion . 104

5.4.5 Alternatives to motion inversion for the update step 105

5.5 Experimental results - motion inversion . 106

5.6 Inversion-aware motion estimation . 108

5.7 Temporal wavelet kernels for MCTF . 110

5.7.1 The issue of motion bitrate overhead 110

5.7.2 The 1/3 DWT - Truncated 5/3 wavelet kernel 111

5.8 Experimental results . 113

5.9 Conclusions . 115

6 Occlusion-aware wavelet video coding 117

6.1 Introduction . 117

6.2 Prediction lifting step - the Haar DWT . 117

6.3 Prediction lifting step - the 5/3 DWT . 120

6.4 Exposure/occlusion detection and motion estimation 122

6.5 Occlusion-adaptive lifting for 5/3 temporal wavelet filtering 125

6.5.1 Joint coding of motion fields . 128

6.5.2 Possible extensions towards motion invertibility 128

6.6 Experimental results . 130

6.7 Conclusions . 134

7 Advanced spatial motion modeling 135

7.1 Introduction . 135

7.2 Mesh-based motion estimation for wavelet video coding 137

7.2.1 Enhanced boundary handling . 138

7.2.2 Enhanced mesh-based motion estimation 140

7.3 Experimental results - mesh-based motion 141

7.4 Spline-based motion modeling . 144

7.4.1 Extension to hierarchical splines . 149

xiii

7.5 Experimental results - spline-based motion 153

7.6 Conclusions . 159

8 Motion modeling for spatial scalability 163

8.1 Introduction . 163

8.2 Scalability analysis of ”t+2D” wavelet coding structure 164

8.2.1 Motion failure and subband leakage 167

8.3 Alternative architecture using parallel MCTF design 171

8.4 Modeling motion for spatial scalability . 172

8.4.1 Spatially-scalable motion estimation using VSBM 174

8.4.2 Mixture motion model . 175

8.5 Experimental results . 176

8.6 Conclusions . 182

9 Conclusions and future directions 185

9.1 Contributions . 188

9.2 Future work . 189

9.2.1 Extension of 3D DCT coder to include more complex motion modeling190

9.2.2 Extension to variable-size mesh- and spline-based motion models . . 190

9.2.3 Relaxation of one-to-one mapping constraint for higher-order motion

models . 191

9.2.4 Introduction of fine-granularity motion scalability to the mixture mo-

tion model . 191

9.2.5 Joint coding of motion from different temporal resolutions 192

9.2.6 Further investigation of scalable coding architectures 192

9.2.7 Real-time implementation . 193

References 195

Curriculum Vitae 207

xiv

List of Tables

3.1 Average coding gain/loss of the proposed 3D DCT coder in comparison

with MPEG-2 and MPEG-4 for “Foreman”, “Mobile and Calendar”, “Ste-

fan”, “MIT” and “Coastguard” computed using the method proposed by

Bjontegaard (Bjontegaard, 2001). 63

4.1 Independent estimation vs. motion-inversion: luminance PSNR perfor-

mance [dB] at 1024 kbps (motion rate not included), single level of temporal

decomposition . 92

4.2 Independent estimation vs. motion inversion: luminance PSNR performance

[dB] at 1024 kbps (motion rate not included), three levels of temporal de-

composition . 92

5.1 Comparison of different motion-inversion methods. Luminance PSNR per-

formance [dB] at 512 kbps (motion rate not included), single level of 5/3

temporal decomposition. All sequences are of CIF resolution at 30Hz. . . . 107

5.2 Comparison of different motion-inversion methods. luminance PSNR per-

formance [dB] at 1024kbps (motion rate included), three levels of temporal

decomposition . 108

5.3 Luminance PSNR performance [dB] of various DWT kernels for 30Hz CIF

Stefan sequence. 114

5.4 Luminance PSNR performance [dB] of various DWT kernels for 30Hz CIF

Foreman sequence. 114

5.5 Luminance PSNR performance [dB] of 1/3 and 5/3 DWT kernels for 15Hz

CIF Stefan sequence. 115

xv

6.1 R-D performance (luminance PSNR [dB]) - Stefan (QCIF, 30Hz) 132

6.2 R-D performance (luminance PSNR [dB]) - Mobile and Calendar (CIF, 30Hz)133

6.3 R-D performance (luminance PSNR [dB]) - Flower Garden (CIF, 30Hz) . . 133

6.4 R-D performance (luminance PSNR [dB]) - Football (CIF 30Hz) 134

7.1 Motion bitrate (kbps) for Mobile and Calendar and Football sequences en-

coded at CIF resolution (30Hz). Relative increase in number of nodes and

motion bitrate are also shown. 142

7.2 Motion-compensated prediction PSNR(dB) at QQCIF, 30Hz; no prediction

error is encoded and used. Average over the first 50 frames. 156

7.3 Motion-compensated prediction PSNR(dB) at QCIF, 30Hz; no prediction

error is encoded and used. Average over the first 50 frames. 156

7.4 Motion-compensated prediction PSNR(dB) at CIF, 30Hz; no prediction er-

ror is encoded and used. Average over the first 50 frames. 156

xvi

List of Figures

2·1 Block diagram of a typical hybrid coder. 11

2·2 Block diagram of a three-dimensional transform coder. 13

2·3 Block-matching motion search. 14

2·4 Block-based mapping between two consecutive video frames; not all pixels

from the reference frame fk−1 are used for the prediction of fk while some

are used more than once. 15

2·5 Two approaches to motion compensation: a) block displacement of the

block-based motion model and b) node displacement of the deformable mesh. 17

2·6 Node-point motion estimation using hexagonal refinement. 18

2·7 64 basis functions of 8× 8 2D DCT. 20

2·8 a) Cameraman image, b) its two-level 2D Haar DWT 22

2·9 Video coders employing the discrete wavelet transform. 27

3·1 Illustration of the spectrum of a translating profile for 2D case (1D sig-

nal under translation): (a) FT; (b) DSFT; (c) DFT; and (d) DFT of a

symmetrically-extended 2D signal. 37

3·2 The periodicity implicit in one-dimensional (a) DFT, (b) DCT. 39

3·3 Original N ×N signal u and its 2N × 2N symmetric extension us ((a) and

(d), respectively) that can be decomposed into the sum of four signals: (b)

u1; (c) u2; (e) u3; and (f) u4. 40

3·4 (a) Intensity image u[n1, n3] of a 1D intensity profile u0[n1] ((64 pixels)

uniformly translating by 1.5 pixels between each consecutive two rows; and

(b) its 2D DCT transform. 42

xvii

3·5 (a) First 16 frames of sequence u[n1, n2, n3] (64× 64× 64) which is formed

by uniform [3,0] translation of a still frame u0[n1, n2]; and (b) thresholded

coefficients of its 3D DCT transform. 43

3·6 Examples of several 4 × 4 × 4 quantization volumes (quantization step is

proportional to the marker size). Top row: the effect of varying p for a

constant Q = 2.5; Bottom row: the effect of varying Q for a constant p = 1. 45

3·7 Coefficient scanning for 8× 8 block; a) Zig-zag scan, b) Optimal(reference)

scan for a sample profile u0[n1] (Fig. 3·4), undergoing translational shift with

d1 = 1. 48

3·8 Two-dimensional scans calculated from (3.11) for 8× 8 block and ~φ = 1; a)

λ = 0, b) λ = 0.3, c) λ = 100. 48

3·9 Reconstruction error versus block size. After the block-transform, one quar-

ter of coefficients is retained and used for reconstruction. 51

3·10 Motion vector field for frame #5 of the MPEG-4 sequence “Stefan” using

1/4 pixel precision: (a) block matching (16 × 16), and (b) plane fitting in

the DCT domain (16× 16× 8). 55

3·11 Motion vector field for frame #8 of “Mobile and Calendar” using 1/4 pixel

precision: (a) block matching (16 × 16), and (b) plane fitting in the DCT

domain (16× 16× 8). 56

3·12 Coefficient restriction error expressed as PSNR for the proposed scan with

different values of parameter λ: (a) synthetic sequence with globally trans-

lational motion [d1, d2] = [0, 1], (b) MPEG-4 test sequence ”Stefan”. 57

3·13 Coefficient restriction error expressed as PSNR for different scan orders:

(a) synthetic sequence with globally translational motion [d1, d2] = [0, 1],

Q=2.5, p=1, λ=0.3, (b) MPEG-4 test sequence “Stefan”, Q=2.5, p=1.5,

λ=0.3. 59

xviii

3·14 Rate-distortion performance of the 3D-DCT coder with optimal, 3D zig-zag

and proposed coefficient scans in comparison with MPEG-4 and MPEG-2

coders - Foreman sequence . 61

3·15 Rate-distortion performance of the 3D-DCT coder with optimal, 3D zig-zag

and proposed coefficient scans in comparison with MPEG-4 and MPEG-2

coders - Mobile and Calendar sequence. 62

3·16 Left column: visual comparison of frame #60 from Stefan CIF sequence en-

coded at 768 kbps: (a) MPEG-2 (27.63 dB), (b) proposed 3D-DCT (28.94 dB),

(c) MPEG-4 (29.71 dB). Right column: visual comparison of frame #241

from Mobile and Calendar CIF sequence encoded at 256 kbps: (d) MPEG-2

(21.69 dB), (e) proposed 3D-DCT (24.34 dB), (f) MPEG-4 (25.05 dB). . . . 64

4·1 Separable implementation of the 3D DWT transform in the wavelet video

encoder; ”t+2D” coding structure is shown, with two levels of temporal and

two levels of spatial DWT. 73

4·2 Temporal filtering: (a) Without motion compensation, temporal filtering is

simply performed along the time axis. (b) For maximum temporal decorre-

lation, filtering should follow motion trajectory. 76

4·3 (a) Motion mapping Mk→l; (b) ”Backward” motion field; (c) “Forward”

motion field. 77

4·4 A single step of (motion-compensated) wavelet analysis/synthesis - transver-

sal implementation. 78

4·5 Loss of perfect reconstruction due to interpolation of data already obtained

through interpolation. Reconstruction error is larger for linear interpolation

(top row) than for cubic interpolation (bottom row). 81

4·6 Problem of disconnected pixels in block displacement schemes. 82

4·7 Loss of perfect reconstruction due to non-invertible motion mappings. . . . 84

4·8 Transversal implementation of motion-compensated subband decomposition 86

xix

4·9 Motion estimation for MCTF: a) unidirectional; b) bidirectional. 89

5·1 Illustration of motion invertibility error. In solid lines: (a) Backward motion

dB; (b) Forward motion dF ; (c) Interpolated motion d̄F , derived from dF .

Invertibility error at a pixel in f2k+1 is defined as the distance between the

tail of a motion vector anchored at that pixel and the tip of the corresponding

vector d̄F . 98

5·2 Example of irregular-to-regular motion-field interpolation: reconstruction of

motion vectors at regular positions (hashed) is based on the knowledge of

vectors at irregular positions (black). 100

5·3 “Collinear-extension” motion inversion . 102

5·4 Neighbor-frame-copy motion inversion: (a) unidirectional case, (b) bidirec-

tional case. 102

5·5 “(a) Nearest-neighbor” motion inversion, (b) Spline-based motion inversion. 104

5·6 Temporal subband decomposition and motion vectors required for analysis

for Haar DWT. 111

5·7 Temporal subband decomposition and motion vectors required for analysis

for 5/3 DWT. 112

6·1 Problem of occluded and exposed areas in the Haar MCTF: a) Prediction

step; b) Update step. 118

6·2 Problem of occluded and exposed areas in the 5/3 MCTF: a) Prediction

step; b) Update step. Note that we use terms occluded and exposed pixels

with respect to time direction and not motion vector direction (that might

be opposite). 121

xx

6·3 Iterative motion estimation and occlusion/exposure detection: a) Backward

ME and occlusion detection. Label field cE is initialized to 1 in the first

iteration and dynamically changed during the estimation process; b) For-

ward ME and exposure detection. There is no need to explicitly initialize

occlusion field cO, as its first estimate is already known after the first half

of the first iteration. 123

6·4 Iterative algorithm for detection of occlusion/exposure regions 124

6·5 Adaptive lifting . 126

6·6 Top row: original frames #7 and #8 from Stefan QCIF sequence. Rows

2-4: Occlusion (left column) and exposure (right column) label fields cO(x)

and cE(x) through different motion estimation passes. 129

6·7 Top row: original frames #233 and #234 from Flower Garden CIF sequence.

Rows 2-4: Occlusion (left column) and exposure (right column) label fields

cO(x) and cE(x) through different motion estimation passes. 131

7·1 Comparison of various interpolators of a sine function (input samples are

π/4 apart). Benefits of higher order models are obvious, especially at low

sampling rates (low-resolution data). 136

7·2 Node-point topologies: a) fixed-size block-matching, b) standard triangular

mesh, c) proposed modified triangular mesh. 138

7·3 Difference in motion estimation order between standard scheme (left column)

and proposed scheme (right column). The first three nodes in each iteration

are denoted with circles. 140

7·4 Rate-distortion performance comparing block-matching, mesh, and modified

mesh; Flower Garden sequence at CIF resolution, 30Hz. 143

7·5 Rate-distortion performance comparing block-matching, mesh, and modified

mesh; Mobile and Calendar sequence at CIF resolution, 30Hz. 143

7·6 The centered B-splines of degree 0 to 3. 145

xxi

7·7 Example of the spline control grid; a small number of spline coefficients γ

defined at control points j is used to represent values of motion vectors d at

pixel positions i. 147

7·8 Hierarchical basis representation for L = 3 pyramid levels. The circles indi-

cate the nodes in hierarchical basis. a) The total number of nodes is equal

to the number of variables at the finest (l = 0) pyramid level (notice the

”missing” nodes at all but coarsest resolution); b) All nodes are populated

at each spatial resolution level. 150

7·9 Comparison of three different motion models. Flower Garden sequence,

frame #235. Motion-prediction luminance PSNR is computed between the

current frame and predicted frame. 154

7·10 x- and y-components of motion fields from Fig. 7·9 as grayscale images; left

column: HVSBM; right column: spline-based model. 155

7·11 Motion-prediction performance of block-based motion models at QQCIF

resolution, Flower Garden sequence. 160

7·12 Continued from Fig. 7·11: spline-based motion fields outperform block-based

motion at very low resolutions in terms of motion prediction error. 161

8·1 Block diagram of a ”t+2D” coding scheme. a) Removal of the last temporal

synthesis stage causes no transform or motion mismatch; b) When a spatial

synthesis block is removed, subsequent temporal synthesis is affected as the

inverse MCTF now operates at a resolution different from forward MCTF. . 166

xxii

8·2 Visible artifacts in CIF-encoded/QCIF-decoded sequences Stefan (frame

#20) and Foreman (frame #72), when the ”t+2D” scheme from Fig. 8·1(b)

is used. Motion for temporal synthesis is obtained by scaling-down motion

estimated at CIF-resolution (HVSBM, λ = 34). a) LL spatial subband of

the original CIF Stefan frame, b) CIF-encoded/QCIF-decoded Stefan frame.

Notice the artifacts around player’s left arm and right foot. c) LL spatial

subband of original CIF Foreman frame, d) CIF-encoded/QCIF-decoded

Foreman frame. Notice visible artifacts across the face. 167

8·3 (b) Block diagram of the same ”t+2D” scheme illustrating the subband

leakage phenomenon. 169

8·4 ”2D+t+2D” encoder supporting three levels of spatial scalability. 172

8·5 Motion prediction: both same-scale (~A, ~B, ~C) and previous-scale (~P) motion

vectors are used to predict motion vector of the current block (~D). 175

8·6 Comparison of ”2D+t+2D” CIF-encoding/QQCIF-decoding, 15Hz. a) Fore-

man; b) Mobile and Calendar. 177

8·7 Comparison of ”2D+t+2D” schemes for CIF-encoding/QCIF-decoding, 15Hz.

a) Foreman; b) Mobile and Calendar. 178

8·8 Comparison of reconstructed frame #33 from Mobile and Calendar sequence

at 192kbps, ”2D+t+2D” CIF-encoding/QCIF-decoding, 15Hz. a) LL sub-

band of CIF-resolution frame; b) K = 0 (VSBM); c) K = 1 (one spline-base

motion layer); d) K = 2 (two spline-base motion layers). 179

8·9 R-D performance as a function of the number of spline-based motion layers

(K) for Foreman sequence, CIF encoding/CIF decoding at 30Hz. The best

results for ”2D+t+2D” with layered-motion are obtained for K = 1. 180

8·10 R-D performance as a function of the number of spline-based motion layers

(K). for Mobile sequence, CIF encoding/CIF decoding at 30Hz. The best

results for ”2D+t+2D” with layered-motion are obtained for K = 1. 182

xxiii

8·11 Comparison of reconstruction at 256kbps, frame #44 from Foreman se-

quence, CIF/CIF encoding decoding, 30Hz. a) ”t+2D”; b) ”2D+t+2D”

using K = 1 spline motion levels. 183

9·1 Hierarchical variable-size mesh: (a) Example of hierarchical partitioning of a

triangular patch; by adding new nodes, hierarchical variable-size mesh model

can accurately track motion in the areas of high motion variability (e.g.,

patch 15-16-17) while in the areas of smooth motion larger patches might

be used (4-2-6). (b) ”3-tree” (”ternary-tree”) corresponding to partitioning

in (a). 190

xxiv

List of Abbreviations

1-D One-Dimensional

2-D Two-Dimensional

3-D Three-Dimensional

AVC Advanced Video Coder

CIF Common Intermediate Format (352× 288)

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DVD Digital Versatile/Video Disc

DWT Discrete Wavelet Transform

GOF Group of Frames

GOP Group of Pictures

IPTV Internet Protocol Television

JPEG Joint Photographic Experts Group

KLT Karhunen-Lóeve Transform

MCTF Motion-Compensated Temporal Filtering

MCTP Motion-Compensated Temporal Prediction

MPEG Moving Picture Experts Group

PDA Personal Digital Assistant

PSNR Peak Signal-to-Noise Ratio

QCIF Quarter CIF (176× 144)

QQCIF Quarter QCIF (88× 72)

xxv

xxvi

1

Chapter 1

Introduction

The last two decades witnessed an impressive progress in the area of digital image and video

processing, with the research impact stretching far beyond academia. Advances in imaging

and video technology are fundamentally changing ways in which people communicate visual

information. Virtually all facets of daily life are being affected; visual applications are

increasingly used at work (corporate video-conferencing, video surveillance), in schools

(distance learning, lecture archival), and at home for both personal communication (digital

photography and home video, video-phone) and entertainment (digital TV, DVD). Even

the cinema is quickly moving towards digital big screen distribution.

The rapid development of modern digital image and video systems can be most easily

followed by looking at international compression standardization. Over the years, stan-

dardization has played a central role in shaping new multimedia technologies. Standards

have also been instrumental in swift consumer adoption of new products and technologies.

Their importance stems from the fact that an incredible variety of consumer-level products

requires hardware implementation of the underlying coding algorithms - any attempt at

mass production would be doomed if specifications were constantly changing. Standards

also gained strong support from a large number of competing manufacturers and content

providers. They realized early on that lack of a standard industrial platform - ”the most

of the content working on majority of devices” - would have a catastrophic effect on the

entire industry.

Digital photography was the first to get its international standard. The Joint Pho-

tographic Experts Group (JPEG) still image coding standard was completed by August

1990; commercial applications using it began to show up in 1991. JPEG found its way to

2

the core of virtually all image communication systems, from Internet applications, through

digital photography and document archiving, to medical imaging. JPEG2000, finalized in

2001, delivers even a richer set of features at higher compression rates.

Early expectations from video coding standards were modest. The first international

standard, developed by the Moving Picture Experts Group and named MPEG-1, had

the goal of replacing VHS with a digital equivalent, in both quality and storage capac-

ity. The initial modest goals soon gave way to more exciting applications and higher

goals. Standards quickly moved from MPEG-1 (and similar H.261, designed primarily for

videoconferencing applications) to MPEG-2, which gave birth to one of the most popular

consumer electronics products of all times - video DVD. MPEG-2 was also the backbone

of digital TV broadcasting, forever changing the TV experience for hundreds of millions

of people. MPEG-4 followed in 1999, powering a rapidly increasing video-streaming traffic

on the Internet. Throughout the 1990’s, the paradigm of video coding was practically

synonymous with the concept of temporal motion-compensated prediction, followed by a

spatial Fourier-like transform, popularly called hybrid coding. The newest state-of-the art

video coding standard - Advanced Video Coder - AVC (also known as H.264 or MPEG4

part 10), is not an exception. Some believe that its superb coding efficiency will eventually

define the limit of video compression within the hybrid paradigm. Only future will tell if

AVC/H.264 will indeed be the last standard in the hybrid coding line; as of now, no work

on the next standard (H.265?) is anticipated to start before 2010.

With a major help from standards, consumer video services - not so long ago dominated

by non-interactive standard TV broadcasting - are rapidly expanding. Recent consumer-

oriented breakthroughs in the video technology world include VoD (Video-on-Demand),

TiVo (time-shifting), HD (High-Definition), IPTV (Internet TV), mobile video (Video

iPod, PSP2), and video messaging (video phones).

Excellent compression performance of modern coding systems certainly improved or

even enabled many of these services, which gives rise to a logical question - why do we

need anything better than a state-of-the-art hybrid video coder? To answer this we need

3

to look beyond pure compression rates and into the advanced features of tomorrow’s video

applications and various video distribution scenarios.

Many new video services bring along a shift from the classical distribution media and

displays. It is this growing variety of distribution links (dedicated cable, best-effort Inter-

net, fading wireless channel) and displays (mobile phones, PDA’s, computer monitors, TVs,

HDTVs) that propelled highly-scalable video compression to the top of the desirable video

features list. At the same time, emerging applications that involve video sensor networks

and other low-processing-power mobile devices underline the need for low-complexity video

coding solutions. These two issues, namely scalable video coding and low-complexity video

coding have recently come into focus of video coding community for their importance and

real-life implications.

The classical hybrid schemes have difficulties handling each of these two problems.

The predictive feedback loop, which is at the heart of every hybrid encoder, is ultimately

incompatible with the scalability requirement - it requires some information from decoder’s

side (i.e., target bit-rate and target resolution) in order to operate properly. In contrast,

the premise of scalable coding is that the encoder should operate independently from the

decoder.

When it comes to complexity, it is important to note that two major driving forces

behind the development of hybrid standards were digital TV and DVD. Both these ap-

plications are highly asymmetrical, with content being created and encoded at a limited

number of highly capable sites. As a result, a real-time implementation of hybrid encoder

on a low-power device (e.g., mobile phone, PDA) became very difficult, if not impossible.

In addition to problems of scalability and encoding complexity, the increase in web video-

traffic (and, to a lesser extent, wireless video applications) brought attention to the issues

of error resilience and network-friendliness.

For the above reasons, and in parallel to the development of sophisticated hybrid video

coders, the last decade saw a departure from the classical hybrid schemes. Several new ap-

proaches were proposed, including multiple-description coding, object-based video coding,

4

and distributed video coding, but the scheme based on 3D transforms showed the most

promise. It is the only new scheme to successfully compete with state-of-the-art hybrid

systems in terms of compression performance, while providing desirable features such as

scalability and error resilience. The new 3D framework introduces an intriguing paradigm

shift: instead of sequential frame-based predictive processing, this approach is based on

spatio-temporal 3D transforms, open-loop non-predictive processing, and embedded quan-

tization and coding.

So far, two distinct approaches to 3D video coding have been proposed. In the first

approach, a separable transform is applied directly to the original data without motion

compensation before the transform coefficients are coded (Natarajan and Ahmed, 1977;

Karlsson and Vetterli, 1988; Lee et al., 1997a; Kim and Pearlman, 1997). The other class

of algorithms compensates for motion before applying the transform. Motion compensation

can be implemented either through filtering along motion trajectories (Ohm, 1994; Choi

and Woods, 1999; Pesquet-Popescu and Bottreau, 2001; Xu et al., 2001; Secker and Taub-

man, 2003) or by projecting all frames onto a reference coordinate system (Taubman and

Zakhor, 1994; Wang et al., 1999) and then applying a temporal transform on the sequence

of warped frames.

The early implementations of separable 3D video coding were based on the extension of

popular two-dimensional discrete cosine transform (DCT) to three dimensions. Although

the DCT had already been successfully deployed in both image and video coding, most of

the attempts based on 3D DCT have failed to achieve acceptable coding gains, largely due

to the lack of understanding of the role of motion.

Our motivation for the investigation of 3D DCT video coding is rooted in the belief

that an efficient use of motion is possible in the transform, instead of the original spatio-

temporal domain. At the same time, a shift of motion estimation to the transform domain

and an efficient DCT implementation should result in a low complexity encoder. Discussion

of our contributions to 3D DCT video coding covers the first third of the thesis. Inspired

by an earlier result for the Fourier transform case, we investigate clustering of non-zero

5

DCT coefficients of a uniformly translating image (global, constant-velocity, translational

motion). We use the coefficient clustering to develop a transform-domain method for

motion estimation. We propose a new approach to video compression based on the 3D

DCT applied to a group of frames (GOF), followed by motion-adaptive scanning of DCT

coefficients (akin to ”zig-zag” scanning in MPEG coders), their adaptive quantization, and

final entropy coding.

Our 3D DCT coding design results in a significant improvement over all previously

reported 3D DCT-based solutions and a much lower computational complexity than com-

parable hybrid systems. However, its coding gain is still significantly lower than that of

the newest hybrid coders, such as the AVC/H.264. The main obstacle lies in the overly-

simplistic transform-domain motion model that leads to small coding gains when the as-

sumption of uniform translation over several frames is severely violated. We, therefore, turn

our focus to another multi-frame approach that involves simultaneous temporal processing

of a group of frames through the concept of temporal filtering. This concept is closely

related to another discrete linear transform - the discrete wavelet transform (DWT).

Unlike the spectral-only analysis of the DFT or DCT, the DWT provides a multi-

scale representation of images and video in the space-frequency domain. Wavelets have

already proved to be very useful in image processing - wavelet-based JPEG2000 compression

standard outperforms (in terms of compression gain) the DCT-based JPEG standard and

offers a wider set of features. These include rate/resolution scalability, region-of-interest

(ROI) coding, and random data access. In the light of the wavelet image coders success,

an extension of DWT to 3D video coding was expected to quickly reach the performance

of hybrid coders with the added benefit of scalability.

However, many early attempts, which applied a separable 3D wavelet transform directly

to video data (spatio-temporal volume), failed to produce high coding gains. This soon

led to a realization that, in order to fully exploit inter-frame redundancies, the temporal

part of the transform must compensate the motion. The new paradigm, based on motion-

compensated temporal filtering (MCTF), proved to be a viable alternative to hybrid coding

6

in terms of compression gain, while offering the crucial scalability property (detailed dis-

cussion of scalability is presented in Chapter 4). This concept received a significant boost

when a lifting wavelet implementation was introduced in the early 2000’s, enabling more

efficient motion compensation. The potential of wavelet-based video compression technol-

ogy can be seen in the broad range of applications; while the main focus remains on video

delivery over heterogeneous networks or in error-prone environments, exciting possibilities

exist in video archiving, video surveillance, and interactive remote video browsing.

The main reason for the success and excellent compression performance of hybrid video

coders lies in the advanced motion modeling, developed for years within the standardization

bodies. Not surprisingly, motion preserved its crucial role in a new and significantly trans-

formed wavelet video coding scenery. What is surprising is the fact that the block-based

motion model is still predominantly deployed, in spite of replacing the locally-supported

DCT by the global DWT. The success of block matching, mostly due to its fast and

highly-optimized implementation, is certainly remarkable. Nevertheless, we argue that

such a discrete, rigid, and low-order motion model is indeed a less-than-perfect match for

wavelet video coding. Therefore, we engage in research on advanced motion models and

motion-related wavelet video coding solutions. These topics cover the remaining two-thirds

of the thesis. We first examine the problem of optimal motion/transform combination be-

fore proposing an adaptive structure for the temporal wavelet transform. We investigate

solutions for improved spatial motion modeling and better handling of occluded/exposed

areas. In the attempt to provide high-quality motion suitable for wavelet video coding, we

design a flexible framework that combines desirable features of two motion models: one

based on cubic splines and the other block-based. Our mixture motion model facilitates

a better compensation and higher coding gains by providing continuous motion represen-

tation, high-order spatial modeling of motion, and discontinuity modeling. While such

an advanced motion modeling increases the computational complexity, it seems inevitable

that future video compression algorithms will have to incorporate more sophisticated and

effective motion modeling to achieve better compression performance and richer features.

7

1.1 Outline of the thesis

This thesis deals with various problems of motion modeling in the context of 3D video

coding. In chapter 2 we present basics of two popular transforms that are widely used for

image and video processing - the Discrete Cosine Transform (DCT) and Discrete Wavelet

Transform (DWT). In addition, we describe new and efficient lifting implementation of

discrete wavelet transform. This chapter also covers two popular motion models based on

block-matching and deformable mesh, along with the practical estimation algorithms, and

concludes with the overview of a typical transform video coding system.

Chapter 3 deals in its entirety with video coding based on 3D discrete cosine transform

(DCT). DCT spectrum of a globally translating image is analyzed and mathematically

described. Derived characteristic footprint is used for fast and efficient video coding by

means of motion-adaptive coefficient scanning order and newly proposed 3D quantization.

This chapter concludes with a presentation of a low-complexity 3D DCT video coder. Ex-

perimental results show subjective and objective performance of 3D DCT coder to surpass

that of MPEG-2 and approach the performance of MPEG-4.

Chapter 4 discusses fundamental issues of subband video coding including coding struc-

ture, scalability, and the concept of motion-compensated temporal filtering (MCTF). Anal-

ysis of the motion invertibility problem, central to optimality of popular lifted MCTF im-

plementation, spans over Chapters 4 and 5. To quantify invertibility problem, the novel

”invertibility error” metrics is introduced. Also, proposal of increasingly more complex

algorithms for motion inversion. New twist on motion estimation algorithm that takes mo-

tion invertibility into account and experimental results demonstrating benefits of advanced

inversion conclude the chapter.

Chapter 6 highlights the importance of proper treatment of innovation areas in the

context of MCTF. Use of longer temporal wavelet kernels makes ”innovations-aware” tem-

poral filtering possible. This adaptive structure is based on indirect modeling of occlusion

and exposure areas, which are obtained as an integral part of our new motion estimation

8

method.

Chapters 7 and 8 deal with advanced spatial modeling of motion. We show how modifi-

cations to traditional deformable-mesh topology and motion search algorithm can improve

coding efficiency. We analyze the problem of spatial scalability and propose to use the

so-called mixture motion model. This flexible and efficient model combines superior spatial

modeling of cubic splines at lower spatial resolutions with efficient variable-size structure

of block displacement at higher resolutions. Practical design solutions regarding spatial

scalability and experimental results are presented. Finally, Chapter 9 concludes the thesis,

and gives pointer to future work in this field.

9

Chapter 2

Theoretical background and prior work

2.1 Introduction to video compression

Video coding technology is at the heart of modern communication and entertainment

systems that over the last few decades had a dramatic impact on modern society. Digital

video applications - such as digital TV, off-line video distribution (DVD), or digital home

video - are an integral part of everyday life for hundreds of millions of people around the

world. New services, like TV-over-Internet (IPTV), peer-to-peer (P2P) video streaming,

and a variety of emerging mobile video applications, promise to deliver even more immersive

video experience in the new world of digital video.

The success of modern video applications relies heavily on the underlying compression

algorithms. Their goal is to reduce the immense amount of visual information captured

by video camera to a manageable size so that it can be efficiently stored, transmitted, and

displayed. For example, a digital broadcast of uncompressed standard definition (SD) tele-

vision signal would require a bandwidth of about 250 Mbps1 (millions of bits per second)

- available at every home! This data rate is hardly attainable by consumer-level com-

munication channels. The ongoing transition to High-Definition TV (HDTV) in the US,

additionally increases this bandwidth requirement. It is clear that without highly-efficient

compression, deployment of modern video technologies would be impossible.

The ultimate goal of every video coding system is to eventually display moving images

in a format that can be perceived by viewers. Subjective video evaluation and the related

Human Visual System (HVS) research thus play a significant role in the design of coding

1For this calculation, we assume that SD signal has spatial resolution of 720× 480 pixels, frame rate of
30 frames per second, and uses 8 bits per each of three color channels.

10

algorithms. Yet, the subjective quality testing requires extensive preparations, equipment,

and significant time; it would be very difficult to repeat it each time there is a change in the

coding design. That is why virtually all video coding algorithms are being developed under

a different constraint, namely minimizing some objective distortion for a fixed compressed-

bit budget. This is equivalent to minimizing the number of bits necessary to attain a preset

objective quality level of a reconstructed video. The standard objective measure used in

video coding is Peak Signal-to-Noise Ratio (PSNR), defined as PSNR = 20 log10(
255

RMSE) -

scaled logarithmic ratio of the maximum signal value (typically 255 for 8-bit samples) and

Root Mean-Squared Error (RMSE) of all pixels in the entire video sequence.

In addition to the compression performance of a video coder (also referred to as rate-

distortion or R-D performance) consideration in the overall evaluation may be given to

factors such as coding complexity, scalability support, and memory/latency issues. While

typically less important than R-D performance, these factors may be very significant in the

assessment of a coding technology for the particular application. For example, the rapid

growth of mobile video systems puts more focus on efficient low-complexity solutions while

the ever-increasing variety of displays and transmission channels can be well-served by a

scalable coding system.

2.1.1 Hybrid video coding

From the early work on digital video in the 80’s, majority of research and commercial

development focused on schemes combining predictive and transform coding into efficient

hybrid coding system.

In a typical hybrid coder, predictive coding - also known as Differential Pulse Code

Modulation (DPCM) - is applied first, along the temporal axis. Initially, inter-frame cod-

ing used the same-location pixels from the previous frame to predict pixels in the current

frame. In the presence of moving objects, this simple temporal prediction fails to achieve

satisfying temporal decorrelation of video. More efficient temporal prediction is possi-

ble when spatially displaced pixels from the previous frame are used as predictors. The

11

T Q

Q
-1

T
-1

+

+

+

-

+ +

C

MCP

fk

fk

p

fk

r

D

fk

p
fk-1

p

ME

Motion

Texture

C
-1

Q
-1

T
-1

+
+

+

D

MCP

fk

r

fk

p

fk-1

p

fk

~ ~
~ ~

Encoder Decoder

Decoder

Figure 2·1: Block diagram of a typical hybrid coder.

common name for such motion-adaptive DPCM in the video coding terminology is motion-

compensated temporal prediction (MCTP). Depending on the quality of motion estimation,

excellent temporal decorrelation and corresponding high compression gain can be attained.

In contrast to predictive coding, where signal is coded in the original spatio-temporal

domain, transform coding deploys a discrete linear transform to obtain coefficients that are

subsequently quantized, encoded, and transmitted. Transform coding has proved very effi-

cient for compression of spatially-correlated sources (Clark, 1985). The choice of transform

may vary from traditional transforms with fixed basis functions (e.g., Fourier transform)

to newer, signal-adaptive transforms (like Karhunen-Lóeve Transform - KLT). Two most

popular linear transforms in image and video processing are Discrete Cosine Transform

(DCT) and Discrete Wavelet Transform (DWT), to be discussed in Section 2.3.

After initial motion-compensated temporal prediction, hybrid coder applies a two-

dimensio-nal spatial transform. All standard coders use block-based 2D DCT (or its integer

approximation, as in AVC/H.264) on the residuals from motion-compensated prediction.

Motion vectors used in the prediction stage, quantized transform coefficients, and addi-

tional control data are then all entropy coded and transmitted.

The structure of a typical hybrid video coder is shown in Fig. 2·1. The central part of a

hybrid encoder is a feedback loop that exploits similarities between two consecutive video

12

frames. Compression gains mostly come from the reduction in entropy of residual samples

when compared to the entropy of original frames. A closer look at the coding model reveals

the entire ”decoding” structure inside a hybrid encoder. It is important to notice that the

prediction is based on quantized frames as the originals are not available at the decoder.

A single encoding cycle starts by forming the residual signal f r
k from the input video

frame fk and its prediction fp
k . After the transform (T) and quantization (Q) stages, the

feedback loop begins with recreating (now quantized) residual signal. Its addition to the

previously used prediction fp
k results in the decoded frame f

p
k - this part of the encoder is

identical to the hybrid decoder. In the remaining part of the feedback loop, after a delay

stage (D), the decoded frames are used by the Motion-Compensated Prediction (MCP)

block to form a new prediction for the next input frame. The motion estimation (ME)

block provides motion vectors that control this process. With several modifications, this

coding structure is deployed in all video coding standards, from MPEG-1 to AVC/H.264.

2.1.2 3D transform video coding

In contrast to the feedback loop of hybrid schemes, 3D video coding systems rely on

the feedforward structure shown in Fig. 2·2. A spatiotemporal transform converts the

input video frames into a collection of spatiotemporal coefficients, which are then subject

to appropriate quantization and coding. There is a number of ways in which each of

these stages may be performed - in this thesis, we primarily deal with the spatio-temporal

transform stage.

Very early attempts towards the use of three-dimensional DCT transform were made

in the late 70’s (Natarajan and Ahmed, 1977; Roes et al., 1977). These and similar

approaches have been based on the assumption that when the amount of motion in the

video is small, consecutive frames in the video sequence are likely to be highly correlated.

While these methods had shown the potential on the conceptual level, they also put forward

significant memory requirements for processing 3D volumes of data. High memory and

computational requirements of the algorithm proved to be too expensive for successful

13

Quantization3D Transform Entropy Coding

Inverse
Quantization

3D Inverse
Transform

Entropy Decoding
f

k

f
k

Figure 2·2: Block diagram of a three-dimensional transform coder.

practical implementation at that time.

The use of three-dimensional discrete wavelet transforms for video compression was

first proposed in 1988 (Karlsson and Vetterli, 1988) in an attempt to duplicate the gains

exhibited by two-dimensional subband structures for image coding. Similarly to the early

3D DCT efforts, no motion compensation was used. Instead, one-dimensional wavelet

transform was applied directly to the original video samples straight along the temporal axis

- again, under the assumption that the processed samples are highly correlated. Therefore,

the low pass subband frames should contain the majority of the signal energy. Further

energy compaction was obtained by employing spatial subband decomposition on each of

the temporal subbands, resulting in a final 3D subband representation.

Both the DCT and the DWT approaches have been extensively researched over the

last decade, resulting in sophisticated 3D video coders that can seriously challenge the

performance of hybrid standards.

2.2 Motion modeling and estimation

If video compression is the most important part of every successful consumer video ap-

plication, its own success directly depends on the efficiency of motion estimation. In this

section, we present two most commonly used motion models: block-wise constant model

of block-matching and patch-wise affine model of deformable triangular mesh.

14

f
k-1 f

k

B
i

d
i

Search Region

Figure 2·3: Block-matching motion search.

2.2.1 Block-based motion estimation

While the hybrid coding structure (Fig. 2·1) does not set limitations on the motion model,

block-based models have been traditionally favored for their natural good match to the

block transform of hybrid coders. The simplest block motion model assumes that all pixels

within the fixed-size block undergo the same translational motion. It is, therefore, sufficient

to use only a single motion vector ~d to describe the displacement of the entire block. This

approach works well for as long as the sizes of the blocks that are being matched are

relatively small compared to the frame size.

In a typical block-matching algorithm, the current frame fk is split into fixed-size blocks

(Fig. 2·3); for each block, the best match in the previous frame is found, by minimizing a

matching criterion. Most of the time, this criterion will either be the Sum of Absolute Dif-

ferences (SAD) or the Sum of Squared Differences (SSD). Mathematically, block-matching

motion estimation for the block Bi that returns the motion vector ~di is described as:

~di = argmin
∑

~x∈Bi, ~di∈SR

C(fk(~x)− fk−1(~x− ~di)). (2.1)

The distortion measure C is calculated as either absolute value C(n) = |n| (for SAD)

or squared value C(n) = n2 (for SSD). In all practical implementations, motion search is

limited to a preset ”search range” (SR). Its size depends on the nature of motion in the

15

f
k-1 f

k

Figure 2·4: Block-based mapping between two consecutive video frames;
not all pixels from the reference frame fk−1 are used for the prediction of
fk while some are used more than once.

sequence (fast/slow motion) and other design requirements.

The described process is repeated independently for every block in the current frame

until all blocks are processed. One effect of such estimation method is that, in general, no

one-to-one correspondence exists between the current frame and reference frame, as two

adjacent blocks can, and usually will, have different motion vectors. This is illustrated in

Fig. 2·4. While every pixel in the current frame fk has a predictor, not all pixels from the

reference frame fk−1 are indeed used as predictors. At the same time, some pixels can be

used as predictors two or more times.

This fact has more or less significance depending on what temporal processing frame-

work is used. In a typical hybrid coder, motion compensation is purely predictive2 in

nature and neither coding structure nor efficiency is affected. On the other hand, motion-

compensated temporal filtering (MCTF) requires access to both motion fields (backward

and forward) between the frame pair. This lack of one-to-one correspondence between the

pixels of two processed frames has a significant impact on many important MCTF design

2Only one motion mapping, typically backward - Mk→k−1, is required for proper operation. More on
this notation in Chapter 4.

16

solutions; we will discuss this matter in detail in Chapters 4 through 6.

More recently, in an effort to further improve motion prediction, a modification of

the standard block-matching algorithm was proposed in the form of Hierarchical Variable

Size Block-Matching (HVSBM). Instead of searching for a single motion vector for the

entire 16×16 macroblock, an R-D optimized search has been proposed to find the optimal

block-partitioning map (Qi) of a macroblock Bi and all corresponding motion vectors {~dj
i}.

Mathematically, HVSBM is implemented by solving:

Qi, {~dj
i} = argmin Di + λRi, (2.2)

Di =
∑

~x∈Bi,~d
j
i∈SR

C(fk(~x)− fk−1(~x− ~dj
i (~x)))

for each macroblock Bi, where Di is the total distortion within a macroblock and Ri

represents the cost of coding motion. The regularization parameter λ is used to control

the motion rate. First introduced in the MPEG-4 standard, HVSBM is extensively used

in both AVC/H.264 and many popular wavelet video coders.

2.2.2 Deformable mesh-based motion estimation

Mesh-based motion models have been shown to be a good alternative to block-based mod-

els, such as those used in block matching. In contrast to the block-based model, deformable

meshes are capable of capturing more complex spatial affine motion (accounting for rota-

tion, zoom, and shear), in addition to pure translation. In a regular-mesh case, a regular

topology is used to partition the current frame. This mesh is subsequently deformed, by

node-point displacements, into another mesh in the reference frame. This is unlike block

matching where each block undergoes translational displacement (Fig 2·5).

Two main issues in mesh-based motion estimation are mesh topology and node displace-

ment estimation. Although node topologies can be complex, a very successful approach

has been to use triangular patches (Brusewitz, 1990). In this model, displacements of

three neighboring nodes define a displacement anywhere within a triangle. For any given

location within a patch, this displacement - d∗(~x) - is found by linear interpolation of the

17

f
k-1

f
k

f
k-1

f
k

Figure 2·5: Two approaches to motion compensation: a) block displace-
ment of the block-based motion model and b) node displacement of the
deformable mesh.

motion vectors at the patch vertices. A triangular mesh can be built from the common

square-block partitioning, so that block positions in the current frame are preserved. Mesh

nodes can be set at the corners of all square blocks and each block can be divided in half

along its diagonal, as shown in Fig. 2·5(b).

As for node displacement estimation, one possibility is an independent estimation of

node-point motion vectors, e.g., by maximizing correlation over a small neighborhood of

a node. However, since individual nodes are treated independently in this case, motion

compensation between node-points is often inadequate. In addition, this approach can cre-

18

?
Search
Region

Figure 2·6: Node-point motion estimation using hexagonal refinement.

ate problems with mesh connectivity. To improve this, regularized search-based solutions

to node-point motion estimation with triangular and/or quadrilateral regular meshes and

spatial transformations have been proposed (Nakaya and Harashima, 1994; Toklu et al.,

1996). In particular, Nakaya and Harashima proposed an iterative hexagonal matching

procedure where the motion vector at a node point is estimated by local minimization of

the prediction error. In each iteration, the motion vector di corresponding to the current

node i is perturbed in order to minimize local intensity distortion Di over six triangular

patches formed by the current node and its six neighbors (Fig 2·6):

Di =
6∑

j=1

Cj(fn(~x)− fn−1(~x− ~d∗(~x)), ~di ∈ SR, ~x ∈ ∪ Tj .

As mentioned above, in each of the six triangular patches Tj , the motion displacement

~d∗(~x) is computed using linear interpolation from two known node-point motion vectors

and the current value of the motion vector ~di that is being estimated. It is easy to see that

this assures motion continuity between triangular patches.

This single resolution method was later extended (Toklu et al., 1996) by employing

19

a hierarchy of regular meshes, such that motion estimation on a coarse mesh provides

initialization for the next (finer) level of the mesh. For completeness, we note that a

number of advanced content-based mesh motion estimation algorithms exist - extensive

review is presented in (Altunbasak et al., 2003). However, given typical computational

complexity of content-based mesh motion estimation and additional overhead needed for

the transmission of mesh topology itself, this approach is not as practical as the regular

mesh method for practical compression applications.

2.3 Common transforms

In this section we present two linear transforms that are predominantly used in video

coding, the discrete cosine transform (DCT) and the discrete wavelet transform (DWT).

2.3.1 Discrete cosine transform (DCT)

The discrete cosine transform has been a driving force behind practically all image and

video coding standards in the last 20 years. First introduced by Ahmed et al. in 1974

(Ahmed et al., 1974), it has been used extensively ever since because of its close-to-optimal

performance on natural images. In general case, there are 8 types of the discrete cosine

transform and also 8 types of the discrete sine transform (DST), as defined by Wang

(Wang and Hunt, 1985), where different transform types correspond to different possible

symmetrical extensions at both ends of an input sequence. Together, these transforms are

often called discrete trigonometric transforms (DTT). Out of these 16 types, the DCT of

type 2e (DCT 2e) is by far the most popular DTT used in image and video processing,

due to its excellent energy compaction properties. One-dimensional DCT 2e is defined as

follows:

DCT 2e{u[n]} = Ũ [k] =

√
2− δ[k]

N

N−1∑

n=0

u[n] cos
π(2n + 1)k

2N
, k = 0, ..., N − 1.

In order to compute a multi-dimensional (MD) DCT, 1D transform defined above is applied

separately in each direction. An illustration of basis functions of two dimensional 8 × 8

20

Figure 2·7: 64 basis functions of 8× 8 2D DCT.

DCT is shown in Fig. 2·7.

The DCT 2e is closely related to the DFT; its coefficients can be computed by the appli-

cation of DFT to a symmetrically extended signal using “half-point” symmetric extension

- more on symmetrical extensions in Chapter 3. It is straightforward to show (Pitas, 2000)

that the coefficients Ũ of M -dimensional DCT 2e of a signal are related to DFT coefficients

U s of M -dimensional “half-point” symmetric extension of this signal through the following

relationship:

Ũ [k1, k2, ..., kM] =




M∏

i=1

1
2

√
2− δ[ki]

Ni
e
−j

πki
2Ni


U s[k1, k2, ..., kM]. (2.3)

where Ũ [k1, k2, ..., kM] = DCT 2e{u[n1, n2, ..., nM]} and also U s[k1, k2, ..., kM] =

FDFT{us[n1, n2, ..., nM]}.

The above relationship is the basis for efficient implementation of the DCT using FFT

algorithms (Pitas, 2000). Also, the excellent energy compaction properties of the DCT can

be largely explained using this relationship; a symmetrically and periodically extended

signal has less high-frequency content than a periodically extended signal, due to the

21

absence of discontinuities at each period’s ends (caused in the latter case, e.g., by different

signal values of the first and last signal samples). Note that in the remainder of the thesis

when we refer to DCT, we mean DCT of type 2e as defined above.

2.3.2 Discrete wavelet transform (DWT)

Wavelet theory fills the void between pure spatio-temporal and pure spectral signal process-

ing. Being well-matched to local stationary properties of natural image and video signals,

wavelets have seen rapidly increased usage in image and video compression algorithms as

an alternative to the DCT. The most recent still image coding standard JPEG2000 is based

on wavelets.

Originally conceived as a continuous transform in the mathematical community, wavelets

quickly became a popular signal processing tool among engineers because of the fact that

the DWT can be implemented through multi-stage linear subband filtering. For 2D spatial

processing, two 1D DWTs are applied separably along x and y axis; extension to 3D is

straightforward. An example of two-level 2D Haar DWT with standard subband labels is

given in Fig. 2·8.

When wavelets are used for a motion-compensated temporal video processing, a tem-

poral transform is usually referred to as motion-compensated temporal filtering. As a

temporal decorrelation method, MCTF directly replaces classical frame-based motion com-

pensation. It is important to note that MCTF can be successfully deployed not only in 3D

video coders but also in standard hybrid coders - recently, this has been investigated by

MPEG for use in the existing coding standards.

The Haar wavelet (a.k.a. ”lazy” or D2 wavelet) is the simplest possible wavelet. Despite

its simple structure, Haar wavelet is still frequently used for temporal processing in many

newest wavelet-based coders (often in combination with 5/3 Le Gall’s DWT). For one-

dimensional discrete input signal x[n], high and low pass subbands of the Haar DWT are

22

(a)

HH
1

HL
1

LH
1

LH
2

HH
2

HL
2

LL
2

(b)

Figure 2·8: a) Cameraman image, b) its two-level 2D Haar DWT

obtained using the following analysis equations:

h[n] = x[2n + 1]− x[2n],

l[n] =
1
2
x[2n] +

1
2
x[2n + 1].

These subbands can be used to reconstruct x[n] via the synthesis operation:

x[2n] = l[n]− 1
2
h[n],

x[2n + 1] =
1
2
h[n] + l[n].

The other popular and widely used wavelet kernel is Le Gall’s 5/3 (Gall and Tabatabai,

1988) whose analysis equations are:

h[n] = x[2n + 1]− 1
2
(x[2n] + x[2n + 2])

l[n] =
3
4
x[2n] +

1
4
(x[2n− 1] + x[2n + 1])− 1

8
(x[2n− 2] + x[2n + 2]),

Longer DWT kernels are also frequently used in image and video processing, especially

for spatial decomposition. For example, Daubachies 9/7 DWT is used as a spatial transform

in JPEG2000. For the purpose of temporal processing, Haar and 5/3 kernels remain the

23

most popular wavelets, mainly because of latency and memory issues. In addition, efficient

application of the longer temporal wavelet kernel requires accurate motion tracking over

larger number of frames, which itself might be difficult. As the focus of this thesis is mostly

on temporal video processing, most of discussions will be limited to Haar and 5/3 DWT.

2.3.3 Lifting implementation of the wavelet transform

In the previous section, both the Haar and 5/3 discrete wavelet transforms were presented in

the so-called transversal form. In 1996, Sweldens (Sweldens, 1996) showed how every DWT

kernel can be factored into lifting steps. Not only is the lifting wavelet implementation

more efficient than the transversal; its structure is also much more suitable for the temporal

wavelet processing. Lifting guarantees perfect reconstruction of motion-compensated tem-

poral DWT, regardless of particular motion model used. A detailed analysis of equivalence

between the two implementations and benefits of using one vs. the other is presented in

Chapter 4.

Every analysis lifting stage consists of two distinct steps: prediction and update. In

the prediction stage, odd input samples are predicted from even samples to obtain the

high-pass subband; the update step updates even input samples with samples from this

high-pass subband, resulting in low-pass subband. Details on the construction of lifting

steps for an arbitrary DWT can be found in (Daubechies and Sweldens, 1998). While, in

the general case, such construction might be complex, once lifting steps are found, it is

straightforward to demonstrate the equivalence of these two DWT implementations.

For two DWT kernels that are the topic of our investigation, the lifting steps can be

written as:

prediction : h[n] = x[2n + 1]− x[2n],

update : l[n] = x[2n] +
1
2
h[n],

24

for Haar DWT, and:

prediction : h[n] = x[2n + 1]− 1
2
(x[2n] + x[2n + 2]),

update : l[n] = x[2n] +
1
4
(h[n− 1] + h[n]),

for 5/3 DWT.

2.4 Overview of prior research

In this section we review recent advances in video coding. We specifically focus on: 1)

motion representation, estimation, and compensation and 2) 3D video coding, as these two

topics are of particular interest to this thesis.

Over the last 20 years, digital video coding has been almost unanimously identified with

the paradigm of hybrid coding (also referred to as frame-based video coding) discussed ear-

lier in this chapter. This comes as no surprise as all video compression systems standardized

to date belong to the hybrid coding class. Their development, under the coordination of

the Motion Picture Experts Group (MPEG), dealt with different applications, target bit-

rates, and quality levels over time. First in this family, MPEG-1 (standardized in 1992)

was designed for digital video storage on CD-ROM media, with approximate VHS quality

and encoding at 1.5 Mbps. Soon after, MPEG-2 was released with great success. With

the goal of offering consumer-level video quality, it supported coding at relatively high bit-

rates (from 2 to 20 Mbps, typically 5Mbps) and found application in home entertainment

systems, like digital TV and DVD. MPEG-2 was standardized in 1994. In late 1990’s, the

next coding standard for the fixed and mobile web, MPEG-4, was proposed in an effort

to provide more flexible coding, fine-grained scalability, and support for streaming appli-

cations and mixed natural/virtual scenery. MPEG-4 became an international standard in

the first months of 1999. The AVC/H.264 is the most current, state-of-the-art standard

delivering excellent quality across wide bandwidth spectrum, from video conferencing and

3G mobile multimedia to high-definition TV. It offers over 50% bit-rate savings compared

to MPEG-2 at high bit-rates and significant coding gain of 3-4dB over MPEG-4 at lower

25

bit-rates.

Advances in motion estimation and compensation deserve significant credit for this

rapid progress. The block-based motion model has been predominantly used in all coders

from its inception in the 1980’s until modern days. While the basic block-wise constant

motion model stayed the same, many changes were introduced into it over time. The

demand for more sophisticated prediction drove the block-model development in three

directions: 1) towards use of higher accuracy of motion vectors, 2) use of variable block

sizes, and 3) deployment of bidirectional prediction.

The early standards (MPEG-1, H.261) performed prediction using full-pixel precision

of motion vectors. It was soon realized that motion in natural video sequences is rarely

aligned with integer-pel positions; higher motion vector accuracy soon followed. With the

rapidly developing DSP chips, enabling real-time implementation of more computationally

demanding sub-pixel motion estimation, an extension to half-pel accuracy was implemented

in MPEG-2. With the emergence of powerful CPUs, the first real-time software implemen-

tations became available in mid-1990’s. Another improvement to 1/4 pel accuracy was

proposed in MPEG-4 and is currently being used in the AVC/H.264 standard. Some of

the newest coders (e.g., MC-EZBC (Chen and Woods, 2004), MSRA coder (Xiong et al.,

2005c)) deploy even more accurate motion fields, down to 1/16 pixel precision.

In all video coders up to MPEG-2, motion compensation was performed using mac-

roblocks of fixed size, typically 16 × 16. As an improvement, variable block sizes were

introduced in MPEG-4 for better local motion modeling and adaptation to object bound-

aries. In the AVC/H.264 specification, the size of motion blocks ranges from 16× 16 down

to 4× 4, with 7 different sizes - 16× 16, 16× 8, 8× 16, 8× 8, 8× 4, 4× 8, and 4× 4.

Finally, instead of prediction from a single frame (P-frames) or from a fixed linear

combination of two frames (as in B-frames), multi-hypothesis approach has been proposed

(Flierl et al., 2002). Coupled with a multi-frame prediction (that uses a buffer of previ-

ous frames to find the best predictors), it provided significant coding gains for different

26

scenarios3 at the cost of increased complexity. Extensions of this method found way into

the AVC/H.264 standard, most notably thorough generalized B pictures (Flierl and Girod,

2003).

Concurrently with the development of industry-driven video standards, various alter-

native concepts were explored over the last 20 years. From the pool of ”non-standard”

schemes, 3D video coding concept emerged as the most serious challenger to hybrid video

coding.

Early 3D video coding attempts focused on applying the still image transform coding

concept to video coding, by simply extending the popular discrete cosine transform to

three dimensions. Most of the works (Natarajan and Ahmed, 1977; Roes et al., 1977;

Yeo and Liu, 1995; Westwater and Furht, 1996; Chan and Siu, 1997; Lee et al., 1997a)

used the separable 3D DCT directly on the original data (without motion compensation)

before coding the obtained coefficients. Various coefficient scanning (plane-by-plane, 3D

zig-zag, parabolic) and quantization strategies were proposed. Also, variable-size data

cubes were used to adaptively match the video content and align volume boundaries with

spatio-temporal discontinuities (Furht et al., 2003). Other algorithms used simple motion

activity estimators to classify each data volume as either no-motion, low-motion, or high

motion - different strategies were then used for coding of each case (Lee et al., 1997b), but

none of the proposed 3D DCT solutions truly accounted for image sequence motion. While

computationally very efficient, these coders failed to compete with contemporary hybrid

video coders in terms of the coding performance.

Following in the footsteps of DWT-based still image coders, wavelet video coders (Karls-

son and Vetterli, 1988) emerged in the late 1980’s. All video coders deploying wavelets

can be divided into three classes: 1) hybrid-like MCTP+2D DWT coders, 2) 2D DWT +

MCTP coders, and 3) 3D DWT coders with motion-compensated temporal filtering. We

briefly discuss the first two schemes before moving on to the 3D DWT scheme that is of

3Especially for scenes with rapid repetitive flashing, back-and-forth scene cuts, or uncovered background
areas.

27

MCTF
(DWT)

2D DWT

2D DWT

2D DWT
MCTP

(DPCM)

MCTP
(DPCM)

input output

a)

b)

c)

Figure 2·9: Video coders employing the discrete wavelet transform.

the greatest interest to our work.

Within the MCTP+2D DWT concept (Zhang and Zafar, 1992; Marpe and Cycon,

1999), two-dimensional wavelet transform is applied to the motion-compensated residual

frame, instead of the DCT (Fig. 2·9a). Because of motion compensation, pixels in the

residual frames are less spatially correlated than in the original frames and the spatial

wavelet transform is not very effective in representation of those residual frames. Thus,

the MCTP+2D DWT method does not offer noticeable improvement over standard MC-

DCT approaches and, more importantly, does not offer new features (e.g., scalability) that

would justify its use.

The second approach, 2D DWT+MC, applies 2D DWT to each original video frame

before performing motion compensation in the wavelet domain (Fig. 2·9b). Due to the

fact that commonly used wavelet transforms are often critically sampled, shift-variance

associated with these transforms limits the effectiveness of motion compensation. For

example, a single pixel shift between two consecutive video frames in the spatial domain

results in a different shift between corresponding high-subbands of these two frames, which

prevents effective motion compensation in wavelet domain and lower coding efficiency of

this method.

Finally, in the third case of separable 3D wavelet video coding (Karlsson and Vetterli,

1988; Kim and Pearlman, 1997; Kim et al., 2000; Xu et al., 2002), a temporal-domain

wavelet transform is usually applied before 2D wavelet transform on each resulting video

28

frame (Fig. 2·9c). This scheme is typically referred to as ”t+2D”. With a 3D wavelet

representation, it is possible to achieve coding scalability in rate, quality, and resolution.

However, due to the object motion in the scene, spatially co-located pixels across frames are

usually misaligned. Thus, in order to take full advantage of the temporal-domain wavelet

transform and hence achieve high coding efficiency, wavelet filtering has to be performed

along motion trajectories. Because of the problems involved with the coupling of motion

estimation and the wavelet transform, the bottleneck of the efficient 3D wavelet video

coding lies in motion estimation and compensation.

In an attempt to incorporate motion estimation into 3D wavelet video coding, Ohm

(Ohm, 1994) proposed to use block-matching - similar to that used in standard video coders

- for temporal video filtering. The important contribution of Ohm’s scheme was a coding

design that supported perfect reconstruction of motion-compensated Haar wavelet filtering.

This was achieved by paying special attention to connected/unconnected pixels. However,

Ohm’s scheme failed to achieve perfect reconstruction with motion alignment at any sub-pel

resolution and exhibited modest compression gains. We note that this classic scheme has

been only recently generalized to handle sub-pel motion vector accuracies (Hsiang et al.,

2004).

Concurrent to Ohm’s efforts, Taubman and Zakhor (Taubman and Zakhor, 1994) pre-

distorted the input video sequence by translating frames relative to one another before the

wavelet transform so as to compensate for camera pan motion. Later, Wang et. al (Wang

et al., 1999) used the mosaicing to warp each video frame into a common coordinate

system and applied a shape-adaptive 3D wavelet transform on the warped video. Both of

these schemes adopt a global motion model that is not capable of enhancing the temporal

correlation among video frames in sequences with local motion.

An important development for wavelet-based image and video coding was the discovery

of zerotrees for coding of 2D DWT coefficients. The zerotree approach is still commonly

used as it achieves high performance and a progressive bit-stream by exploiting the inter-

subband dependency among insignificant wavelet coefficients. This is mainly achieved by

29

reorganizing such coefficients in space-scale trees. The zerotree idea was first introduced

by Shapiro’s embedded zerotree wavelet (EZW) (Shapiro, 1993) and then reformulated

with the set partitioning in hierarchical trees (SPIHT) algorithm (Said and Pearlman,

1996). Besides the zerotree concept, other techniques that exploit statistical dependencies

in the wavelet domain have been recently proposed. For example, the embedded block

coding with optimized truncation (EBCOT) algorithm (Taubman, 2000), adopted in the

JPEG2000 standard (JPEG2000, 2000), combines layered block coding, R-D optimization,

and context-based arithmetic coding in an efficient and highly scalable way. Moreover,

with the embedded zero-block coding (EZBC) algorithm (Choi and Woods, 1999), the

positive aspects of quad-tree partitioning and context modeling of wavelet coefficients are

well combined, too.

The breakthrough in wavelet video coding came in 2001, when the concept of motion-

compensated lifted DWT was introduced (Pesquet-Popescu and Bottreau, 2001; Luo et al.,

2001; Secker and Taubman, 2001); floodgates for a dramatic increase in research activity

were open. The importance of lifting is that it guarantees a perfect reconstruction of MC-

DWT for an arbitrary motion model or accuracy. As a consequence, advanced motion

estimation algorithms developed for hybrid coders could be easily deployed in the new con-

text. The first implementation of sub-pixel (half-pel) motion compensation in Haar lifted

DWT by Pesquet-Popescu and Bottreau (Pesquet-Popescu and Bottreau, 2001) demon-

strated the advantage of lifting over classical transversal processing. Soon after, the first

5/3 biorthogonal wavelet filter with half-pel motion accuracy was presented (Luo et al.,

2001). Secker and Taubman used both the Haar and 5/3 filters in combination with 1/2-

pel resolution motion estimation (Secker and Taubman, 2001). Numerous follow-up works

(Secker and Taubman, 2003; Chen and Woods, 2004; Flierl and Girod, 2004) demonstrated

the substantial advantage of 5/3 over Haar filter for temporal wavelet transformation.

Inspired by the promising results of wavelet video coders and lively research activity in

both academic and industrial environment, MPEG formed an ad-hoc group for exploration

of wavelet video coding in 2004. Its focus has been on the efficient implementation capable

30

of competing with the AVC/H.264. The group has investigated various design issues, such

as use of 9/7 or longer filters, ultra-accurate motion estimation (down to 1/16 pel), adap-

tive and low-complexity implementation, scalable motion coding, and spatial scalability

problem. Most important contributions to the recent wavelet video development appeared

in (Chen and Woods, 2002; Ohm, 2002; Secker and Taubman, 2003; Chen and Woods,

2004; Golwelkar, 2004).

Several popular wavelet-based video coding platforms have been made available to

the public; they are used as testbeds by the wide community of researchers. Motion-

Compensated Embedded Zero-Block Coder (MC-EZBC) (Chen and Woods, 2002), pro-

posed by Chen and Woods, has become widely used for its excellent performance. In

the original MC-EZBC, motion estimation was performed on each pair of frames in a hi-

erarchical fashion down to 1/8-pel accuracy before going through a motion-compensated

lifting-based Haar transform. Additional levels of temporal wavelet decomposition were

performed on the low-pass frames by following the same procedure. In early versions of

MC-EZBC coder, the Haar filter did not fully exploit the long-term correlation across

video frames. In addition, motion vectors at each temporal decomposition layer were es-

timated and coded independently without exploiting the cross-layer correlations. A newer

and improved MC-EZBC (Golwelkar, 2004) makes use of the 5/3 filters in conjunction

with improved motion vector coding with special attention on spatial scalability perfor-

mance. Recent versions of MC-EZBC perform on-par with the AVC/H.264 standard for

some sequences.

Another popular coder (currently used as a verification model in MPEG’s wavelet video

coding efforts) was developed by Microsoft Research Asia (Xu et al., 2001). It is based

on Barbell lifting (Xiong et al., 2004), energy distributed update steps (Feng et al., 2004),

and 3D Embedded Subband Coder with Optimized Truncation - 3D ESCOT (Xu et al.,

2001). In addition to Microsoft, notable contributors to this coder include RWTH Aachen,

Samsung, Panasonic, ENST-Paris, and University of Brescia, Italy.

We end this chapter with a few words on the outlook for 3D video coding. As with

31

all other new technologies, various non-technical issues play important roles in adoption

rate of the new systems - combined with objective performance, they will determine the

outcome and ultimate success of 3D video approach. With the existing video infrastructure,

investment in MPEG-2 technology, and aggressive push for the deployment of AVC/H.264

across the industry, many believe that 3D video coders will face an uphill battle before

finding their place in industry-supported applications. The lesson of JPEG2000, which

still struggles to generate strong industrial friction more than 5 years after its induction

and despite the obvious technological advantage over JPEG, is very important. It is clear

that external industrial factors, such as licensing fees, cost of technology shift, or increased

computational complexity, are indeed as important when it comes to adoption as the

technology itself; only time will tell what is the future of 3D video technologies.

32

33

Chapter 3

Motion analysis and video coding in 3D DCT

domain

3.1 Introduction

In the early days of separable 3D video coding, extending the popular 2D discrete cosine

transform (DCT) to three dimensions was in the focus of many research efforts. While

computationally efficient, most 3D DCT schemes failed to match the performance of con-

temporary hybrid coders, largely due to the lack of understanding of the motion role. In

this chapter, we demonstrate that efficient low-complexity 3D DCT video coding is indeed

possible - its key is in the effective use of motion in the transform domain.

We start this chapter by revisiting the well known result on motion modeling in the

Fourier transform domain in Section 3.2. In Section 3.3, we show how, similar to the DFT

case, non-zero DCT coefficients of a uniformly translating image (global, constant-velocity,

translational motion) aggregate around a folded plane in the spatio-temporal ”frequency”1

space. Based on this observation, we develop a method to estimate motion in a 3D block of

pixels in Section 3.4. We then propose a new approach to video compression based on 3D

DCT applied to a group of frames in Section 3.5. Building blocks of our coder are: motion-

adaptive scanning of DCT coefficients (akin to ”zig-zag” scanning in MPEG coders), adap-

tive coefficient quantization, variable-size volume processing, and entropy coding. We base

our new coefficient scanning pattern on geometry of a spectrum model for uniformly trans-

1Note that although the notion of frequency applies to the FT domain and is not accurate in the DCT
domain, we nevertheless will use this notion in the DCT context from now on with the understanding that
a high ”frequency” in the DCT domain corresponds to a high number of zero crossings of image intensity
per unit distance.

34

lating image and demonstrate its advantage over all previously proposed scans, such as the

3D zig-zag scan (Yeo and Liu, 1995). Our coding design also incorporates new 3D quanti-

zation table (quantization volume), which accounts for spatio-temporal contrast sensitivity

of the human visual system. Section 3.6 presents experimental results showing that the

motion-adaptive scan consistently achieves better energy compaction than ”motion-blind”

scans. We finally compare compression performance and computational complexity of our

coder to that of other 3D DCT coders and standard hybrid coders.

3.2 Interpretation of uniform image translation in the Fourier domain

A translational model is the most frequently used motion model in video coding; motion

is assumed to be translational between each two consecutive frames, which works well in

frame-based predictive coders of the MPEG coding family. A straightforward extension

of this model to 3D yields motion that is uniform over the entire group-of-frames (GOF).

While inevitably leading to a less sophisticated motion representation, the assumption of

uniform translation is certainly reasonable for shorter temporal support of the processed

3D volume.

The analysis of a uniform translational motion in the Fourier transform domain was

first presented by Jacobson and Wechsler (Jacobson and Wechsler, 1987). Let u0(x1, x2)

be the continuous intensity of a still image as a function of continuous spatial coordinates

(x1, x2). Similarly, let u(x1, x2, x3) be the continuous intensity function of a time-varying

image, where x3 denotes the time coordinate. A uniform translation of intensities u0 at all

spatial coordinates with constant velocity [v1, v2]T results in a time-varying image function:

u(x1, x2, x3) = u0(x1 − v1x3, x2 − v2x3). (3.1)

Assuming, for the purpose of the Fourier-transform case, that the image u0 has dimensions

which are infinite, it is straightforward to show that the following relationship holds:

u0(x1 − v1x3, x2 − v2x3) = [u0(x1, x2)δ(x3)] ∗ δ(x1 − v1x3, x2 − v2x3), (3.2)

35

where ”∗” denotes continuous 3D convolution operator while δ(·) is the Dirac impulse (1D

or 2D, depending on the number of arguments). Applying the continuous-space Fourier

transform (CSFT) to each term of the above convolution one obtains (Jacobson and Wech-

sler, 1987):

F{u(x1, x2, x3)} = U0(f1, f2)δ(f1v1 + f2v2 + f3). (3.3)

Clearly, the Fourier spectrum of a uniformly-translating image is limited to the plane

f1v1 + f2v2 + f3 = 0 in the spatio-temporal frequency space (f1, f2, f3). Such a unique

energy footprint permits identification of the direction and amplitude of motion. Motion

estimation methods based on velocity polling functions (Jacobson and Wechsler, 1987) or

directional motion-sensitive spatio-temporal filters (Heeger, 1988) have been proposed to

this effect. However, if the motion is not translational or velocity varies in time, no clear

plane can be identified in the frequency space. The larger the departure from the transla-

tional nature of motion, the more fuzzy is the spectral-occupancy plane (more ambiguity).

In practice, the time-varying image u is sampled, and the CSFT needs to be replaced

by the discrete-space Fourier transform (DSFT), a multi-dimensional equivalent of the

discrete-time Fourier transform (DTFT) (Oppenheim et al., 1999). Let u[n1, n2, n3] be an

image sequence, i.e., a sampled time-varying image. Similarly to the continuous case, we

can construct the sequence u[n1, n2, n3] by uniformly translating a still continuous image

u0(x1, x2) by 2D displacement (d1, d2) between each two consecutive frames, and then

sampling it. Thus, we have u[n1, n2, n3] = u0(n1 − d1n3, n2 − d2n3). Note, that although

u0 is a continuous function, it is sampled at points (n1 − d1n3, n2 − d2n3). By replacing

the continuous convolution with its discrete-time equivalent (convolution sum), the CSFT

– with the DSFT, and again assuming an infinite-size image (to ignore boundary effects),

it follows that:

FDSFT{u[n1, n2, n3]} = U0(f1, f2)δ(f1d1 + f2d2 + f3), (3.4)

36

where FDSFT denotes the DSFT, and U0(f1, f2) = FDSFT{u0(n1, n2)}. Obviously, due to

the periodic nature of the DSFT, this spectral plane is also periodic. A similar relation-

ship holds for the DFT and circular convolution applied to a finite-size image u0, except

that Kronecker delta replaces the Dirac impulse while integer indexes k1, k2, k3 replace

frequencies f1, f2, f3:

FDFT{u[n1, n2, n3]} = U0[k1, k2]δ[k1d1 + k2d2 + k3]. (3.5)

Note that δ[k1d1+k2d2+k3] above is a sampled version of δ(f1d1+f2d2+f3) from equation

(3.4). In other words, it describes samples of the plane f1d1 + f2d2 + f3 = 0 at discrete

frequencies (k1, k2, k3). In general, for integer values of d1 and d2 the density of these

samples will be higher, whereas for non-integer values it will be lower. In fact, for non-

rational displacements or for such (d1, d2) that k1d1 + k2d2 + k3 = 0 only for (k1, k2, k3)

outside of the image sequence domain, there may be no plane samples in the DFT domain

except (k1, k2, k3) = (0, 0, 0).

In Fig. 3·1, we illustrate the spectral behavior of FT, DSFT, and DFT in the 2D case,

i.e., the case of a translating 1D intensity profile. Such a moving profile forms a 2D image

whose various transforms are graphically depicted in Fig. 3·1. Fig. 3·1(a) illustrates a

2D version of equation (3.3), showing that the spectrum of a signal undergoing uniform

translation is limited to a line of spectral occupancy in the FT space. If the 2D image

formed by the moving profile is sampled on a lattice (Dubois, 1985), its DSFT2 leads to

a spectrum shown in Fig. 3·1(b); the spectrum of the underlying continuous signal is now

replicated on the reciprocal lattice. In this paper, we consider only orthogonal lattices

(rectangular sampling grids). Since the DFT is a sampled version of the DSFT (assuming

the region of support of the DFT equals that of the signal on which the DSFT is computed),

Fig. 3·1(c) shows the same, although sampled, spectral content as Fig. 3·1(b). Note, that

2Note that the “granular” appearance of the spectral line in Figs. 3·1.a and 3·1.b, despite the continuous
nature of frequency in FT and DSFT, is due to the fact that the FT was simulated by DFT of a high-
resolution signal and the DSFT – by adding together periodic repetitions of the FT.

37

(a) (b)

(c) (d)

Figure 3·1: Illustration of the spectrum of a translating profile for 2D case
(1D signal under translation): (a) FT; (b) DSFT; (c) DFT; and (d) DFT
of a symmetrically-extended 2D signal.

in Fig. 3·1.c the DFT was periodically repeated in order to parallel the periodic nature of

the DSFT; the DFT is really one period of the periodic structure shown in this figure. In

both cases (DSFT and DFT) the spectrum extending beyond a unit cell of the reciprocal

lattice (the square around each spectrum) finds way into neighboring unit cells; in any unit

cell more than one spectral line can be present. Although this is not aliasing (the spectra

do not overlap), correct reconstruction of the continuous signal is possible only with special

narrowband diagonal filters; any separable 2D filter will introduce reconstruction errors.

Finally, Fig. 3·1(d) shows the DFT of a symmetrically-extended 2D signal (horizontal and

vertical symmetric extension), again periodically repeated to show similarity to the DSFT.

38

The fact that the spectrum stencil is thinner than in Fig. 3·1(c) is due to the fact that

because of the symmetric extension the transformed signal has twice as many samples in

each direction, and so has its DFT. It is well-known that the DCT is closely related to

the DFT of a symmetrically-extended signal. Thus, the characteristic ”folding” of the

spectrum at unit cell boundaries in Fig. 3·1(d) can be also expected in the DCT. This

effect is clearly due to the symmetric extension. We will explain all this in detail in the

next section.

3.3 Interpretation of uniform image translation in the DCT domain

The discrete cosine transform introduced in Section 2.3.1 has been a driving force behind

all image and video coding standards in the last 20 years, with the exception of wavelet-

based JPEG2000. In addition to the excellent energy compaction, another reason for the

ubiquitousness of DCT 2e is its relationship to the DFT; its coefficients can be computed by

the application of DFT to a symmetrically extended signal using “half-point” symmetric

extension3. If we define us[m,n] to be a “half-point” symmetric extension of the original

2D signal u[m, n]:

us[m,n] =





u[m,n] 0 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1

u[2M1 −m− 1, n] M ≤ m ≤ 2M − 1, 0 ≤ n ≤ N − 1

u[m,N − n− 1] 0 ≤ m ≤ M − 1, N ≤ n ≤ 2N − 1

u[2M1 −m− 1, 2N − n− 1] M ≤ m ≤ 2M − 1, N ≤ n ≤ 2N − 1,

(3.6)

it is straightforward to show (Pitas, 2000) that the coefficients Ũ of the M -dimensional

DCT 2e of a signal are related to DFT coefficients U s of the M -dimensional “half-point”

3In “full-point” symmetric extension of a 1D signal, the symmetry axis coincides with the last (or first)
sample of the signal, whereas in “half-point” extension it is shifted by 1/2 of the sampling period beyond
the signal. In practice, this means that while in the former case the last sample of the signal is not repeated
in its symmetric extension, in the latter case – it is repeated. An MD symmetric extension can be computed
by independent application of a 1D symmetric extension in each direction.

39

n

(a)

2n

(b)

Figure 3·2: The periodicity implicit in one-dimensional (a) DFT, (b) DCT.

symmetric extension of this signal through the following relationship:

Ũ [k1, k2, ..., kM] =




M∏

i=1

1
2

√
2− δ[ki]

Ni
e
−j

πki
2Ni


U s[k1, k2, ..., kM]. (3.7)

In this equation, Ũ [k1, k2, ..., kM] = DCT 2e{u[n1, n2, ..., nM]} and U s[k1, k2, ..., kM] =

FDFT{us[n1, n2, ..., nM]}.

The above relationship leads to an efficient implementation of the DCT using FFT

algorithms. The excellent energy compaction properties of the DCT can be largely ex-

plained using this relationship; a symmetrically and periodically extended signal has less

high-frequency content than a periodically extended signal, due to the absence of discon-

tinuities at each period’s ends (caused in the latter case, e.g., by different signal values of

the first and last signal samples). This is illustrated in Fig. 3·2.

Our goal now is to derive an analytical expression for the DCT of an image undergoing

uniform translational motion. Since we already know the relationship between the DCT of

a signal and the DFT of its symmetric extension, we need to find the relationship between

DFT of the symmetric extension and DFT of the underlying moving pattern u0 (3.5).

Below, we give an outline of the derivation for the 2D case; details for both 2D and 3D

40

(a) u (b) u1 (c) u2

(d) us (e) u3 (f) u4

Figure 3·3: Original N ×N signal u and its 2N ×2N symmetric extension
us ((a) and (d), respectively) that can be decomposed into the sum of four
signals: (b) u1; (c) u2; (e) u3; and (f) u4.

case can be found in the Appendix at the end of this chapter.

Let u[n1, n3] (0 ≤ n1, n3 ≤ N − 1) be a 2D signal, shown in Fig. 3·3(a), constructed by

translation of 1D intensity profile u0[n1]. Since the DCT can be computed as the DFT of a

symmetrically extended signal using (3.7), we first construct a “half-point” 2D symmetric

extension us[n1, n3] (0 ≤ n1, n3 ≤ 2N − 1) of the signal u[n1, n2] (Fig. 3·3(d)). Note that

the signal us[n1, n3] can be decomposed into a sum of four signals: ui[n1, n3], i = 1, ..., 4,

where each signal ui is obtained through a symmetric half-point mirror of the original

signal u[n1, n3] and/or suitable zero padding. Since the four signals ui are related to u

by symmetry and/or zero padding, we can express the sum of their DFTs in terms of the

DFT of u. We note here that zero padding results in increased spatial resolution of the

DFT. Finally, using the formula for DFT of a translating image (3.5) and the DCT/DFT

relationship (3.7), we can write the expression for DCT that depends only on the DFT of

41

the 1D intensity profile and displacement d (for details please see the Appendix):

Ũ [k1, k3] =

√
(2− δ[k1])(2− δ[k3])

2N
|U0[

k1

2
]|

(
δ[(k1d1 + k3)/2] cos(Φ0[k1/2]− π

k1 + k3

2N
) + (3.8)

δ[(k1d1 − k3)/2] cos(Φ0[k1/2]− π
k1 − k3

2N
)
)

0 ≤ k1, k3 ≤ N − 1,

where Ũ [k1, k3] = DCT 2e{u[n1, n3]} while |U0[k1]| and Φ0[k1] are the magnitude and phase

of the DFT of the 1D intensity profile u0[n1], respectively, i.e., FDFT{u0[n1]} = U0[k1] =

|U0[k1]|ejΦ0[k1]. The corresponding expression for the 3D case can be found in the Appendix.

It is clear from the above equation that the DCT spectrum of signal u[n1, n3] is a

sum of ridges δ[(k1d1 + k3)/2] and δ[(k1d1 − k3)/2], each modulated by a cosine function

dependent on the phase of u0. Since δ[(k1d1 − k3)/2] is a horizontal (or vertical) mirror of

δ[(k1d1 + k3)/2], the sum of them causes the apparent spectral line folding within a unit

cell (Fig. 3·1.d). This apparent folding is, in fact, a repeated spectrum extending from a

neighboring unit cell. Although at the points of intersection of the two spectra aliasing

occurs, since we are interested in the identification of spectral occupancy this should not be

a significant issue. Similarly, in the 3D case (see the Appendix) there are four Kronecker

deltas: δ[k1d1+k2d2+k3], δ[−k1d1+k2d2+k3], δ[k1d1−k2d2+k3], δ[k1d1+k2d2−k3]. Since

the last three are horizontal, vertical and temporal mirrors of the first plane, respectively,

an apparent spectral folding occurs in 3D as well.

We verified this observation experimentally on a natural 1D intensity profile (2D case

derived above) and a 2D image (3D case) each undergoing synthetic displacements. Fig. 3·4
shows the result for the 2D case; 1D intensity profile u0[n1] is shifted by d1=1.5 pixels

between each two consecutive positions of n3 (considered to be the time index), thus

creating an intensity image with diagonal bands as seen in Fig. 3·4(a) (linear interpolation

was used in order to generate subsequent rows from the 1D intensity profile in the case

of fractional-pixel displacement). This can be thought of as an image sequence of a 1D

image (single line). After applying 2D separable DCT, this image results in the spectrum

42

(a)

10

20

30

40

50

60
10

20
30

40
50

60

0

200

400

600

800

k
1

k
3

(b)

Figure 3·4: (a) Intensity image u[n1, n3] of a 1D intensity profile u0[n1]
((64 pixels) uniformly translating by 1.5 pixels between each consecutive
two rows; and (b) its 2D DCT transform.

depicted in Fig. 3·4(b). Note the clearly visible spectral folding. Based on our previous

analysis, it is clear that the ”folding tail” of a 2D DCT ”occupancy line” is caused by an

aliasing from neighboring Voronoi cells in the DCT space.

We have performed a similar experiment for the 3D case: u0[n1, n2] is a still image

(Fig. 3·5.a) that is shifted by [d1, d2]=[3, 0] between each two consecutive positions n3.

This creates an image sequence to which we apply 3D DCT. In Fig. 3·5(b), coefficients of

the 3D DCT of this sequence are shown; the smallest coefficients have been removed by

thresholding to improve visualization. Again, note the clearly visible folding of the plane

along the k1 axis.

3.4 Motion estimation in DCT domain

The characteristic energy footprint in the DCT domain for a translating image can be

used to compute the direction and amplitude of motion. Suppose that a spatial block of

pixels over a number of frames is considered. By applying the 3D DCT to this sequence

of blocks, an analysis of the DCT coefficient energy can be performed to find a constant-

velocity translational motion. One possibility is to search for a plane that passes through

the highest concentration of large-energy 3D DCT coefficients; a logical choice is to seek

43

(a)

0 10 20 30 40 50 60

0

20

40

60

0

10

20

30

40

50

60

k 2

k
1

k
3

(b)

Figure 3·5: (a) First 16 frames of sequence u[n1, n2, n3] (64 × 64 × 64)
which is formed by uniform [3,0] translation of a still frame u0[n1, n2]; and
(b) thresholded coefficients of its 3D DCT transform.

orientations that maximize the cumulative energy of coefficients in close proximity of the

plane. Alternatively, one can minimize a complementary criterion, such as the cumulative

energy of coefficients farthest away from the plane, for example:

min
~φ

∑

~k

(Ũ [~k])2d(~φ,~k), (3.9)

where d(~φ,~k) is the distance between a DCT coefficient at ~k = (k1, k2, k3)T and the

dominant-energy plane whose orientation is described by a 2D vector of parameters ~φ.

Note, that since this plane passes through the origin of the coordinate system, two param-

eters are enough to describe its orientation. In order to achieve minimum, ~φ must be such

that all coefficients distant from the plane described by ~φ, i.e., with large d(~φ,~k), have

small energy (small (Ũ [~k])2). The remaining coefficients, likely to have large energy, will

then be located close to this plane. Note that the above minimization allows us to estimate

motion up to the sign only. After finding the motion direction and magnitude, we verify

which motion vector (out of the four possibilities: [±d1,±d2]) is indeed optimal (i.e., gives

44

the best prediction).

Motion estimation based on minimization (3.9) is an alternative to block matching

across multiple frames; either method can be used in the 3D DCT coder that we describe

in the next section. However, although the plane-orientation and motion-direction repre-

sentations are equivalent, this does not mean that an estimation method in one domain

will give the same result as estimation in the other domain. This is due to the fact that

different cost criteria and different optimization strategies may be used in each case. One

remark is in order here. While the proposed motion model is not any more restrictive

spatially than block motion models, temporally it is more restrictive since it a assumes

constant velocity over the temporal support of the DCT.

In the next section, we discuss video coding in 3D DCT domain that revolves around the

idea of coding only significant 3D DCT coefficients close to the dominant-energy plane. The

orientation of this plane can be represented explicitly through parameters ~φ or implicitly

through a vector in the space-time domain, and can be efficiently communicated from the

encoder to the decoder.

3.5 3D DCT video coding

We have shown thus far that 3D DCT spectrum of a uniformly translating image is limited

to a folding plane. Although this observation is true for the idealized case of a global,

constant-velocity translation only, an approximate relationship is expected to hold for

sufficiently small x − y − t volumes of a video sequence. Therefore, this model of the

3D DCT spectrum can be used for motion estimation in the transform domain. In this

section, we propose to exploit the discovered planar concentration of 3D DCT coefficients

for the purpose of compression by means of suitable DCT coefficient quantization, scanning,

volume adaptation, and entropy coding.

45

0 1 2 3

0
1

2
3

0

1

2

3

k
1

k
3

k 2

(a) p = 0.7, Q = 2.5

0 1 2 3

0
1

2
3

0

1

2

3

k
1

k
3

k 2

(b) p = 1, Q = 2.5

0 1 2 3

0
1

2
3

0

1

2

3

k
1

k
3

k 2

(c) p = 1.6, Q = 2.5

0 1 2 3

0
1

2
3

0

1

2

3

k
1

k
3

k 2

(d) p = 1, Q = 1

0 1 2 3

0
1

2
3

0

1

2

3

k
1

k
3

k 2

(e) p = 1, Q = 2.5

0 1 2 3

0
1

2
3

0

1

2

3

k
1

k
3

k 2

(f) p = 1, Q = 5

Figure 3·6: Examples of several 4× 4× 4 quantization volumes (quantiza-
tion step is proportional to the marker size). Top row: the effect of varying
p for a constant Q = 2.5; Bottom row: the effect of varying Q for a constant
p = 1.

3.5.1 3D DCT coefficient quantization

Quantization is the fundamental step in achieving lossy compression. As standard 2D

JPEG-like quantization tables are insufficient for compression using 3D DCT (Lee et al.,

1997b) (i.e., a single table cannot account for spectral variations along the temporal fre-

quency axis), a logical solution would be to use multiple JPEG-like tables. Instead, we

extend the idea of JPEG/MPEG (2D) quantization table to quantization volume (3D ta-

ble). Similarly to a quantization table, quantization volume must account for properties

of the human visual system (HVS). In the 2D case, reduced spatial contrast sensitivity

of HVS at high horizontal and vertical frequencies (Pearson, 1975) is the primary factor

in selecting larger quantization step for higher k1 and k2. In the 3D case, the temporal

46

contrast sensitivity also needs to be considered. Since the spatio-temporal contrast sen-

sitivity is considered not to be a separable function (Pearson, 1975), we need to consider

a non-separable quantization model. This model should increase quantization step when

contrast sensitivity is reduced. In particular, the step should increase with an increase of

k1, k2 or k3, increase even more for joint frequencies k1−k2, k1−k3, k2−k3, and finally be

the largest for k1 − k2 − k3. Note, that in saying this we are ignoring the secondary effect

of reduced spatial and temporal contrast sensitivity for very low frequencies (spatially –

below 3 cycles/degree, and temporally – below 8Hz (Pearson, 1975)). Such an effect could

be included in the quantization step model at the expense of added model complexity.

Based on the above considerations we propose the following quantization volume:

q[~k] = bQ(1 + kp
1 + kp

2 + kp
3)c, (3.10)

where q(~k) is the quantization step for coefficient at position ~k, Q is a parameter similar to

the Q-factor in JPEG quantization, and bxc denotes the nearest integer less than or equal

to x. By changing the parameter p, we are able to control the rate of decay within the

quantization volume. This, in turn, controls the quality of the resulting image sequence

(after quantization and inverse transform) and its bit-rate; higher values of p result in

lower image quality but also lower bit-rate. Thus, in addition to Q, the parameter p is

another element of rate control; the rate control here is necessarily more complex than in

JPEG/MPEG since it involves two parameters. Typical values of p range from 0.7 to 1.6.

Illustrations of several 4× 4× 4 quantization volumes are presented in Fig 3·6, for various

Q’s and p’s. In all examples, quantization step at [k1, k2, k3] is directly proportional to the

area of the circle symbol at that location.

3.5.2 3D DCT coefficient scanning order

The purpose of scanning in any compression scheme is to order the quantized coefficients

into a vector suitable for subsequent entropy coding and transmission. The order of coeffi-

cient scan has a significant impact on the overall compression performance. From the point

47

of view of an entropy coder, optimal scan would ideally order all quantized coefficients in a

decaying amplitude order, which would also result in the longest zero-run at the end of the

scan. Obviously, this scan is not at all practical, as its geometry is highly complex; in order

to be used in the decoder, it would require transmission of a large number of coefficient

coordinates. Therefore, we set three requirements for a practical scanning method. A good

scanning order should:

1. be predefined or dependent on a small number of parameters so that either no or

only small rate overhead is incurred,

2. group zero-valued coefficients into clusters so that a run-length coder can be applied

as efficiently as possible,

3. provide a very long zero-run of coefficients at the end so that a terminating code can

save many bits.

The most popular scanning method extensively used in both image and video DCT

coding is the zig-zag scan, illustrated in Fig. 3·7(a). For the coding of still images or

motion-compensated prediction error, zig-zag scan fits all the requirements listed above,

and is adopted for use in both JPEG and MPEG coding standards. However, in the context

of 3D DCT coding, this scan fails to properly capture motion-adaptive DCT spectrum. To

illustrate this, in Fig. 3·7(b), we show the ”reference” two-dimensional scan for the 8× 8

block created by shifting the intensity profile u0[n1] from the Figure 3·4 by 1 pixel/line.

The numbers in the matrix denote the order in which coefficient at that position would be

scanned based purely on its amplitude.

In prior work on 3D DCT coding, various scanning orders of DCT coefficients have been

proposed, such as plane-by-plane scanning, 3D extension of the zig-zag scan (Yeo and Liu,

1995), and a more complex, parabolic scan (Lee et al., 1997b). However, none of these scan

patterns adapts to motion, i.e., they all neglect the fact that significant coefficients tend

to group along a plane defined by the dominant motion in the video sequence. This leads

to sub-optimal coefficient ordering and shorter zero-runs, which, in turn, reduces efficiency

48

1 2 6 7 15 16 28 29

3 5 8 14 17 27 30 43

4 9 13 18 26 31 42 44

10 12 19 25 32 41 45 54

11 20 24 33 40 46 53 55

21 23 34 39 47 52 56 61

22 35 38 48 51 57 60 62

36 37 49 50 58 59 63 64

(a)

1 9 5 33 25 41 34 58

10 2 13 7 50 21 38 46

4 14 3 11 16 55 44 63

32 8 12 6 17 61 43 54

24 51 15 18 23 30 36 60

40 22 56 62 31 26 19 48

35 38 45 42 37 20 29 27

57 47 64 53 59 49 28 52

(b)

Figure 3·7: Coefficient scanning for 8× 8 block; a) Zig-zag scan, b) Opti-
mal(reference) scan for a sample profile u0[n1] (Fig. 3·4), undergoing trans-
lational shift with d1 = 1.

1 10 25 38 49 56 61 64

9 2 12 27 40 50 57 62

23 11 3 14 29 42 51 58

35 24 13 4 16 31 43 52

45 36 26 15 5 18 33 44

53 46 37 28 17 6 20 34

59 54 47 39 30 19 7 22

63 60 55 48 41 32 21 8

(a)

1 5 13 25 40 52 60 64

4 2 8 18 32 46 56 62

12 7 3 11 23 38 50 58

24 17 10 6 16 30 44 54

39 31 22 15 9 21 36 48

51 45 37 29 20 14 28 42

59 55 49 43 35 27 19 34

63 61 57 53 47 41 33 26

(b)

1 3 6 10 17 24 33 45

2 4 8 13 19 26 37 47

5 7 11 15 22 30 39 50

9 12 14 20 28 35 43 54

16 18 21 27 31 41 52 58

23 25 29 34 40 48 56 61

32 36 38 42 51 55 59 63

44 46 49 53 57 60 62 64

(c)

Figure 3·8: Two-dimensional scans calculated from (3.11) for 8× 8 block
and ~φ = 1; a) λ = 0, b) λ = 0.3, c) λ = 100.

of the zero-run-length coding and of the overall compression. Therefore, we propose an

adaptive scanning pattern that takes into account properties of the 3D DCT spectrum of

a video sequence. As we have shown, this spectrum is related to motion in the sequence,

and thus the proposed scan pattern is motion-adaptive.

From the analysis of 3D DCT spectrum in Section 3.3 we can conclude that, for a

sufficiently small 3D volume of pixels in an image sequence, the further away a 3D DCT

coefficient is from the folding plane (Fig. 3·5) the smaller should be its magnitude. At

the same time, typical spectrum of a camera-acquired (i.e., natural rather than synthetic)

image sequence has the amplitude rolling off at higher spatio-temporal frequencies. Based

49

on these two arguments, we propose to order coefficients based on the following metric:

C(~k) = d(~φ,~k) + λ‖~k‖, (3.11)

where d(~φ,~k) is the earlier-defined distance function accounting for the spectral properties

in the case of pure translation, ‖~k‖ is the distance from the origin and λ is a weighting

parameter used to adjust the balance between these two distance terms. After plane

orientation ~φ (motion direction) has been estimated, the metric C(~k) is calculated for

all discrete 3D frequencies ~k, and coefficients are ordered based on the value of C(~k):

coefficients with smaller values are scanned earlier, while those with larger values are pushed

towards the end.

The value of λ is set based on how accurately the motion in the image sequence is

modeled by linear translation. For example, if motion in the currently encoded volume is

very close to the assumed model (e.g., in the case of still background or camera pan), the

coefficients will be more compactly grouped around the dominant plane. In this case, there

is more confidence in the first term of C(~k) and λ should be smaller. If motion in the volume

is very different from the assumed uniform translational motion, large coefficients will be

more dispersed around the plane of dominant motion. In that case, using a larger value of

λ is more appropriate. In the limit, as λ → ∞, this model becomes motion-independent

sphere-by-sphere scan.

A two-dimensional example of such coefficient ordering is given in Fig. 3·8. For the

uniform translation of d1 = 1 pixel/line, quantized coefficients are scanned in the order

defined by a 2D version of the cost function (3.11). For λ = 0 (Fig. 3·8(a)), the scanning

method relies exclusively on motion, while large λ value leads to a motion-ignorant scan

similar to a zig-zag scan (Fig. 3·8(c)). A correct selection of parameter λ (more on this

in the Section 3.6.2) leads to the best result - the scan shown in Fig. 3·8(b) is obtained

for λ = 0.3 and closely matches the reference scan from Fig 3·7(b). Note that, although

complicated, the scan from Fig. 3·8(b) is still defined by only two parameters - motion

parameter ~φ and control parameter λ. If these two are known at the decoder, the scan

50

order can be easily reproduced and used for block reconstruction.

Our proposal for content-adaptive scan raises another question - how significant is the

scan-related bit rate overhead? Recall that pre-defined scans, such as the zig-zag scan,

incur no rate overhead. In our approach to video coding, although the trajectory of the

scan may be very complex, it is still uniquely defined by a very small set of parameters

(2D vector ~φ) from which the scan can be exactly reconstructed at the decoder. Even if we

consider no quantization and entropy coding of ~φ, and we use for each component of this

2D vector a wasteful 32-bit floating-point representation, for a 16×16×8 coding volume we

will face less than 0.01 bits per pixel of rate overhead. Once quantization of ~φ and entropy

coding are considered, this becomes a negligible component of the overall rate.

3.5.3 3D DCT support adaptation

A significant decision that affects both performance and computational complexity of any

transform coder is related to subimage (block) size. In most video applications, images are

divided into blocks so that the correlation between adjacent blocks is significantly reduced;

typically, blocks’ sizes are selected to be power-of-two, as this simplifies the computation

of block transforms. It has been shown that the DCT transform performs best for block

sizes up to 16× 16; larger block sizes not only increase computational complexity but also

fail to produce significant gains. In Fig. 3·9, the impact of block size on two-dimensional

transform reconstruction error is illustrated - it is clear that the DCT curve flattens as

the block size increases beyond 16× 16. The most popular block sizes used in still image

coding are 8× 8 and 16× 16.

The degree with which a simple translational motion model over multiple frames can

accurately portray the true underlying motion depends on the x− y− t volume of data to

which 3D DCT is applied, i.e., 3D DCT support volume. For small volumes, the model

is more accurate, but the associated coding overhead increases. To the contrary, for large

volumes the coding overhead is reduced but the motion model may not be accurate enough.

To address this issue, we propose to adapt the size of 3D DCT to its motion content as

51

2x2 4x4 8x8 16x16 32x32
0

0.5

1

1.5

2

2.5

3

3.5

R
oo

t−
m

ea
n−

sq
ua

re
 e

rr
or

Block size

DCT

Walsh−Hadamard

Fourier

Figure 3·9: Reconstruction error versus block size. After the block-
transform, one quarter of coefficients is retained and used for reconstruction.

follows. If a certain percentage of coefficients (in our experiments we used a fixed threshold

of 2%) closest to the dominant plane contains more than t% of the total volume energy,

we consider the motion in this volume to be very accurate and apply 3D DCT to this

volume. If energy of these coefficients is smaller than t%, we split the current volume

spatially into four sub-volumes (spatial quad-tree) and repeat the plane fitting step in each

sub-volume. We repeat the process until either the energy of coefficients nearest to the

plane is larger than the set threshold, or the volume size reaches some predefined minimum.

The threshold t can be effectively used, along with quantization parameters Q and p and

scanning parameter λ, for rate control of the proposed coder.

Regarding adaptive temporal support for the DCT, we observed relatively small gains

when using it in our experiments, at a significantly higher computational cost (primarily re-

lated to the detection of optimal temporal volume boundaries). Therefore, we limit the 3D

DCT support adaptation to the spatial dimensions. Even without a full temporal support

adaptation, the detection of global temporal boundaries (scene cuts) and corresponding

alignment of pixel volumes is still necessary for efficient coding of multi-scene sequences.

52

3.5.4 Alternatives to DCT-based motion estimation

In addition to DCT-domain motion estimation, the motion parameters ~φ can be alterna-

tively estimated as a standard motion vector in the space-time domain. The most popular

way to achieve this has been block matching, the standard approach to motion estimation

in video coding standards. In order to compare it with our proposed DCT domain motion

estimation, we implemented exhaustive-search block matching with 1/4-pixel precision for

each two consecutive frames of the pixel volume considered. The final dominant motion

was calculated as a temporal average of all the estimated frame-to-frame motion vectors.

Block matching is not the only alternative to plane fitting - phase correlation is a

fast and simple alternative for estimating inter-image displacements (Thomas, 1987; Wang

et al., 2002). In the case of pure translation, the method produces a single peak on the

phase correlation surface. If the motion departs from a uniform translation (e.g., affine

motion) or in the case of multiple moving objects, an ill-defined peak (single peak with

”flat” slopes) or multiple peaks will result.

The main advantage of phase correlation is that it naturally provides a quantitative

measure of how well the estimated motion matches the assumed translational model - the

existence of a single dominant peak can be used as indicator of an accurate estimate of

translational motion. More precisely, we compare the fraction of total phase-correlation

surface energy contained in the main peak with a pre-selected threshold and use it to drive

a volume splitting process.

Finally, it is worth noting that both plane fitting and phase correlation methods provide

additional information about fidelity of computed motion estimates, which can be used to

control other coding parameters such as the λ (for scanning order).

3.5.5 Entropy coding

The adaptively scanned and quantized DCT coefficients usually contain significant runs

of consecutive zeros. To take advantage of such runs, we first apply run-length coding.

For additional coding gain of both coefficients and motion vectors, we employ the popular

53

context-adaptive binary arithmetic coder - CABAC (Marpe et al., 2003). The CABAC

offers a new approach to entropy coding that utilizes time-varying statistics of symbols

produced by a source coder for bit rate reduction. CABAC was originally developed within

MPEG for the AVC/H.264.

In CABAC, the input is first binarized (any non-binary-valued symbol, like transform

coefficient or motion vector, is converted into a binary code). A proper context model is

then selected, and arithmetic encoding of each bin is performed according to the selected

probability. Finally, the context model is updated based on the actual coding value - the

encoding of the next bin makes use of new and updated model probabilities.

3.5.6 Computational complexity

In this section, we discuss computational complexity of the proposed 3D DCT-based coder.

A direct comparison with standard video coders in terms of execution time is unfortunately

not possible since our 3D DCT-based video coder (presented in more detail in Section 3.6)

is completely implemented in Matlab. This makes it difficult to directly compare the

encoding time of our 3D DCT coder with optimized C implementations of MPEG-2 and

MPEG-4. However, an informative comparison can be obtained if the total number of

operations required in the two coding architectures is analyzed.

The main computational difference between our 3D DCT coder and standard hybrid

coders lies in the motion estimation block. Where hybrid coders require a motion vector

per block between each pair of frames, only one motion vector per group of blocks (GOB)

is needed in the 3D DCT approach. Typically, the processed 3D volumes are of length

8 or 16 - this translates to approximately a ten-fold reduction in the number of required

motion vectors and results in a significant speed up in motion estimation. In addition, as

the dominant translation is required to detect the maximum-occupancy plane, well-known

fast motion estimation methods (e.g., phase correlation (Thomas, 1987)) can be used to

significantly improve the overall encoding speed.

In a typical hybrid coding system, motion estimation consumes between 50% and 90%

54

of the total encoding time, depending on the complexity of search algorithm used. In order

to illustrate the impact of reduced motion estimation cost on the overall encoding time, we

assume that 75% of encoding is spent on motion estimation. A comparable 3D DCT coder

with fixed 16× 16× 8 volumes (GOF of size 8) would introduce an eight-fold reduction in

motion estimation time and reduce the total encoding time to one third (i.e., decrease of

encoding time by about 67%).

While the 3D DCT approach reduces complexity of the motion estimation block, addi-

tional complexity is now involved in the entropy coding block. The most computationally

involved part of our coder is motion-adaptive scanning. We more closely look at two options

for its calculation: on-line and off-line.

In the on-line approach, every time the dominant motion in the current volume is

estimated, the cost function (3.11) is calculated. Pixel positions (~k) in the volume are then

ordered and scanned, based on this cost function. This obviously requires a large number

of operations, although a buffer of recently-used scans can be used to reduce coding time.

An off-line calculation of scan order seems much more practical. For a predetermined

range of motion vectors, all possible scanning orders are calculated off-line and made avail-

able to both the encoder and the decoder. Fast look-up tables are then used for coefficient

ordering every time motion of the current volume is estimated. An identical look-up table

is used in the decoder for inverse scan and volume restoration. For a search range of ±8

pixels and 1/2 pixel motion accuracy, there is a total of 1089 scan orders. Assuming that

storage of each scan requires 4kB,4 the total memory required to store all scan orders is

about 4MB. We also note that smaller motion vectors occur more frequently as the result

of motion estimation than larger estimates. If memory is limited, only scans corresponding

to small motion vectors can be precalculated and stored, while other scans are calculated

”on-line”.

In our approach, all multidimensional DCT operations are separably implemented and

4This assumption is based on a 16 × 16 × 8 volume (total of 2048 pixels) and two bytes per pixel for
storage of each scan-order number.

55

(a) (b)

Figure 3·10: Motion vector field for frame #5 of the MPEG-4 sequence
“Stefan” using 1/4 pixel precision: (a) block matching (16 × 16), and (b)
plane fitting in the DCT domain (16× 16× 8).

the DCT itself introduces no significant memory strain, as the largest input to a DCT

block is of length 16. For the storage of the currently encoded data volume, we use at most

4kB, as the largest 3D volume processed in our coder is of size 16× 16× 16.

In conclusion, if the memory is not severely constrained, we believe that implement-

ing off-line scanning approach would be most beneficial computationally is highly recom-

mended. In that case, the computational time of the entropy coding block in a 3D DCT

coder approaches that of fixed scanning order of MPEG-4. Coupled with aforementioned

savings in motion estimation, the estimated computational complexity of the 3D DCT-

based approach stands at about 40 to 50% of complexity of MPEG-4 simple profile using

the same 1/4 pixel motion accuracy. As MPEG-2 main profile is less computationally

involved than MPEG-4 (among other things, it employs 1/2 motion compensation accu-

racy), we estimate the computational savings of 3D DCT coder at about 25% compared

to MPEG-2.

3.6 Experimental results

3.6.1 Motion estimation

We have implemented the proposed motion estimation algorithm in 3D DCT domain (3.9)

by means of exhaustive search in the ~φ’s state space implicitly defined by motion vectors

56

(a) (b)

Figure 3·11: Motion vector field for frame #8 of “Mobile and Calendar”
using 1/4 pixel precision: (a) block matching (16×16), and (b) plane fitting
in the DCT domain (16× 16× 8).

with 1/4-pixel precision in the range of ±8 pixels in both directions. Plane fitting in the

DCT domain was performed on fixed-size coefficient volumes (16× 16× 8).

Fig. 3·10 shows displacement field estimated from the QCIF-resolution MPEG-4 test

sequence “Stefan” using block matching applied to frame pairs (16 × 16 blocks), as well

as our plane-fitting method. In Fig. 3·11, we show similar results for QCIF-resolution

“Mobile and Calendar” sequence. Note that while the block matching result is obtained

by measuring the displacement between two frames only, the plane fitting method finds

the displacement that explains image dynamics over 8 frames. Clearly, the DCT-derived

motion vectors quite accurately render motion in both sequences even with the imposed

constancy constraint over the group of frames (in this case 8). The result will not be as

accurate should a significant velocity change take place over time.

3.6.2 Quantization and scanning order

In order to calibrate the proposed scanning and quantization, we have first studied the

impact of parameters λ, Q and p on the DCT coefficient restriction error. This error

describes compaction properties of various scans, and is defined as the difference between

the original image and a reconstructed image obtained by keeping only a fraction ρ of

57

0 10 20 30 40 50 60 70 80 90 100
21

22

23

24

25

26

27

28

29

30

31

ρ (%)

P
S

N
R

 (
dB

)

Q = 2.5, p = 1, λ = 0
Q = 2.5, p = 1, λ = 0.3
Q = 2.5, p = 1, λ = 1
Q = 2.5, p = 1, λ = 10

(a)

0 10 20 30 40 50 60 70 80 90 100
18

19

20

21

22

23

24

25

26

27

28

ρ (%)

P
S

N
R

 (
dB

)

Q = 2.5, p = 1.5, λ = 0
Q = 2.5, p = 1.5, λ = 0.3
Q = 2.5, p = 1.5, λ = 1
Q = 2.5, p = 1.5, λ = 10

(b)

Figure 3·12: Coefficient restriction error expressed as PSNR for the pro-
posed scan with different values of parameter λ: (a) synthetic sequence with
globally translational motion [d1, d2] = [0, 1], (b) MPEG-4 test sequence
”Stefan”.

58

quantized and ordered DCT coefficients. Clearly, this error is strongly influenced by the

ordering of coefficients; larger coefficients scanned earlier will result in faster saturation of

the error. It should be noted, however, that there is no direct relationship between the

coefficient restriction error and image coding error. Although in both cases coefficients are

quantized, in the coefficient restriction error they are gradually set to zero starting from

the end of the scan, whereas in the coding error they are entropy coded (Section 3.5.5).

In Fig. 3·12 we show the dependence of the coefficient restriction error on ρ for dif-

ferent values of λ for the proposed scan on a 16-frame QCIF-resolution natural-texture

sequence (Fig. 3·5.a) with synthetic motion, as well as for a 32-frame QCIF-resolution nat-

ural MPEG-4 test sequence (“Stefan”). Plane fitting was used for motion estimation in the

case of natural sequence, while in the synthetic sequence motion vector value is known. In

the synthetic case, we used moderate quantization (Q=2.5, p=1) leading to a good-quality

reconstruction even at 5:1 compression (ρ=20%). For the natural test sequence, we used

the same Q but faster rate of decay (Q=2.5, p=1.5), in order to obtain similar histogram

of the quantized coefficients to that in the synthetic case. From the results, it is clear that

the best performance is attained in each case for λ=0.3; more confidence is given to the

distance from the dominant-energy plane than to the distance from the origin. This was

to be expected when motion is well defined. We have also obtained similar graphs for finer

and coarser quantization with the difference that for coarser quantization the PSNR curves

attain saturation faster and at lower PSNR value. We conclude that, although an optimal

(from the point of view of coefficient restriction error) λ can always be found, the range

of good performance (loss of less than 1dB from the best λ) is quite large: basically any

λ between 0.2 and 0.5 works very well. Interestingly, λ=0 results in a larger error since

coefficients are ordered exclusively based on their distance from the dominant plane, thus

disregarding the low-pass spectrum of typical video.

Having found a good range for the parameter λ, we have tested the proposed scan

order against other methods described in the literature. We compared our scan with a

3D extension of the zig-zag scan (Yeo and Liu, 1995), and with the optimal ordering, i.e.,

59

0 10 20 30 40 50 60 70 80 90 100
21

22

23

24

25

26

27

28

29

30

31

ρ (%)

P
S

N
R

 (
dB

)

3D zig−zag scan
Proposed scan
Reference scan

(a)

0 10 20 30 40 50 60 70 80 90 100
19

20

21

22

23

24

25

26

27

28

29

ρ (%)

P
S

N
R

 (
dB

)

3D zig−zag scan
Proposed scan
Reference scan

(b)

Figure 3·13: Coefficient restriction error expressed as PSNR for differ-
ent scan orders: (a) synthetic sequence with globally translational motion
[d1, d2] = [0, 1], Q=2.5, p=1, λ=0.3, (b) MPEG-4 test sequence “Stefan”,
Q=2.5, p=1.5, λ=0.3.

60

based on the magnitude of the actual 3D DCT coefficients to be encoded. The latter scan

is used only for reference as it is the limit on how well we can perform the ordering of

coefficients, but it is not a practical method since coordinates of all coefficients need to

be transmitted thus significantly increasing the bit rate, as described in the Section 3.5.2.

In Fig. 3·13(a), we show results for the synthetic sequence. The 3D DCT is performed on

16×16×16 blocks, and the same moderate coefficient quantization as before (Q=2.5, p=1)

is applied prior to scanning. Note that for PSNR of 28dB we need only about 10% of the

DCT coefficients for the proposed scan, and about 25% of coefficients for the 3D zig-zag

scan. The reference scan requires about 5% of coefficients. In Fig. 3·13(b), we show results

for the test sequence “Stefan” (QCIF), with the 3D DCT performed again on 16× 16× 16

blocks, and the quantization parameters Q=2.5, p=1.5. Motion estimation was performed

using plane fitting. Again, a restriction to the first 13% of coefficients in the proposed

motion adaptive scan results in PSNR of about 26dB, while about 35% of coefficients are

needed to achieve the same PSNR with the 3D zig-zag scan. The reference scan requires

only about 6% of the coefficients. Clearly, the proposed scan significantly outperforms the

3D zig-zag scan and is fairly close to the reference scan in both cases.

Note that the proposed scan also results in much longer zero runs when compared to the

3D zig-zag scan. For example, the average length of the final zero-run for the 16× 16× 16

block of the “Stefan” sequence encoded with quantization parameters Q=2.5, p=1.5 was

439 with 3D zig-zag scan, 2112 with the proposed scan and 3173 with the reference scan.

This suggests that significant gain should be expected from subsequent run-length coding.

3.6.3 Video compression

We now move to the analysis of compression performance of our 3D DCT coder. As

pointed out in Section 3.5.3, we limit the temporal DCT support to 16 frames, while we

allow spatial DCT support to adapt starting at 16×16 pixels and ending at 4×4 pixels. A

temporal scene-cut detection is required for multi-scene video coding in order to prevent

GOF running across non-correlated frames. Depending on the current volume size and

61

0 200 400 600 800 1000

30

32

34

36

38

40

42

Bitrate (kb/s)

P
S

N
R

 (
dB

)

MPEG−4

MPEG−2

3D−DCT − proposed

3D−DCT − zig−zag

3D−DCT − optimal

Figure 3·14: Rate-distortion performance of the 3D-DCT coder with opti-
mal, 3D zig-zag and proposed coefficient scans in comparison with MPEG-4
and MPEG-2 coders - Foreman sequence

target bit-rate, typical values of the volume size adaptation threshold t are in the range of

15-40%. This threshold is kept fixed for the entire sequence based on the target bit rate,

and used to adaptively select 3D DCT size as described in Section 3.5.3.

In Fig. 3·14 and 3·15, we compare the proposed coder for three scans: optimal (refer-

ence), 3D zig-zag and the proposed scan, with two standard DCT-based coders, MPEG-2

(main profile) and MPEG-4 (simple profile). For our compression tests, we use CIF reso-

lution ”Foreman” and ”Mobile and Calendar” sequences at 30Hz.

We can see that, as expected, in both sequences the optimal scan outperforms all other

scans. Also, our proposed scan outperforms the 3D zig-zag by at least 2 dB across all

rates. For the ”Foreman” sequence, the proposed 3D-DCT coder easily outperforms the

MPEG-2 coder and is close to the MPEG-4 coder, especially at lower bitrates. For ”Mobile

and Calendar”, MPEG-4 outperforms our coder by less than 1 dB, and our coder still

outperforms MPEG-2 by about 2 dB. The very good performance of our coder, especially

62

0 200 400 600 800 1000

20

22

24

26

28

30

32

34

Bitrate (kb/s)

P
S

N
R

 (
dB

)

MPEG−4

MPEG−2

3D−DCT − proposed

3D−DCT − zig−zag

3D−DCT − optimal

Figure 3·15: Rate-distortion performance of the 3D-DCT coder with opti-
mal, 3D zig-zag and proposed coefficient scans in comparison with MPEG-4
and MPEG-2 coders - Mobile and Calendar sequence.

at lower rates, can be credited to the small motion overhead that is typically five times

smaller than that of MPEG.

In addition, longer zero-runs are observed at low bitrates, as a result of effective motion-

adaptive scanning that follows after coarse quantization. We finally notice that at higher

bit-rates the gap between the MPEG-2 and 3D DCT coders decreases, due to a relatively

poor motion rendering in the 3D DCT coder.

The average coding performance of the proposed 3D DCT coder relative to both MPEG

standards has been summarized in Table 3.1 using the method proposed by Bjontegaard for

measuring the average difference between two rate-distortion curves (Bjontegaard, 2001).

This method first fits a third-order polynomial through points on each curve. Then, inte-

grals of these two polynomial functions are calculated and the average PSNR gain/loss is

computed as the difference between the two integrals divided by the integration interval

(160-1000 kbps in our experiments). The average bit-rate and PSNR gain/loss between the

63

Table 3.1: Average coding gain/loss of the proposed 3D DCT coder in
comparison with MPEG-2 and MPEG-4 for “Foreman”, “Mobile and Cal-
endar”, “Stefan”, “MIT” and “Coastguard” computed using the method
proposed by Bjontegaard (Bjontegaard, 2001).

MPEG-2 MPEG-4

Bit rate change at fixed PSNR -22.9% +14.2%

PSNR change at fixed bit rate +1.83 dB -0.71 dB

proposed coder and both MPEG-2 and MPEG-4 have been computed using this approach

for the following test sequences: “Foreman”, “Mobile and Calendar”, “Stefan”, “MIT” and

“Coastguard”. Clearly, for a given PSNR our coder requires about 23% lower rate than

MPEG-2, but 14% higher rate than MPEG-4. For a given rate, our coder outperforms

MPEG-2 by 1.83 dB while performing about 0.71 dB below MPEG-4.

Finally, a visual comparison of our proposed coder with MPEG-2 and MPEG-4 is

presented in Fig. 3·16. Our coder produces artefact-free image that is clearly better than

MPEG-2 (notice how MPEG-2 coder produces artifacts around player’s right foot (Stefan)

and noise in the calendar (Mobile and Calendar). At the same time, the performance of

3D DCT coder is visually indistinguishable from MPEG-4, despite about 0.7 dB objective

loss.

3.7 Summary and conclusions

In this chapter, we have studied translational motion properties in the DCT domain. We

have shown that translational, constant-velocity motion results in restricted spectral oc-

cupancy in the 3D DCT domain; the spectrum is limited to a folding plane. Based on

this spectral footprint, we have proposed a motion estimation method based on plane fit-

ting to high-energy DCT coefficients. We have shown that this method performs well and

is comparable to block matching. We have also exploited the spectral footprint in video

coding; we have proposed DCT coefficient quantization and motion-adaptive scanning, as

64

Stefan CIF 30Hz, decoded frame #60 Mobile CIF 30Hz, decoded frame #241

(a) MPEG-2 (d) MPEG-2

(b) 3D-DCT (e) 3D-DCT

(c) MPEG-4 (f) MPEG-4

Figure 3·16: Left column: visual comparison of frame #60 from Stefan
CIF sequence encoded at 768 kbps: (a) MPEG-2 (27.63 dB), (b) proposed
3D-DCT (28.94 dB), (c) MPEG-4 (29.71 dB). Right column: visual com-
parison of frame #241 from Mobile and Calendar CIF sequence encoded at
256 kbps: (d) MPEG-2 (21.69 dB), (e) proposed 3D-DCT (24.34 dB), (f)
MPEG-4 (25.05 dB).

65

well as DCT support adaptation, based on this footprint. Complemented with suitable en-

tropy coding, the proposed coder performs very well; for lower rates it clearly outperforms

MPEG-2, although it is outperformed by MPEG-4. Visually our coder produces sequences

very similar to MPEG-4 at lower bit rates, while outperforming MPEG-2 at higher bit

rates.

In the next chapter, we investigate another video compression method based on a multi-

frame approach and motion-compensated temporal filtering (MCTF). In MCTF coders, the

discrete wavelet transform assumes the role of the DCT as the decorrelating transform of

choice.

66

APPENDIX

We consider the 2D case first. Let u[n1, n3] (0 ≤ n1, n3 ≤ N−1) be a 2D signal constructed

by translation of 1D intensity profile u0[n1] and let U [k1, k3] (0 ≤ k1, k3 ≤ N − 1) be its

discrete Fourier transform.5 Let u1 be defined as a zero-padded version of u, and let u2,

u3 and u4 be horizontal, vertical and horizontal/vertical symmetric “half-point” mirrors of

u, with the remainder padded out with zeros:

u1[n1, n3] =





u[n1, n3] 0 ≤ n1, n3 ≤ N − 1

0 otherwise

u2[n1, n3] =





u[2N − 1− n1, n3] N ≤ n1 ≤ 2N − 1, 0 ≤ n3 ≤ N − 1

0 otherwise

u3[n1, n3] =





u[n1, 2N − 1− n3] 0 ≤ n1 ≤ N − 1, N ≤ n3 ≤ 2N − 1

0 otherwise

u4[n1, n3] =





u[2N − 1− n1, 2N − 1− n3] N ≤ n1, n3 ≤ 2N − 1

0 otherwise

With the above definitions, the symmetrically extended (type 2e) version of u, namely us

as defined in (3.6), can be decomposed as follows:

us[n1, n3] = u1[n1, n3] + u2[n1, n3] + u3[n1, n3] + u4[n1, n3].

Note that by using the zero-padding theorem, we can express the DFT of each of those

four signals as interpolated (by factor of 2) DFT of the corresponding non-padded signals,

i.e., U1[k1, k3] = U [k1/2, k3/2], where Ui[k1, k3] = FDFT{ui[n1, n3]}. Since, by definition,

5We use (n1, n3) indices rather than (n1, n2) in order to maintain consistency with the 3D notation used
in the main body of this article, where n3 denotes a temporal index.

67

u1, u2, u3, u4 are mirrors of one another, it is easy to show that the 2D DFT of us is:

U s[k1, k3] = U [
k1

2
,
k3

2
] + U [−k1

2
,
k3

2
]ejπk1/N +

U [
k1

2
,−k3

2
]ejπk3/N + U [−k1

2
,−k3

2
]ejπ(k1+k3)/N .

Using now the relationship (3.5) to express U [k1, k3] as a function of U0[k1] (DFT of

intensity profile u0[n1]): U [k1, k3] = U0[k1]δ[k1d1 + k3], and also the magnitude/phase

representation for U0, i.e., U0[k1] = |U0[k1]|ejΦ0[k1] it is easy to see that:

U s[k1, k3] = |U0[
k1

2
]|δ[k1

2
d1 +

k3

2
]ejΦ0[

k1
2

] +

|U0[−k1

2
]|δ[−k1

2
d1 +

k3

2
]ejπk1/NejΦ0[− k1

2
] +

|U0[
k1

2
]|δ[k1

2
d1 − k3

2
]ejπk3/NejΦ0[

k1
2

] +

|U0[−k1

2
]|δ[−k1

2
d1 − k3

2
]ejπ(k1+k3)/NejΦ0[− k1

2
].

Since the input signal u0[k] is real, and thus |U0[k]| = |U0[−k]| and Φ[k] = −Φ[−k], we can

finally write the DFT of signal’s 2D symmetric extension as:

U s[k1, k3] = 2|U0[
k1

2
]| ejπ

k1+k3
2N

(
δ[(k1d1 + k3)/2] cos(Φ0[k1/2]− π

k1 + k3

2N
) +

δ[(k1d1 − k3)/2] cos(Φ0[k1/2]− π
k1 − k3

2N
)
)
,

0 ≤ k1, k3 ≤ 2N − 1.

The final DCT of u[n1, n3] is obtained from the above DFT as a scaled version (3.7) of one

quarter of U s[k1, k3] as follows:

Ũ [k1, k3] =

√
(2− δ[k1])(2− δ[k3])

2N
|U0[

k1

2
]|

(
δ[(k1d1 + k3)/2] cos(Φ0[k1/2]− π

k1 + k3

2N
) +

δ[(k1d1 − k3)/2] cos(Φ0[k1/2]− π
k1 − k3

2N
)
)

0 ≤ k1, k3 ≤ N − 1.

68

It is clear from the above equation, that DCT of the original signal is a sum of modulated

ridges: δ[(k1d1 + k3)/2] and its horizontal mirror δ[(k1d1 − k3)/2]. The addition of this

mirror is exactly what explains the observed spectral folding.

In the 3D case, we consider u[n1, n2, n3] (0 ≤ n1, n2, n3 ≤ N −1) to be a 3D signal con-

structed by translation of image u0[n1, n2]. Let U [k1, k2, k3] (0 ≤ k1, k2, k3 ≤ N − 1) be its

discrete Fourier transform. Similarly to the 2D case, the symmetrically extended 3D signal

us[n1, n2, n3] can be written as a sum of zero-padded u[n1, n2, n3] and its seven “half-point”

mirrors (horizontal, vertical, temporal, horizontal-vertical, horizontal-temporal, vertical-

temporal and horizontal-vertical-temporal). By applying 3D DFT to us[n1, n2, n3], and

using the zero-padding theorem, it easy to show that:

U s[k1, k2, k3] = U [
k1

2
,
k2

2
,
k3

2
] + U [−k1

2
,
k2

2
,
k3

2
]ejπk1/N +

U [
k1

2
,−k2

2
,
k3

2
]ejπk2/N + U [

k1

2
,
k2

2
,−k3

2
]ejπk3/N +

U [−k1

2
,−k2

2
,
k3

2
]ejπ(k1+k2)/N + U [−k1

2
,
k2

2
,−k3

2
]ejπ(k1+k3)/N +

U [
k1

2
,−k2

2
,−k3

2
]ejπ(k2+k3)/N + U [−k1

2
,−k2

2
,−k3

2
]ejπ(k1+k2+k3)/N .

Similar to the 2D case, using the relationship (3.5), i.e., U [k1, k2, k3] = U0[k1, k2]δ[k1d1 +

k2d2 + k3], the magnitude/phase representation for U0, and assuming that u0 is real, the

final DCT of u[n1, n2, n3] can be shown to be:

Ũ [k1, k2, k3] =

√
(2− δ[k1])(2− δ[k2])(2− δ[k3])

4
√

N3

|U0[
k1

2
,
k2

2
]|
(
δ[(k1d1 + k2d2 + k3)/2] cos(Φ0[k1/2, k2/2]− π

k1 + k2 + k3

2N
) +

δ[(k1d1 + k2d2 − k3)/2] cos(Φ0[k1/2, k2/2]− π
k1 + k2 − k3

2N
)
)

+

|U0[
k1

2
,−k2

2
]|
(
δ[(k1d1 − k2d2 − k3)/2] cos(Φ0[k1/2,−k2/2]− π

k1 − k2 − k3

2N
) +

δ[(k1d1 − k2d2 + k3)/2] cos(Φ0[k1/2,−k2/2]− π
k1 − k2 + k3

2N
)
)

0 ≤ k1, k2, k3 ≤ N − 1.

Clearly, the DCT of a translating image is a sum of four cosine-modulated planes: the

69

original plane δ[k1d1 + k2d2 + k3] and its three mirrors. The addition of the three mirrors

is exactly what explains the observed 3D spectral folding.

70

71

Chapter 4

Subband video coding: Beyond 3D DCT

4.1 Introduction

Our new 3D DCT coding design, presented in Chapter 3, results in significant coding

improvement over all previously reported 3D DCT-based solutions. It also offers lower

computational complexity than a comparable hybrid system. However, the compression

performance of our 3D DCT coder is still about 1 dB below that of the MPEG-4, and,

by extrapolation, about 2− 4 dB below the newest coding standard, AVC/H.264, mainly

due to the overly-simplistic motion modeling and smaller coding gain when assumption of

the uniform translation over several frames is severely violated. Despite this, the idea of

simultaneous processing of group of frames (as opposed to two-frame temporal prediction)

deserves further attention. In anticipation of better temporal decorrelation, we pursue

advanced multi-frame processing, by means of temporal filtering. This concept is closely

related to another discrete linear transform - the discrete wavelet transform (DWT).

Long before wavelets were proposed to handle temporal decorrelation in video coders,

they had already proved to be useful for still image coding. A strong research activity in

wavelet image coding during the 1990’s resulted in the JPEG2000 compression standard,

based entirely on the DWT. As most of the wavelet-based still image coding solutions

proved to be effective in handling the spatial part of the 3D wavelet transform, our work

focuses on the remaining temporal wavelet transform. When adaptively steered using

estimated motion, this transform is called motion-compensated temporal filtering (MCTF).

Section 4.2 discusses fundamentals of wavelet video coding with focus on the scalability

features. The new temporal processing block and its structure are presented in detail in

72

Section 4.3 for multi-level motion-compensated Haar and 5/3 DWTs, as both of these

kernels are used extensively for temporal decorrelation of video. MCTF is first analyzed

in the original transversal form (Section 4.3.1); another implementation, called lifting,

is subsequently introduced in Section 4.3.2. Properties of both MCTF implementations,

including the transform invertibility, are discussed. Finally, sections 4.4 and 4.5 provide

an insight into how motion and temporal wavelet transform interact. The experimental

verification of the most important theoretical result concludes the chapter.

4.2 Wavelet video coder: design and properties

Since their introduction in late 80’s (Karlsson and Vetterli, 1988), significant research

progress has been made in the area of 3D DWT video coders. This section lays out

basic concepts of motion-compensated wavelet video coding. The structure of a typical 3D

DWT coder is identical to that of a more general 3D transform coder (Fig. 2·2). In contrast

to hybrid systems, a 3D DWT encoder does away with the prediction loop creating the

so called feedforward (as opposed to feedback) structure. In its most popular form, the

3D DWT transform is separably implemented as a one-dimensional temporal (T) wavelet

transform followed by the two-dimensional spatial (S) transform (Figure 4·1). Entropy

coding (E) of quantized transform coefficients completes the encoder. These steps are

simply reversed in the decoder (E−1,S−1, and T−1) to obtain the reconstructed video. As

the temporal transform precedes the spatial transform in the encoder, this structure is

often referred to as ”t+2D.” Multiple levels of both temporal and spatial transform may

be used (in our example, two levels of each transform are shown). The existing solutions for

spatial wavelet transform, developed for still image coding, are relatively easily adjusted

to handle spatial part of a 3D transform. Most of the time, 3 to 5 stages of Daubechies

9/7 wavelet transform (Antonini et al., 1992) are used for spatial processing.

Despite the departure from the hybrid coding paradigm, modern 3D DWT coders also

include many of the algorithms originally developed for hybrid coders. For example, mo-

tion estimation (e.g., hierarchical variable-size block matching - HVSBM) and entropy

73

4CIF
CIF

T T S S E

T
-1

T
-1

S
-1

E
-1

~~

Encoder

Decoder

4CIF 4CIF4CIF
CIF

QCIF

QCIF

QCIF

QCIF

S
-1

4CIF 4CIF

Figure 4·1: Separable implementation of the 3D DWT transform in the
wavelet video encoder; ”t+2D” coding structure is shown, with two levels
of temporal and two levels of spatial DWT.

coding (e.g., context-adaptive binary arithmetic coding - CABAC), have been initially

developed for the H.264/AVC standard and later successfully implemented in the con-

text of 3D subband coding (Marpe et al., 2003; Golwelkar and Woods, 2003). Alongside

formidable compression performance, 3D-DWT coders exhibit higher computational com-

plexity and increased memory requirements compared to H.264/AVC. The latest wavelet

efforts within MPEG have divided the focus equally between compression performance and

computational complexity. As discussed earlier in Chapter 2, only a reasonably complex

video coding scheme providing high compression gains will stand a chance of successfully

competing with the H.264/AVC.

4.2.1 Scalability of wavelet video coders

The feedforward structure of a 3D DWT coder (Figure 4·1) naturally supports highly

scalable video coding. Video scalability generally denotes a capability of coding scheme

to easily extract and decode video from once-encoded bitstream at varying quality, frame-

74

rate, or resolution, respectively called quality, temporal, and spatial scalability. In addition

to these three, other types of scalability exist. Few examples are: complexity scalability

(which allows for the adaptation to decoding resources) and object-based scalability (where

the bitstream is layered according to the importance of objects in a scene). Ideally, different

types of scalability are combined, according to specific application requirements, in order

to provide scalability along multiple dimensions.

Quality scalability (also referred to as PSNR or rate scalability) is natively supported

and easily implemented in wavelet video coders for two main reasons: one is the open-

loop non-predictive structure of the wavelet encoder, while the other is bit-plane coding

of spatio-temporal subbands using embedded zero-tree coders (Shapiro, 1993; Said and

Pearlman, 1996; Taubman, 2000; Hsiang and Woods, 2000). Decoding of an embedded

bitstream can be stopped at any point with nearly optimal reconstruction PSNR. For a long

time, PSNR scalability has been used as a synonym for scalability in general. Many wavelet

video coders relied exclusively on rate scalability (provided through bit-plane coding) -

other scalability types were rarely supported or included in the design.

Temporal scalability allows for efficient frame-rate adjustment of the decoded video. It

is typically implemented by terminating temporal synthesis of motion-compensated tempo-

ral DWT at a desired temporal resolution (target frame-rate). In the example of Figure 4·1,

this corresponds to removing the leftmost T−1 synthesis block from the decoder. With

standard dyadic structure of the DWT, practical temporal scalability implementations are

limited to a ”factor of two” reductions in frame-rate. Recently, more general M-band tem-

poral filter-banks were proposed (Tillier and Pesquet-Popescu, 2004), providing different

frame-rate decimation factors (e.g., 3).

Finally, the importance of spatial video scalability increased significantly over the last

few years. The dramatic proliferation of visual displays, from cell phones, through video

iPods, PDAs, and notebooks, to high-quality HDTV screens, has raised the demand for

a scheme capable of decoding a scalably-encoded video at a range of supported video

resolutions and with high quality. Spatial scalability is typically achieved by termination

75

of spatial synthesis at the desired spatial resolution level followed by motion-compensated

temporal synthesis on the reduced-resolution frames. We devote special attention to the

spatial scalability problem in Chapter 8.

One important problem related to the evaluation of scalability performance is that of

a proper reference selection, against which the coding performance should be measured.

This is especially true for the case of spatially and temporally scalable decoding. For

example, the dynamic range of coefficients in the low frame-rate sequence (approximation

temporal subband) is larger than that of the original frames. The dynamic range also varies

depending on the number of temporal decomposition levels and on the design of temporal

filters used for analysis, which automatically requires the use of different PSNR definition.

The poor reference choice and its variation between different encoders may result in a

very good PSNR but low subjective quality. Most of the time, the reconstruction at the

highest available bitrate (nearly lossless coding) is used as a reference for that particular

encoder. Visual quality of the reconstructed approximation subband might also be used

for comparison, which still remains very subjective (as artifacts may differ depending on

the encoder settings).

4.3 Motion compensated temporal filtering (MCTF)

Motion-compensated temporal filtering is a novel approach to temporal video decorrelation

that exploits excellent energy compaction properties of the DWT. In Section 2.3.2, we al-

ready introduced two wavelet kernels, Haar and LeGall 5/3, for the case of one-dimensional

input. These two wavelets are frequently used in the MCTF context for one-dimensional

temporal filtering of three-dimensional video data. The main idea of the MCTF is il-

lustrated in Fig. 4·2; instead of simple temporal filtering along the t axis (Fig. 4·2(a)),

temporal filtering along motion trajectory is performed (Fig. 4·2(b)) for maximal temporal

decorrelation.

We now introduce MCTF notation and terminology. Let fk denote the k-th frame of an

image sequence, and let ~x denote spatial position of a pixel in this frame. Also, let Mk→l(~x)

76

f0

f1

f2

f3

f4

f5

f6

f7

x

y

t

(a)

f0

f1

f2

f3

f4

f5

f6

f7

M
C
T
F

x

y

t

(b)

Figure 4·2: Temporal filtering: (a) Without motion compensation, tem-
poral filtering is simply performed along the time axis. (b) For maximum
temporal decorrelation, filtering should follow motion trajectory.

denote the motion transformation that maps frame k onto the coordinate system of frame

l, as shown in Fig. 4·3(a)1. Specifically, motion vector field that represents a mapping

Mk→l(~x) is anchored (tails of the motion vectors) in frame l and referenced (arrow-heads

of the motion vectors) in frame k. In the discrete case, this usually corresponds to a

mapping of possibly non-grid positions from the frame k to grid positions of frame l.

At this point, we also define terms “forward” and “backward” motion fields, which

were intuitively used before. If the current video frame has a reference in the temporally

preceding frame (Fig. 4·3(b)), we call the corresponding motion field “backward” and denote

it as MB
k (~x). On the other hand, if the current frame uses future frame as a reference, we

use the term “forward” motion field and denote it as MF
k (~x) (Fig. 4·3(c)). It is obvious

that both motion vector fields originate in the current frame and have their tails aligned

with the grid points, whereas vector arrow-heads might point to grid or non-grid positions

(depending on the particular motion model used) in either the previous frame (for MB
k (~x))

or the subsequent frame (for MF
k (~x)). The final part of our MCTF terminology includes

1For now, we do not make any assumption on the specific model for the mapping Mk→l(~x), except that
all pixels in frame fk are mapped onto the frame fl. Later in this text, several popular motion models,
such as block- and mesh-based models, are analyzed in this context.

77

fk flMk l®

(a)

fk=fl-D
fl

Mk l®
, (k<l)

B

(b)

fl

F

Mk l®
, (k>l)

fk=fl+D

(c)

Figure 4·3: (a) Motion mapping Mk→l; (b) ”Backward” motion field; (c)
“Forward” motion field.

terms “direct” and “reverse” motion; we use them to denote two motion mappings between

a single frame-pair (one “backward” and one “forward”). The first motion field (the direct

field) is directly estimated, and the second motion field (the reverse field) is typically

derived (inverted) from the direct field.2

4.3.1 Transversal MCTF implementation

A single stage of the original, transversal temporal DWT decomposition/reconstruction

process is shown in Fig. 4·4. Input video frames are filtered using low and high pass filters

and subsequently temporally subsampled. In multi-resolution analysis, this procedure is

repeated on the resulting low pass temporal subband lk. Two filters, G and H, are typically

selected from the class of quadrature mirror filters.

Analysis equations for transversally implemented temporal Haar transform without

motion compensation are similar to the one-dimensional example from Section 2.3.2. Using

our notation, these can be straightforwardly written as follows (for the sake of simplicity,

2Note that we can not simply use terms “backward” and “forward” motion to describe such a motion
pair; as we will later see for the case of bidirectional prediction, “forward” fields are equally often directly
estimated as “backward” fields.

78

+

subbands

{ }hk

Analysis Synhtesis

......

...

...

ME

G

H

2

2

{ }lk

2

2

motion

H

G
{ }fk

{ }fk

~

~

2

2

Figure 4·4: A single step of (motion-compensated) wavelet analy-
sis/synthesis - transversal implementation.

we leave out the scaling coefficients):

hk[x] = f2k+1[x]− f̃2k[M2k→2k+1(x)]

lk[x] = f2k[x] +
1
2
h̃k[M2k+1→2k(x)],

(4.1)

In the decoder, the original video frames are easily reconstructed using the synthesis equa-

tions:

f̂2k[~x] = lk[~x]− 1
2
hk[~x],

f̂2k+1[~x] =
1
2
hk[~x] + lk[~x].

(4.2)

Similarly, in the case of non-motion-compensated 5/3 biorthogonal wavelet, transversal

analysis steps are:

hk[~x] = f2k+1[~x]− 1
2
(f2k[~x] + f2k+2[~x]),

lk[~x] =
3
4
f2k[~x] +

1
4
(f2k−1[~x] + f2k+1[~x])− 1

8
(f2k−2[~x] + f2k+2[~x]),

(4.3)

while synthesis equations for the 5/3 DWT can be written as:

f̂2k[~x] = lk[x]− 1
4
(hk−1[~x] + hk[~x]),

f̂2k+1[~x] =
3
4
hk[~x]− 1

8
(hk−1[~x] + hk+1[~x]) +

1
2
(lk[~x] + lk+1[~x]).

(4.4)

In order to maximize energy compaction of the temporal DWT transform, filtering

should be performed along motion trajectories, leading to motion-compensated transver-

79

sal Haar and 5/3 equations. In the general case of sub-pixel motion mapping, motion-

compensated data samples are obtained through the process of spatial interpolation - such

samples are denoted by f̄ . The analysis equations for the Haar case are:

hk[~x] = f2k+1[~x]− f̄2k(M2k→2k+1(~x)),

lk[~x] =
1
2
f2k[~x] +

1
2
f̄2k+1(M2k+1→2k(~x)),

(4.5)

while for the 5/3 case:

hk[~x] = f2k+1[~x]− 1
2
(f̄2k(M2k→2k+1(~x)) + f̄2k+2(M2k+2→2k+1(~x))),

lk[~x] =
3
4
f2k[~x] +

1
4
(f̄2k−1(M2k−1→2k(~x)) + f̄2k+1(M2k+1→2k(~x)))−

1
8
(f̄2k−2(M2k−2→2k(~x)) + f̄2k+2(M2k+2→2k(~x))).

(4.6)

As illustrated in Fig. 4·3, we use Mk→l to denote a motion filed that maps reference

frame fk (and its potentially non-grid intensities) onto the integer grid of current frame fl.

In equations above, for example, M2k→2k+1 denotes that f2k is a reference frame, and that

f2k+1 is the current (anchor) frame. We use this notation throughout the thesis.

The inclusion of sub-pel motion into transversal DWT, while improving the energy

compaction compared to non-motion-compensated MCTF (4.1 and 4.3), also leads to a

very significant problem, namely loss of transform invertibility. As a result, the recon-

struction error is non-zero even when the quantization step is entirely skipped. This is of

great concern, especially for the high quality reconstruction performance, as the number of

cascaded temporal filtering steps must be limited to prevent the error buildup. The cause

of this error is found in the non-ideal spatial interpolation required for sub-pel motion

compensation. To demonstrate this, we take a look at the synthesis equations for the Haar

case (similar result holds in the 5/3 case):

f̂2k[~x] = lk[~x]− 1
2
h̄k(M2k+1→2k(~x)),

f̂2k+1[~x] =
1
2
hk[~x] + l̄k(M2k→2k+1(~x)).

(4.7)

Note that for sub-pixel motion precision, we have to use interpolated values (denoted by h̄

80

and l̄) of high and low subbands calculated earlier. Substituting for hk and lk, we get the

following reconstruction of even and odd frames, respectively:

f̂2k[~x] =
1
2
f2k[~x] +

1
2
f̄2k+1(M2k+1→2k(~x))− 1

2
f̄2k+1(M2k+1→2k(~x))+

1
2
f̄2k(M2k→2k+1(~x))(M2k+1→2k(~x))

(4.8)

f̂2k+1[~x] =
1
2
f2k+1[~x]− 1

2
f̄2k(M2k→2k+1(~x)) +

1
2
f̄2k(M2k→2k+1(~x))+

1
2
f̄2k+1(M2k→2k+1(~x))(M2k+1→2k(~x)).

(4.9)

In both equations, the second and third elements of the sum cancel out. However, the

last element of the sum requires interpolation of data previously obtained through another

interpolation.3 Therefore, when sub-pixel motion is used, any non-ideal interpolation (using

finite-support interpolation filter) will inevitably lead to the loss of perfect reconstruction.

Even if forward and backward motion fields are perfectly matched (i.e., true inverses of

one another), no perfect reconstruction is possible. This is best explained using the one-

dimensional example in Fig.4·5. Original data (open circles) is interpolated (triangles)

at half-point positions using linear interpolation (Fig.4·5(a)). The reconstruction (solid

circles) from such interpolated data fails to match the original sample values (Fig.4·5(b)),

even when exact interpolation positions4 - integer points in our case - are available. When

cubic interpolation is used (Fig.4·5(c)), the reconstruction error decreases but it is not

completely eliminated (Fig.4·5(d)).

Due to this loss of perfect reconstruction, the originally proposed MCTF method (Ohm,

1994) was limited to integer-pel accuracy motion and translational block-matching motion.

Ohm’s approach basically implements (4.5).5 Because of the independent motion of adja-

cent blocks, block-derived motion trajectories may in practice overlap. This means that

3In our notation, first interpolation is denoted with a small bar symbol; the obtained frame is then
interpolated again, which is marked by a large bar symbol.

4Simulating ideally matched backward and forward ”motion shifts”.
5Although in his original proposal subbands were referenced differently - the high subband was aligned

with the reference motion-predicted frame instead of the current frame.

81

1 2 3 40 5

Original samples

Interpolated values

n

f(n)

(a) Linear interpolation
1 2 3 40 5

Original samples

Interpolated values

Reconstructed values

Original samples

Interpolated values

Reconstructed values

n

f(n)

(b) Reconstruction

1 2 3 40 5

Original samples

Interpolated values

n

f(n)

(c) Cubic interpolation
1 2 3 40 5

Original samples

Interpolated values

Reconstructed values

Original samples

Interpolated values

Reconstructed values

n

f(n)

(d) Reconstruction

Figure 4·5: Loss of perfect reconstruction due to interpolation of data
already obtained through interpolation. Reconstruction error is larger for
linear interpolation (top row) than for cubic interpolation (bottom row).

some ”disconnected” pixels, mostly found at the block boundaries, will be used for MCTF

more than once, while other pixels will not be used at all. Only those pixels that do not fall

into either of these two categories (the so-called ”connected” pixels) can be processed by

simple motion-compensated Haar filtering of (4.5). To that end, ”inverted” motion vectors

are derived by a simple change of motion direction.

Disconnected pixels, however, require special treatment. In Ohm’s approach, the so-

called ”uncovered” pixels, aligned with the low-subband, are simply copied directly into

the lowpass frame. This is a reasonable thing to do from the compression point of view,

since the statistics of the original sample values and lowpass coefficients are very similar.

However, the same approach should not be used for the so-called ”covered” pixels in the

highpass frame, as that would dramatically increase the energy of the high subband and

82

f2k f2k+1

“Covered”
pixel

“Uncovered”
pixel f2k(x)

f2k+1(x) - f (x-d)2k

^

lk= (f +f)2k+1 2k hk= (f -f)2k+1 2k

Figure 4·6: Problem of disconnected pixels in block displacement schemes.

result in coding losses. Instead, a spatial prediction of the covered pixels is used. As

long as the correct classification procedure is followed by the decoder, there is no need for

transmission of connected/disconnected classification map.

Choi and Woods (Choi and Woods, 1999) later improved Ohm’s proposal, by realigning

highpass subbands in a more natural way with the current (typically odd) video frames.

Also, spatial prediction of the covered pixels was avoided and replaced with a simple

temporal prediction. Their approach, that is commonly used in many current DWT-based

coders, is illustrated in Fig. 4·6. However, the problem of transform invertibility limited

their approach to integer-pel motion mapping too.

Eventually, half-pel block-based motion was integrated into transversal MCTF scheme

by Hsiang and Woods (Hsiang and Woods, 1999), using a technique originally developed

for interlaced/progressive scan conversion. This method creates a higher resolution lattice

from pixels along each block’s motion trajectory, and applies temporal filtering over this

higher density lattice. Extension to even higher motion accuracies using this approach

83

is possible, although cumbersome. Quantitatively, the error caused by the non-invertible

transform ranges from 50 dB (for two levels of temporal decomposition) to 33 dB (four

levels) (Hsiang et al., 2004). This error is also sequence dependent, and varies with the

choice of a particular spatial interpolating kernel.

Taking a different route, another MCTF implementation was developed by Taubman

and Zakhor (Taubman and Zakhor, 1994), through invertible translational spatial warp-

ing of video frames prior to the application of separable 3D-DWT. The spatial warping

operation results in image sequence where spatial features are temporally aligned, which

increases the temporal correlation of a video sequence subjected to 3D DWT. In practice,

the alignment is performed independently over groups of frames. These schemes are partic-

ularly well-suited to exploiting camera pan, where the scene motion consists essentially of

global translation. In the work of Taubman and Zakhor, the frame warping is also referred

to as ”camera pan compensation”.

Neither of the described methods, however, can correctly account for motion more

complicated than translation, regardless of the order of kernel used for interpolation. The

scenario of a locally expanding or contracting motion field essentially corresponds to a non-

uniform resampling of the video frame. Consider the example of a contractive motion field

between two frames whose discrete pixel samples are obtained by sampling the underlying

”continuous” image sequence at the Nyquist rate. As features become closer together in

the ”zoomed-out” frame, certain high spatial frequencies are inevitably lost when such

motion mapping is applied in the discrete image domain. This violation of the Nyquist

sampling criterion prevents transversal MCTF implementation from deploying advanced

spatial motion models and still remaining invertible.

Going back to our analysis of the transversal DWT, so far we assumed that both re-

quired motion mappings, M2k+1→2k and M2k→2k+1, are perfect inverses of each other. This

helped us in pointing out to the problems of spatial interpolation and sampling, and their

effects on the non-invertibility of the transform. While improved spatial interpolation helps

in reducing coding loss, we have seen that not even the ideal interpolation can guarantee

84

1 2 3 40 5

Original samples

Interpolated values

n

f(n)

(a) Sinc interpolation
1 2 3 40 5

Original samples

Interpolated values

n

f(n)

Dn

Reconstructed values

(b) Reconstruction

Figure 4·7: Loss of perfect reconstruction due to non-invertible motion
mappings.

a perfect reconstruction in the areas of expansive or contracting motion. Another scenario

where perfect reconstruction is not attainable is that of a forward/backward motion field

pair that is not perfectly matched. This is illustrated in Fig. 4·7. Reconstruction error in

this example is caused by the discrepancy between the original and final sampling point,

i.e., by the motion mismatch.

For the case of non-expansive motion and ideal interpolation, it can be shown from (4.8)

and (4.9) (Konrad, 2004), that sufficient conditions for perfect reconstruction of motion-

compensated Haar temporal filtering are:

M2k→2k+1(M2k+1→2k(~x)) = ~x,

M2k+1→2k(M2k→2k+1(~x)) = ~x.

(4.10)

The above equations state that motion transformation must be invertible. If the motion

transformation Mk→l is invertible, then the Haar MCTF obeys perfect reconstruction.

Even if motion is not invertible, perfect reconstruction may still hold for certain sequences.

Note, however, that if we require that perfect reconstruction condition be always satisfied,

regardless of image sequence {fk}, i.e., regardless of its content, then motion invertibility

is the necessary and sufficient condition in the case of the MCT Haar transform.

Similarly, the sufficient conditions for perfect reconstruction in the 5/3 MCTF case

85

(under the assumption of sinc interpolation and local translation) are (Konrad, 2004):

M2k→2k−1(M2k−1→2k(~x)) = ~x,

M2k→2k+1(M2k+1→2k(~x)) = ~x,

M2k+1→2k(M2k→2k+1(~x)) = ~x,

M2k+1→2k+2(M2k+2→2k+1(~x)) = ~x,

(4.11)

plus a number of conditions of the general form:

Mk→n(Mn→l(~x)) = Mk→l(~x),

Mk→n(Mn→l(~x)) = Mk→m(Mm→l(~x)).
(4.12)

While the first set of conditions (4.11) states that motion must be invertible, the second

set states that composition of motion operators Mk→n and Mn→l must be a valid motion

operator. This will be the case when the domain of operator Mk→n is a subset of the range

of the operator Mn→l. Note that, for k = l, motion composition (4.12) implies motion

invertibility.

It is now clear that three strong conditions must hold for the perfect reconstruction

of transversally implemented MCTF in the most general case: 1) purely translational

motion, which does not produce loss of high spatial frequencies due to motion-compensated

resampling, 2) full invertibility of a motion pair, and 3) ideal (sinc) interpolation of video

samples.

While being sufficient, these three conditions are not necessary. As described earlier, in

a particular case of transversal Haar MCTF using block matching, solutions may exist that

guarantee a perfect reconstruction even when the last two of these conditions are violated

(Ohm, 1994; Choi and Woods, 1999).

Transversal DWT formulations have been extensively used for temporal wavelet pro-

cessing from the early days of subband video coding. Still, the number of restrictions set

forth by the transform invertibility problem has limited the efficiency of this method. For-

tunately, this changed in 2001, when a new tool in the form of lifting MCTF implementation

86

{ }f2k

U

+

P U

+

++

subbands

-

-

{ }f2k+1

{ }lk

{ }hk

Analysis Synhtesis

ME U P

{ }f2k

{ }f2k+1

motion

~

~

......

...

...
{ }fk

Figure 4·8: Transversal implementation of motion-compensated subband
decomposition

was introduced into video coding.

4.3.2 Lifting MCTF implementation

The lifted wavelet transform (Sweldens, 1996) offers an alternative implementation of the

wavelet transform overcoming most of the above problems. Its importance lies in the fact

that the invertibility of the lifted wavelet transform is not compromised when the input

samples undergo non-linear operation, as we will see in a moment. For this reason, lift-

ing has become a preferred method for temporal DWT video analysis (Pesquet-Popescu

and Bottreau, 2001; Luo et al., 2001; Secker and Taubman, 2001), as it can easily handle

arbitrary motion compensation. Lifting also leads to computational speed-up when com-

pared to the standard implementation (for kernels longer then Haar) and offers significant

reduction in memory requirements (Daubechies and Sweldens, 1998).

A general design of lifted MCTF is illustrated in Fig 4·8. The analysis stage consists

of two successive steps: prediction (P) and update (U). In the prediction step, odd frames

are predicted from (motion-compensated) even frames. The prediction error forms the

corresponding high-pass subband, traditionally aligned with odd input frames. In the

update step, the ”approximation” subband is then obtained by updating even frames with

a scaled linear combination of high-subband samples, effectively forming low-pass temporal

subband.

Using lifting implementation, analysis and synthesis steps of Haar DWT can be ex-

87

pressed as:

analysis (prediction) : hk[~x] = f2k+1[~x]− f2k[~x]

analysis (update) : lk[~x] = f2k[~x] +
1
2
hk[~x]

(4.13)

synthesis (inv. update) : f̂2k[~x] = lk[~x]− 1
2
hk[~x]

synthesis (inv. prediction) : f̂2k+1[~x] = hk[~x] + f2k[~x].
(4.14)

The analysis equations of the lifted 5/3 DWT can be written as follows:

prediction : hk[~x] = f2k+1[~x]− 1
2
(f2k[~x] + f2k+2[~x])

update : lk[~x] = f2k[~x] +
1
4
(hk−1[~x] + hk[~x]).

(4.15)

Similar to the Haar case, the inverse update and prediction steps complete the synthesis:

inv. update : f̂2k[~x] = lk[~x]− 1
4
(hk−1[~x] + hk[~x])

inv. prediction : f̂2k+1[~x] = hk[~x] +
1
2
(f2k[~x] + f2k+2[~x]).

(4.16)

By carrying out the temporal decomposition without motion compensation, however,

significant energy of the transformed signal will remain in the high subband, which is not

desirable from compression point of view. To reduce energy in the high subband and

improve compression, motion is incorporated into the temporal lifting steps. For the Haar

case, a set of analysis equations commonly used in many 3D-DWT coders is:

prediction : hk[~x] = f2k+1[~x]− f̄2k(M2k→2k+1(~x))

update : lk[~x] = f2k[~x] +
1
2
h̄k(M2k+1→2k(~x)),

(4.17)

while the 5/3 motion-compensated analysis steps are:

prediction : hk[~x] = f2k+1[~x]− 1
2
(f̄2k(M2k→2k+1(~x)) + f̄2k+2(M2k+2→2k+1(~x)))

update : lk[~x] = f2k[~x] +
1
4
(h̄k−1(M2k−1→2k(~x)) + h̄k(M2k+1→2k(~x))).

(4.18)

88

In the above equations, f̄ denotes interpolated value. Synthesis steps are easily derived;

we present them here only for motion-compensated lifted Haar DWT:

inverse update : f̂2k[~x] = lk[~x]− 1
2
h̄k(M2k+1→2k(~x))

inverse prediction : f̂2k+1[~x] = hk[~x] + f̂2k(M2k→2k+1(~x)).
(4.19)

In stark contrast to transversal implementation, no new interpolation is required in

either of the two synthesis steps. More accurately, the synthesis interpolation step can

perfectly reproduce all the results of the analysis interpolation step, for as long as the same

interpolating kernels are used. This fact guarantees perfect reconstruction regardless of

the order of interpolating kernel or motion accuracy. Furthermore, forward and backward

motion mappings need not to be matched to one another. Finally, expanding or contracting

motion is longer an obstacle. Amazingly, even the use of completely arbitrary motion

fields, while inevitably degrading the compression efficiency, would still result in a perfectly

invertible transform! While the above result was based on a discussion of the Haar DWT,

similar conclusions also hold for the 5/3 DWT and longer kernels.

The use of 5/3 and longer kernels for MCTF, however, leads to two alternatives in

the way motion estimation is performed: unidirectional or bidirectional (Luo et al., 2003;

Golwelkar, 2004). In the unidirectional approach (Fig. 4·9(a)), just like in basic predictive

coding, all motion vector fields are backward and anchored in every video frame. This

approach permits the direct use of readily available motion estimation algorithms. In the

bidirectional case, the estimated motion fields always originate at the frames aligned with

the high temporal subband (typically, odd frames), and alternate in pointing backward

and forward, as shown in Fig. 4·9(b). This is discussed further in Chapter 5.

4.4 Interpretation of the lifted MCTF

In the previous section, we have seen that the lifted MCTF does away with the problem

of transform invertibility. We now turn our focus to interpretation of this potent temporal

decorrelation method. By comparing (4.1) and (4.13) for the Haar case, and (4.3) and

89

f2k-2 f2k-1 f2k f2k+1 f2k+2

(a)

f2k-2 f2k-1 f2k f2k+1 f2k+2

(b)

Figure 4·9: Motion estimation for MCTF: a) unidirectional; b) bidirec-
tional.

(4.15) for the 5/3 case, it is trivial to show that lifting is equivalent to transversal filtering

implementation in the absence of motion. However, maximum energy compaction requires

for the DWT to be used along motion trajectories. Filter banks used for the subband

decomposition are usually designed under a certain optimality constraint (Vetterli and Ko-

vacevic, 1995). As we have already seen, in order to preserve the transform invertibility,

these filters had to be modified (Ohm, 1994) in all areas where motion is not purely trans-

lational (e.g., boundaries of a disjoint blocks). In practice, lifting is used instead, as the

perfect reconstruction is not compromised by motion compensation. However, when lifting

steps include motion compensation, the question arises as to what kind of subband decom-

position the lifting really implement, and how this is related to original (and optimized)

transversal filter banks. This problem was initially brought to attention and analyzed in

(Secker and Taubman, 2003; Konrad, 2004).

When there are no local expansions or contractions in the video sequence, interpretation

of lifting in the context of motion trajectory filtering is pretty straightforward. Assuming

ideal sinc interpolation, it can be shown (Secker and Taubman, 2003; Konrad, 2004) that in

order for lifting to truly match the optimal filter bank implementation (i.e., to implement

filtering along motion trajectories), the employed motion mappings must be invertible.

More specifically, the following relation has to hold in the general case of longer wavelet

90

kernels (Konrad, 2004):

M2(k−m)→2k(~x) = M(k−i−j)→2(k−i)+1(M2(k−i)+1→2k(~x)),

M2(k−m)+1→2k+1(~x) = M(k−i−j)+1→2(k−i)(M2(k−i)→2k+1(~x)),
(4.20)

where k, i and j are temporal frame indices and m = i + j. These conditions require, in

general, that motion composition be well-defined, and, for some values of m (e.g., m = 0 in

(4.20)), that motion invertibility hold. This result demonstrates that only in the context

of motion mappings that satisfy the above conditions can the lifting framework be truly

understood as being equivalent to subband decomposition along the motion trajectories.

This is not the case when Mk→i and Mi→k are not inverses of one another, despite preserved

transform invertibility.

In the more complex case of expanding or contracting motion, there is no clear way

of fully understanding the behavior of the lifting MCTF. Still, if video frames in the

neighborhood of a shrinking/expanding frame are modeled as a sum of a two sequences

(Secker and Taubman, 2003), one containing low and the other containing high spatial

frequencies, the interpretation of filtering along motion trajectories might still be used for

the ”low-pass” video sequence. For this to be valid, properly designed motion-compensating

interpolation filters should be used. The range of spatial frequencies for which the above

interpretation of lifting works will depend on the interpolation order, as well as on the

nature and level of motion activity (i.e. the severity of expansion/contraction). Lifted

MCTF of the remaining ”high-pass” component does not have a similar interpretation, but

this component is usually significantly less important than the base (low-pass) component.

This is especially the case when video frames are spatially smooth, or when motion in the

sequence is close to translation.

4.5 Importance of motion trajectories (to invert or not to invert?)

Referring to equations (4.17) and (4.18), it can be seen that for each forward motion warp-

ing operator, M2k→2k+1, the reverse warping operator, M2k+1→2k, is also required. We

91

have just seen that the process of motion-compensating the lifting steps is equivalent to

applying the temporal DWT along an underlying set of motion trajectories, as long as the

these two motion fields are inverses of one another. Commonly used discontinuous motion

models such as block-based models cannot be strictly inverted, so some sort of approxima-

tion must be employed. Later, in Chapter 7, we introduce two advanced motion models,

deformable mesh-based and cubic spline-based models, which do not require significant

approximations for inversion.

Clearly, there are two choices for the selection of a motion field pair. One is to directly

estimate one motion field involved in lifting, and then derive the other one, using some

inversion method (or its approximation). A more detailed discussion of this topic will

follow in Chapter 5).

Another approach is based on the obvious extension of predictive schemes: indepen-

dent optimization of the parameters of each individual motion mapping, with respect to

a displaced frame difference measure. In this case, M2k→2k+1 and M2k+1→2k are obtained

through independent forward and backward motion estimation. Regardless of the motion

model used, such estimation will not generally lead to two motion mappings being inverses

of one another. Even in the absence of modeling or estimation errors, discrepancies be-

tween M2k→2k+1 and M2k+1→2k can be expected in areas of occlusion and exposure. In

such areas, the relationship between successive frames cannot be truly described in terms

of a set of motion trajectories.

In order to compare these two approaches, we computed the reconstruction peak signal-

to-noise ration (PSNR) obtained by using inverted block-based motion, with that obtained

by estimating every motion field independently. For inversion, we adopted a rudimentary

inversion method that simply reverses the sign of the motion field (we later refer to this as

”neighbor-frame-copy” inversion in Section 5.4.2). In these experiments, we use the lifted

Haar and 5/3 motion-compensated temporal transform, at texture (no motion) bit-rate of

1024 kbps. Tables 4.1 and 4.2 show results for 1 and 3 levels of temporal decomposition,

respectively. Fixed size 16 × 16 blocks with quarter-pel motion accuracy and JPEG2000

92

Table 4.1: Independent estimation vs. motion-inversion: luminance PSNR
performance [dB] at 1024 kbps (motion rate not included), single level of
temporal decomposition

Sequence Coastguard Foreman Stefan

Lifted MCTF Haar 5/3 Haar 5/3 Haar 5/3

Ind. estimation 31.12 33.13 32.67 34.71 26.71 29.18

Inversion (+0.11) (+0.04) (+0.08) (+0.02) (+0.08) (+0.04)

Table 4.2: Independent estimation vs. motion inversion: luminance PSNR
performance [dB] at 1024 kbps (motion rate not included), three levels of
temporal decomposition

Sequence Coastguard Foreman Stefan

Lifted MCTF Haar 5/3 Haar 5/3 Haar 5/3

Ind. estimation 34.27 35.93 36.63 39.03 29.75 32.04

Inversion (+0.34) (+0.15) (+0.29) (+0.10) (+0.32) (+0.14)

derived subband coder were used to encode three standard CIF-resolution test sequences:

”Coastguard”, ”Foreman”, and ”Stefan”.

We can see that motion inversion always outperforms the baseline case of two inde-

pendently-estimated motion fields. This confirms that, unlike in hybrid coding schemes,

prediction error is not the only metrics that plays role in the determination of current

motion estimate. To the contrary, this result suggests that the overall coding performance

also improves when ”direct” and ”reverse” motion fields are ”well matched”, i.e., closer

to being inverses of each another. Also, note that the presented results do not include

the cost of motion information, thus fairly comparing temporal decorrelation of the two

methods. Including the motion cost would further reduce the performance achieved with

independently-estimated motion fields. This is because there is no need to transmit motion

parameters that are determined by inversion of another motion field, but independently-

estimated motion fields must each be encoded and transmitted.

These results confirm our previous theoretical discussion and interpretation of the lifting

93

MCTF. From the compression point of view, it is beneficial to apply wavelet filters along

known set of motion mappings (even when they are not perfectly matched to the real

motion activity), than to predict and update video frames using independently-estimated

motion fields.

4.6 Conclusions

In this chapter, we have set up the stage for motion analysis in the context of wavelet video

coders. We have introduced motion-compensated temporal filtering as a powerful method

for temporal video decorrelation and discussed technical limitations of motion-compensated

transversal temporal DWT.

In order to stay invertible, practical implementations of this transform were either based

on ad-hoc techniques (Ohm, 1994), designed exclusively for full-pixel block-matching, or

used global motion frame warping, ignoring local expansions and contractions (Taubman

and Zakhor, 1994). Neither of these approaches corresponds to a true subband decomposi-

tion along motion trajectories in the case of non-translational motion, which is common in

the majority of real-life video sequences. The employment of advanced (sub-pel) local mo-

tion in the transversal DWT framework is limited due to the loss of perfect reconstruction

and error caused by non-ideal interpolation.

The motion-compensated temporal lifting transform overcomes these problems. Virtu-

ally any motion may be used without the loss of transform invertibility. However, in order

for the lifting transform to truly implement wavelet filtering along motion trajectories, and

thus achieve maximum coding gain, two motion mappings used for lifting must be ”well

matched” i.e., be inverses of each another.

When motion mapping is not invertible, there is no clear way to understand the behavior

of lifting transform in the context of temporal filtering, despite the preserved transform

invertibility. Our experimental results confirm that the compression performance benefits

from enforcing set motion trajectories (through inversion), compared to independently-

estimated backward/forward motion field pair.

94

In the next chapter, we will investigate the motion invertibility problem in detail and

show how the coding gain could be increased by improving inversion, even for motion model

that is not fully invertible (e.g., block-matching). Motion inversion will be also discussed

in Chapter 6, in the context of efficient coding of backward-forward motion mapping pairs.

95

Chapter 5

Invertible motion for wavelet video coding

5.1 Introduction

Early in the thesis (Section 2.4), we pointed out the benefits using highly accurate motion

estimation (e.g., 1/4 pixel) for the compression efficiency of a video coder. In the previous

chapter, we have also seen that better motion prediction alone does not lead to maximum

coding gains of wavelet video coders. We have compared two methods for obtaining motion

for the update lifting step and showed that motion inversion consistently outperforms

direct estimation in terms of the overall coding gain. This is a very important practical

confirmation of a theoretical result showing that only in the context of invertible motion

mapping will the lifted DWT truly implement filtering along motion trajectories (Secker

and Taubman, 2003; Konrad, 2004).

This chapter starts with a detailed analysis of the update lifting step in Section 5.2;

motion inversion plays a central role in this problem. Obviously, not all motion models

(including the most popular block-based model) can be perfectly inverted. We therefore

propose a new metric for measuring the motion invertibility error (Section 5.3). We then

propose several advanced motion inversion methods in Section 5.4 and use the invertibility

error to evaluate their coding performance in Section 5.5. As better motion inversion

results in higher coding gain, we also propose to incorporate invertibility into the process

of motion estimation (Section 5.6) by introducing additional invertibility factor in the

typical cost function (2.2.1). We discuss how this modification of the motion estimation

algorithm affects both coding performance and computational complexity. At the end of

the chapter, we discuss an alternative ”truncated” wavelet transform, which requires no

96

motion inversion as no MC filtering is used in the update step (Section 5.7). The impact

of motion overhead on the selection of the best temporal DWT kernel is also discussed.

Experimental results comparing various motion/transform combinations are shown in the

Section 5.8. Section 5.9 concludes this chapter.

5.2 The importance of motion invertibility

The issue of motion invertibility is specific to wavelet video coding, as no inversion of

motion is required in hybrid coding schemes. Before a further invertibility analysis, we

point out to the main difference between the two coding schemes, which lies in the way they

handle temporal decorrelation. Hybrid coders use motion-compensated temporal prediction

(MCTP), while video frames are decorrelated using motion-compensated temporal filtering

(MCTF) in wavelet coders. In order to obtain high and low temporal subbands, a pair of

motion mappings (backward and forward) between each two consecutive frames is required.

In the lifting context, these two motion mappings are used one after another in two lifting

stages, prediction and update.

As we have seen in Section 4.3.2, the prediction lifting step of a wavelet coder closely

follows the motion prediction stage of a hybrid coder. The goal of prediction is to minimize

the bit rate needed to represent the motion-compensated residual. Since this bit rate is

closely related to the energy of the prediction error (i.e., high-band signal), one can use

this energy instead, in order to find the best motion vectors.

Motion-compensation, however, does not end with the prediction step in the MCTF

framework. In the update step, a motion field (with direction opposite to that used in

prediction) controls the update of original video frames with samples from the high band.

The existence of two motion fields, representing motion between the same two frames but in

opposite temporal directions, enables different options when estimating motion and using

it in MCTF:

1. independent estimation of both prediction and update motion fields,

97

2. direct estimation of the prediction motion field and derivation of the update motion

field (through motion inversion),

3. estimation of the prediction field and omission of MCTF in the update step (low-pass

band is, in this case, generated by completely skipping the filtering part).

The first method produces motion fields each of which guarantees the lowest prediction

error. However, as we have seen in Section 4.5, this does not necessarily lead to better

compression performance. One reason for this is motion overhead; the other, less obvious,

lies in the inherent mismatch between this motion compensation approach and the structure

of the wavelet video coder.

Many wavelet video coders rely on the second method, in which one motion field is

estimated and the other one is derived, using motion inversion. Such schemes introduce

no additional motion overhead and achieve good coding performance. On the negative

side, motion inversion requires additional computational complexity, which can vary from

negligible (in the case of trivial inversion) to very high. Depending on the inversion quality,

this process can result in a set of well-defined motion trajectories, benefiting the coding

performance.

Finally, the third approach calls for an omission of the filtering part in the update

step. In the absence of low-pass temporal filter, this transform is sometimes referred

to as the ”truncated wavelet transform”. The low-pass temporal subband is formed by

simply subsampling original video frames. Such an approach makes sense from the coding

perspective because the statistics of original frames are similar to those of the temporal

low band. Still, the use of truncated kernel introduces significant aliasing and reduces the

maximum achievable compression gain. This is especially true for high quality, full frame-

rate coding; indeed this approach is most commonly used in low bit-rate, low-complexity

implementations. More detailed discussion of truncated wavelet filtering is presented in

Section 5.7.

98

f2k f2k+1

d
B

(a)

d
F

f2k f2k+1

(b)

f2k f2k+1

d
F~

ed

(c)

Figure 5·1: Illustration of motion invertibility error. In solid lines: (a)
Backward motion dB; (b) Forward motion dF ; (c) Interpolated motion d̄F ,
derived from dF . Invertibility error at a pixel in f2k+1 is defined as the
distance between the tail of a motion vector anchored at that pixel and the
tip of the corresponding vector d̄F .

5.3 Motion invertibility error metrics

Ideally, two motion fields (forward and backward) that are required for a single step of

MCTF should both match a unique set of motion trajectories.1 In this ideal case, we say

that these two motion vector fields are perfect inverses of each another. In any practical

situation, however, due to imperfections of motion modeling and estimation algorithms,

the trajectory set defined by one motion field will often fail to match that represented by

another field. In order to objectively measure how far one motion field is from being the

perfect inverse of another field, we propose the following invertibility error :

εd =
∑

~x

|dB(~x)− d̄F (~x + dB(~x))|. (5.1)

where dF = [dF
x , dF

y]T and dB = [dB
x , dB

y]T are forward and backward motion vectors,

respectively, defined for every integer pel position in the respective anchoring frame. d̄

1If motion rendering is accurate, this set of trajectories will closely match the true motion of the real-
world objects.

99

denotes interpolation of x and y components of d at non-grid positions.

To the best of our knowledge, our work is the first to propose a comprehensive frame-

work for quantitative analysis of forward/backward motion field relationship in the context

of video coding. Prior related work on this topic has been done primarily in the field of

stereo matching (Izquierdo, 1997) and applied to the problems of occlussion/uncovered

area detection and intermediate view reconstruction. However, the invertibility error met-

ric (5.1) is a novel concept and the original contribution of this dissertation.

For the example in Fig. 5·1, this error measures the sum of departures of points in frame

f2k+1 when each of them is projected onto frame f2k using the backward motion field and

then forward-projected onto frame f2k+1 using the (estimated or derived) forward motion

field. A pair of motion fields being perfect inverses of each other would result in zero error

εd. Note that the invertibility error is defined without any assumptions on the nature

of motion fields involved - it can be computed for any two motion mappings dB and dF .

When both motion fields are known (e.g., independently estimated), the task of calculating

the invertibility error is straightforward, as it only requires interpolation of motion field

dF . This interpolation belongs to a simpler, regular-to-irregular interpolation category

(Glassner, 1995).

It is important to note that, because of this interpolation step, the motion invertibility

error introduced in (5.1) is not uniquely defined. This metric depends on the choice of

particular interpolation kernel used for regular-to-irregular interpolation discussed above,

in addition to motion fields dB and dF . In the most general case, there is no prior that

would suggest the use of a particular interpolation model - in reality, once these two

motion fields are known, any interpolating kernel can be used to obtain a valid measure of

motion invertibility. For our experiments presented in Section 5.5 we selected to use the

popular cubic spline interpolator (Unser, 1999), as it presents a nice combination of good

performance and manageable computational complexity.

In most practical coding scenarios, however, one motion field (e.g., forward) is derived

from another (e.g., backward) using motion inversion. When fractional-pel motion accuracy

100

Figure 5·2: Example of irregular-to-regular motion-field interpolation: re-
construction of motion vectors at regular positions (hashed) is based on the
knowledge of vectors at irregular positions (black).

is used, tips of motion vectors from the direct field are not aligned with the grid in the

reference frame f2k. A derivation of the reverse field is equivalent to the process of irregular-

to-regular interpolation, illustrated in Fig. 5·2. This example is constructed for quarter-

pixel motion precision - it illustrates the fact that, based on the knowledge of motion

components at irregular grid points (black), we need to recover motion at the regular grid

points (hashed). This is the reason why, in practical wavelet video coding context, the

motion interpolation problem is not trivial. The relation to Fig. 5·1 is that black disks

correspond to arrowheads of motion vector field dB and hashed disks correspond to tails

of motion vector field dF . In the next section, we propose several methods for practical

inversion of motion fields that do not have one-to-one mapping property (Section 2.2.1)

and cannot be trivially inverted. A prime example of such motion is, naturally, ubiquitous

block-based motion model.

5.4 Motion inversion algorithms

In the case of integer-pel accurate motion, the standard (ad-hoc) approach to generating

motion for the update step (Ohm, 1994; Choi and Woods, 1999) was earlier presented in

101

Section 4.3.1. It suggests the use of reversed motion vectors at the positions where they

are well defined (simple-connected pixels). If a reverse motion vector is not defined at all

(unconnected pixel), this method inserts the sample value of this unconnected pixel into a

corresponding low subband. For multiply-connected pixels, the decision on what motion

trajectory should be used for filtering in the update step is based on scan order; the first

encountered pixel that uses the current multiply-connected pixel as a predictor is used as

a reference in the update step. With the introduction of fractional-pel motion, nearest-

neighbor interpolation of a ”direct” motion field was proposed (Choi and Woods, 1999;

Chen and Woods, 2002). This method copies a motion vector from the nearest non-grid

position less than half-pel away from the current (on grid) pixel, inverts its sign, and uses

it in the update step. For unconnected and multiply-connected pixels, the same strategies

as before are used.

In order to investigate the effect of the forward-backward motion field coupling on

coding performance, we now look at different ways of meaningful inversion of a motion

field. This will also help us exploit the inversion techniques presented here in efficient joint

coding of a motion field pair between the same two frames/subbands. For that reason, and

to focus solely on the effects of motion inversion, inversion over the entire image domain

is performed (no intra pixel replacement is used). Our compression assumption is that a

wavelet coder will benefit from better matched (in terms of invertibility error εd) motion

field pairs. To test this, we analyze progressively more complex methods for motion field

inversion.

5.4.1 Motion inversion based on collinearity assumption

One of the simplest methods for motion inversion is based on the so-called ”collinear-

extension” (Valentin et al., 2003). It assumes collinearity between the forward and back-

ward motion vectors originating at the same frame, as illustrated in Fig 5·3. This corre-

sponds to the assumption of constant-velocity motion over three frames. This inversion

method supports only unidirectional motion estimation, as it requires motion vectors that

102

f2k f2k+1 f2k+2 f2k+3f2k-2 f2k-1

Estimation

Inversion

Prediction

Update

Figure 5·3: “Collinear-extension” motion inversion

f2k f2k+1 f2k+2f2k-2 f2k-1

Estimation

Inversion

Prediction

Update

(a)

f2k f2k+1 f2k+2f2k-2 f2k-1

Estimation (prediction)

Inversion (update)

(b)

Figure 5·4: Neighbor-frame-copy motion inversion: (a) unidirectional case,
(b) bidirectional case.

are anchored in each frame in order to function properly. Practically, this inversion changes

the sign of a backward motion field anchored at fn and assigns the result to the forward

motion field anchored at the same frame fn (note that collinear inversion is not prac-

tical for use in conjunction with the Haar DWT for the obvious reasons). This simple

inversion is computationally very inexpensive, but not capable of modeling more realistic

variable-velocity motion.

5.4.2 Motion inversion based on neighbor-frame-copy method

Another relatively simple motion inversion technique called ”neighbor-frame-copy” (NFC),

is illustrated in Fig. 5·4. This method ”copies” the motion field of a neighboring frame -

103

as opposed to the same frame in the collinear method - with the opposite sign (Božinović

et al., 2004). There are two subclasses of this method: one where motion is estimated in

the unidirectional fashion (Fig. 5·4(a)) and the other with bidirectionally estimated motion

(Fig. 5·4(b)). Solid lines represent motion vectors that are directly estimated from input

frames using prediction error criterion, while dashed lines show vectors that are obtained

through inversion. Similarly, the open arrowheads represent motion vectors used in the

prediction step and closed arrowheads denote vectors that are used for the update step.

As with the collinear method, the computational complexity of this inversion method is

very low. It is clear from Fig. 5·4 that NFC inversion does away with motion constancy

requirement. However, this inversion method is also more sensitive to errors in regions

with large displacements, since the motion is assumed to be spatially uniform over the

length of the motion vector. For this reason, we can expect collinear inversion to be better

suited to image sequences with spatially fast-varying but temporally uniform motion. On

the other hand, sequences with temporal acceleration and spatially slow-varying motion

are expected to benefit from using neighbor-frame-copy inversion.

Both of these techniques compute only a coarse inverse motion field due to a simple

inversion process. A proper inversion should project, through motion compensation, all

grid points from the current image to the plane of the reference image, and then reverse

the sign of each motion vector. As discussed above, the projected grid is irregular and

some form of irregular-to-regular data interpolation is needed.

5.4.3 Nearest-neighbor motion inversion

Our nearest-neighbor motion inversion method (Božinović et al., 2004) is based on the

standard ad-hoc approach (Choi and Woods, 1999) for the update step motion derivation.

For all motion vectors defined on an irregular grid in the target frame, we compute the

vectors (processing one motion coordinate at a time) at regular grid locations using nearest-

neighbor interpolation (Fig. 5·5(a)). First, each irregular location is mapped to the nearest

pixel and the associated motion vector is copied there (the pixel becomes ”occupied”). In

104

f2k f2k+1

Estimation

Inversion

(a)

f2k f2k+1

Estimation

Inversion

A
pp

ro
xi

m
at

in
g

sp
lin

e

(b)

Figure 5·5: “(a) Nearest-neighbor” motion inversion, (b) Spline-based mo-
tion inversion.

contrast to the method of Choi and Woods, all ”unoccupied” pixels are visited successively

and assigned the motion vector from their nearest ”occupied” pixel. The procedure is

iterated until all pixels become ”occupied”. This way, no intra-substitution is required and

the sole effect of motion inversion can be observed. Details of this procedure are described

in a recent technical report (Zhao, 2004).

5.4.4 Spline-based motion inversion

As the nearest-neighbor interpolation is known to have suboptimal performance, we propose

to use an advanced irregular-to-regular interpolation method based on spline approximation

(Vázquez et al., 2005). For one-dimensional case, the spline-based inversion is illustrated in

Fig. 5·5(b). Although based on cubic splines, this method is not an interpolation method

since it uses a prior term related to the curvature of the computed surface for each motion

component. Due to this prior, the resulting motion-component surface need not pass

through the original data points induced by motion-compensated projection. Similar to

105

the nearest-neighbor, we apply this method twice: once for the x and once for the y

component of motion vectors. Both the nearest-neighbor and spline-based inversion are

more computationally involved than the first two techniques of collinear and NFC inversion.

5.4.5 Alternatives to motion inversion for the update step

Few newer solutions have been recently proposed for the the implementation of the MC

update step. These methods do not aim at directly inverting the motion field; instead,

the reconstruction error (after the synthesis step) is analyzed, under the assumption of

additive quantization noise. The problem of finding the best reference for the update step

is then solved by minimizing such a reconstruction error. This approach was independently

proposed by Girod and Han (Girod and Han, 2005) and Tillier et al. (Tillier et al., 2004).

It has been shown that the optimal update of multiply-connected pixels in the Haar case

should use the weighted average of all pixels connected to this pixel as a reference. However,

the proposed solution does not provide a similar simple answer in the case of longer wavelet

filters or when motion different from block-matching is used. It rather relies on very large

matrix inversion, which leads to extremely high computational complexity (Girod and Han,

2005). This limits practical applications of this method to low-resolution sequences.

Although seemingly different from our approach, the new proposal can also be in-

terpreted in the light of motion field inversion. Locations of multiply-connected pixels

correspond to areas of high density of motion vector ”arrow-heads” from the ”direct” mo-

tion field. Where smoothing-spline interpolation calculates the best corresponding inverse

motion field and uses a single motion vector for the reverse trajectory (motion vector av-

eraging), the approach of both (Girod and Han, 2005) and (Tillier et al., 2004) calls for

averaging of intensities at multiply-connected pixels (pixel intensity averaging).2 Depend-

ing on the application and available computational resources, one or the other approach

might be used.

2This is similar to the comparison of motion field interpolation and pixel intensity interpolation of
overlapped block motion compensation (OBMC).

106

5.5 Experimental results - motion inversion

In this section, we compare all proposed motion inversion methods. Compression settings

(previously described in Section 4.5) between different coding runs are kept constant, except

for the motion inversion method. We also make sure that the identical directly-estimated

prediction step motion field is used in all cases. For the experiments comparing different

inversion methods, we have used our own implementation of the 3D subband coder based

on JPEG2000 with FSBM and half-pixel motion accuracy. These results expand on those

already presented in Tables 4.1 and 4.2, adding more advanced inversion methods. In

fairness to the methods that estimate both forward and backward motion fields, motion

bit-rate is excluded from the reported bit budget. This allows us to focus solely on the

quality of subband decomposition, without the bias of a different motion overhead.

In Table 5.1, we present luminance PSNR performance for Coastguard (300 frames),

Foreman (300 frames), and Stefan (300 frames) CIF sequences, after a single temporal

5/3 decomposition, and average texture bit-rate of 512 kbps (similar results were observed

across the range of bit-rates). Motion bit-rate is not included in the overall bit budget.

Rows in the Table 5.1 denote different inversion methods (except for ”5/3 Ind”, where mo-

tion fields are estimated independently). Rows 2-4 show results for ”neighbor-frame-copy”

(NFC) inversion in the unidirectional case as well as ”collinear-extension” and ”neighbor-

frame-copy” inversions in the bidirectional case, respectively. These three methods of in-

version were described earlier and depicted in Figs. 5·3 and 5·4. The last two rows present

results for nearest-neighbor (NN) inversion and spline-based approximation. Along with

the coding gains, we also show inversion error values (εd), introduced earlier. It is clear

that there exists a strong correlation between this measure and the coding performance.

We can see that virtually any method of motion inversion outperforms two independently-

estimated motion fields. This confirms that the overall coding performance improves when

the direct and reverse motion fields are well-matched, i.e., when they are closer to being

inverses of each another.

107

Table 5.1: Comparison of different motion-inversion methods. Luminance
PSNR performance [dB] at 512 kbps (motion rate not included), single level
of 5/3 temporal decomposition. All sequences are of CIF resolution at 30Hz.

Configuration Coastguard Foreman Stefan

PSNR εd/pixel PSNR εd/pixel PSNR εd/pixel

Ind 33.12dB 0.24 34.71dB 0.54 29.18 0.43

Col (+0.04) 0.21 (+0.02) 0.43 (+0.03) 0.22

NFC-Uni (+0.03) 0.20 (+0.01) 0.40 (+0.03) 0.19

NFC-Bi (+0.04) 0.19 (+0.02) 0.39 (+0.04) 0.17

NN (+0.07) 0.08 (+0.05) 0.24 (+0.07) 0.17

Spline (+0.09) 0.06 (+0.07) 0.19 (+0.11) 0.13

In Table 5.2, we show the PSNR performance for all three sequences at the total average

rate of 1024 kbps (motion rate included). All motion vectors are losslessly encoded; the

motion overhead ranges from 21% to 29%. We again notice the increase in PSNR for more

accurate inversions of block-based motion fields. Two independently estimated motion

fields are jointly coded (this is denoted as 5/3 Jnt) in order to reduce motion bit-rate. We

can see that the coding gap increases even more between the inversion and ”independent

estimation” case, as the effects of worse subband decomposition and the increased motion

overhead both reduce the overall coding gain of 5/3 Jnt approach.

These results prove that the problem of finding the best motion for both lifting MCTF

steps is not straightforward. We confirmed our previous finding from Section 4.5 that mo-

tion inversion outperforms independent motion estimation. Furthermore, a better inversion

can improve coding gain, at the cost of higher computational complexity of the inversion

algorithm.

As mentioned earlier, the motion fields used in the prediction lifting step were kept

the same in all inversion scenarios. These motion fields were optimized strictly for the

prediction step. Knowing that their inverses will be used for the update step, we may ask

the question if this is the right thing to do. The reason is that a non-restrictive motion

108

Table 5.2: Comparison of different motion-inversion methods. luminance
PSNR performance [dB] at 1024kbps (motion rate included), three levels of
temporal decomposition

Configuration Coastguard Foreman Stefan

PSNR εd/pixel PSNR εd/pixel PSNR εd/pixel

5/3 Jnt 32.93dB 0.26 36.91dB 0.54 30.17 0.37

5/3 Col (+1.23) 0.20 (+0.74) 0.43 (+0.61) 0.21

5/3 NFC-Uni (+1.19) 0.18 (+0.73) 0.40 (+0.63) 0.17

5/3 NFC-Bi (+1.30) 0.16 (+0.79) 0.39 (+0.64) 0.16

5/3 NN (+1.37) 0.07 (+0.84) 0.24 (+0.77) 0.14

5/3 Spline (+1.52) 0.06 (+1.03) 0.19 (+1.11) 0.12

estimation in the prediction stage may lead to a highly irregular motion estimate, whose

inversion might be more difficult and the resulting update-step motion-compensation less

efficient. To this end, we suggest a motion estimation algorithm that searches for the best

motion in both prediction and update step, simultaneously minimizing prediction error and

invertibility metric.

5.6 Inversion-aware motion estimation

In this section, we introduce a new motion estimation algorithm that is inversion-aware.

More formally, for the case of fixed-size block matching, we modify the standard motion

estimation cost function (2.2.1) to include the invertibility error:

~̂
di = min

~di

∑

~x∈Bi

C(fn(~x)− fn−1(~x− ~di)) + λ εd. (5.2)

The motion estimation algorithm relying on this cost function requires two passes. In

the first pass, standard non-regularized motion estimation is performed. In the second

pass, a modified exhaustive motion search on macro-block basis is repeated - this time, the

inverse field is also calculated for each forward field and invertibility error is added to the

cost function. A motion vector that minimizes the modified cost function (5.2) is selected.

109

This process is repeated for each macro-block until the entire frame is processed.

As the invertibility error of block-based motion fields occurs exclusively at block bound-

aries, the two-step process describe above can be simplified. Instead of using invertibility

error directly, we can indirectly reduce it by improving global motion smoothness. If the

two neighboring blocks have similar motion vectors, the invertibility error at the block

boundary is certain to be small. Therefore, global regularization of the motion search algo-

rithm improves motion invertibility. Obviously, overly strong regularization hurts motion

prediction performance and a good balance is needed.

In the context of variable-size block matching, the regularization approach to reducing

invertibility error becomes even more obvious. In the HVSBM, better prediction relies on

greater local variation of the motion field; in contrast, lower invertibility error is the result

of more similar neighboring motion vectors. Therefore, the motion-rate regularization

parameter λ can be used to to indirectly control the invertibility error. In our compression

experiments presented in later chapter, we found that the best results in MCTF coder are

obtained using λ somewhat higher than in a comparable hybrid coder.

We performed extensive experiments using inversion-aware motion estimation, both in

the context described in the previous section, and in conjunction with the occlusion-aware

lifting scheme presented in the next chapter. While we have observed small gains when

fixed-size block matching was used (averaging 0.3dB), gains of the inversion-aware mo-

tion estimation were minimal (less than 0.05dB) when used with HVSBM (implemented

with the block sizes ranging from 4 × 4 to 16 × 16). Overall, such small gains, and the

introduced computational penalty of the two-pass method, advise against its further em-

ployment. Nonetheless, advanced inversion methods and the reduction of invertibility error

will play a major role in predictive (joint) coding of a motion-field pair, required for the

implementation of occlusion-aware MCTF. This topic is further discussed in Section 6.5.1.

110

5.7 Temporal wavelet kernels for MCTF

The ability to perform subband decomposition along motion trajectories raises a question

as to which filter banks are the most effective for this task. Historically, initial efforts

have been largely confined to the Haar transform. Early results (Ohm, 1994; Taubman

and Zakhor, 1994) even reported no benefits from using longer filters, but extensive follow-

up research indicated that consistently superior compression performance can be achieved

with the 5/3 transform (Secker and Taubman, 2003; Golwelkar, 2004). The biorthogonal

5/3 kernel presents a nice blend of good decomposition performance, limited complexity,

and manageable processing delay. Its drawbacks are increased motion overhead (doubled

from the Haar’s case) and higher latency. Kernels longer than 5/3 were also proposed and

implemented (Golwelkar, 2004) without producing significant, if any, coding gains.

5.7.1 The issue of motion bitrate overhead

Motion bitrate overhead is an important issue related to the choice of DWT for temporal

filtering. In the prediction step of a single-level temporal Haar decomposition shown in

Fig. 5·6, one motion field per each frame-pair is needed (solid vectors). The update step also

requires one motion vector field per each pair of frames. As already mentioned, in order to

prevent excessive increase in motion bitrate, motion vectors used in the update step (dashed

vectors) are typically derived, and not estimated. Thus, for a single level of Haar DWT

temporal decomposition, the number of motion fields needed is one half of that required in

standard hybrid coding. However, since temporal multi-resolution analysis (MRA) requires

additional motion mappings between low-subband frames (the lower subbands in Fig. 5·6),

the total number of motion vector fields turns out to be comparable for the Haar DWT

case and temporal prediction case.

In the 5/3 case, it is clear from Fig. 5·7 that, because of the bidirectional prediction, the

temporal 5/3 DWT requires twice as many motion vectors then the Haar DWT. Depending

on the application, this motion overhead can jeopardize coding performance. This is espe-

cially true at lower bitrates and under the assumption of lossless coding of motion. Also,

111

Prediction step motion vectors

Update step motion vectors

te
m

p
o
ra

l
d
ec

o
m

p
o
si

ti
o

n
 l

ev
el

s

f2k-2 f2k-1 f2k f2k+1 f2k+2 f2k+3 f2k+4 f2k+5 f2k+6

lk-1 lk lk+1 lk+2hk-1 hk hk+1 hk+2 lk+3

llp-1 llplhp-1 lhp
llp+1

Figure 5·6: Temporal subband decomposition and motion vectors required
for analysis for Haar DWT.

the computational complexity of motion inversion becomes a problem in low-complexity

applications.

5.7.2 The 1/3 DWT - Truncated 5/3 wavelet kernel

In the attempt to combine good bidirectional prediction of the 5/3 DWT and low motion

overhead of the Haar DWT, an alternative wavelet kernel has been recently proposed (Luo

et al., 2001; André et al., 2004). It consists of the same high-pass filter as the standard

5/3 DWT, associated with a simple downsampling operation instead of low-pass filtering

and downsampling:

112

f2k-2 f2k-1 f2k f2k+1

lk-1 lk

f2k+2 f2k+3 f2k+4 f2k+5

lk+1 lk+2

llp-1 llp

Prediction step motion vectors

Update step motion vectors

hk-1 hk hk+1 hk+2

te
m

p
o

ra
l

d
ec

o
m

p
o

si
ti

o
n

 l
ev

el
s

lhp-1 lhp

f2k+6

lk+3

llp+1

Figure 5·7: Temporal subband decomposition and motion vectors required
for analysis for 5/3 DWT.

hk[x] = f2k+1[x]− 1
2
(f̃2k[M2k→2k+1(x)] + f̃2k+2[M2k+2→2k+1(x)])

lk[x] = f2k[x].
(5.3)

The lowpass and highpass analysis filters in this case have transfer functions Ĝ(z) = 1

and Ĥ(z) = 1 + 1
2(z + z−1), which have one and three taps, respectively. Accordingly,

this transform is sometimes referred to as ”1/3 transversal DWT” or the ”truncated” 5/3

DWT.

This temporal analysis approach has been particularly popular in fast coders, since

no motion compensation is needed for the (trivial) update step. The main shortcoming

of the 1/3 wavelet transform is a significant overlap of temporal frequency subbands -

this introduces aliasing due to the lack of lowpass filtering (unless the original signal is

113

band-limited to half its Nyquist frequency, which, in general, is not the case). If, on the

other hand, motion is inaccurately computed (or incapable of properly capturing true scene

motion in the occlusion/exposure areas) in standard 5/3 DWT, and then used for low-pass

filtering in the update step, undesirable ”ghosting” effect may be visible in the low-pass

subsequence. These subjectively-disturbing artifacts can, in fact, be more annoying than

the error induced by additional aliasing of 1/3 DWT. In addition, these artifacts might

be especially undesirable in applications requiring high reconstruction quality at lower

temporal resolution (e.g., video surveillance).

5.8 Experimental results

In this section, we compare the Haar, 5/3 and 1/3 wavelet kernels for MCTF. In collabo-

ration with the I3S laboratory of University of Nice (André et al., 2004; Božinović et al.,

2004), we developed a 3D motion-compensated subband coder. We typically use three to

five levels of temporal decomposition; embedded coding of these temporal subbands is per-

formed with JPEG2000-based subband coder. The motion is computed using a standard

16×16 fixed-size block matching, with half-pel motion accuracy. The resulting vectors are

losslessly encoded using JPEG-LS.

We start with the analysis of a full frame-rate coding performance of 30 fps CIF se-

quences Foreman and Stefan. In Tables 5.3 and 5.4 we compare compression results of

Haar, 1/3, and 5/3 DWTs. For the results in the first three rows, lossless coding of all nec-

essary estimated motion fields required for implementation of these DTWs is performed.

The fourth row presents results of a coder that, in the update step, uses an ”inverse” of

motion estimated in the prediction step of the 5/3 transform. The inversion is performed

using the ”nearest-neighbor” method, described in Section 5.4.3. We denote two different

configurations using the 5/3 kernel as ”5/3 Ind” (5/3 DWT and independent estimation

and coding of motion vectors) and ”5/3 Inv” (5/3 DWT with inverted motion field in the

update step).

We can notice a good performance of the Haar DWT at lower bitrates, which can be

114

Table 5.3: Luminance PSNR performance [dB] of various DWT kernels
for 30Hz CIF Stefan sequence.

DWT 256kbps 512kbps 1024kbps 2048kbps

Haar 25.42 28.03 31.39 34.45

1/3 25.37 27.92 31.12 34.89

5/3 Ind 24.76 27.61 30.94 34.97

5/3 Inv 25.22 28.51 32.04 35.76

Table 5.4: Luminance PSNR performance [dB] of various DWT kernels
for 30Hz CIF Foreman sequence.

DWT 256kbps 512kbps 1024kbps 1536kbps

Haar 30.17 32.91 35.87 37.75

1/3 29.76 32.81 36.03 38.14

5/3 Ind 25.11 30.69 35.80 37.94

5/3 Inv 29.87 32.99 36.68 38.90

attributed to small motion overhead. Also note that low bit-rate performance of 5/3 DWT

configurations is relatively poor compared to both the Haar and 1/3 DWT due to significant

motion overhead. Improvement in coding performance of 5/3 kernel is noticeable with the

increase of decoding bit-rate, where the share of motion bit-rate in the total bit-budget

decreases.

At all but the lowest bit-rate (256kbps), the ”5/3 Inv” exhibits superior performance.

Its gain over the Haar configuration is, as expected, small at medium bitrates (e.g., only

0.08 dB at 512 kbps for Foreman sequence). The reason for such a small difference might

be that the motion occupies significant part of bit-budget at lower bitrates which benefits

Haar DWT.

At higher bit-rates, ”5/3 Inv” consistently outperforms all other configurations, by

115

Table 5.5: Luminance PSNR performance [dB] of 1/3 and 5/3 DWT ker-
nels for 15Hz CIF Stefan sequence.

DWT 256kbps 512kbps 1024kbps 2048kbps

1/3 24.33 28.11 32.54 37.32

5/3 Inv 24.05 28.70 33.04 37.85

typically more then 1dB, which should be attributed to the improved spectral localization

of longer analysis filters. We also point out the fact that the prediction step in this case

benefits from two motion compensation operators unlike in the Haar case, where only one

reference is used for prediction. This use of two motion mappings helps reduce the effects

of model error in either motion mapping, in a similar manner to the bidirectional motion

compensation commonly employed in hybrid coding. Finally, at full frame rate decoding

(30Hz) the 1/3 DWT performs similarly to Haar DWT at all bitrates.

The performance of the 1/3 DWT, however, needs to be evaluated at different levels of

temporal resolutions (frame-rates) or employed in adaptive manner in order to fully assess

its coding potential. Despite coding loss of 1/3 DWT at high bitrates and full frame rate,

if the motion model fails to capture the scene activity (e.g., occluded/uncovered regions),

ghosting artifacts may arise in the low-pass temporal frames, as a result of the update

steps (i.e., low-pass filtering). In that case, lower frame rate video might be reconstructed

at higher quality and without visible artifacts with no motion compensation in the update

step. We compare performance of 1/3 with 5/3 for reduced frame-rate Stefan sequence in

Table 5.5; we can verify that, at reduced frame rates, the 1/3 DWT more closely follows

the performance of 5/3 DWT.

5.9 Conclusions

In this chapter, we shed a significant amount of light on motion processing for the update

lifting step. We proposed new motion invertibility error and showed how better inversion

116

of motion estimated in the prediction lifting step can improve the overall coding results.

We proposed incorporating invertibility into the structure of motion estimation block.

Finally, we compared performance of the three most popular wavelet kernels for the MCTF.

We showed that the truncated 5/3 wavelet can improve the quality of reduced frame-

rate sequences in spatial regions where the motion cannot be accurately modeled. This

comes at the price of a lower full frame-rate compression performance. The next chapter

demonstrates how improved results can be obtained by selectively applying the update

step. In addition, our new scheme opens a possibility for fully-adaptive lifting, where the

prediction lifting step is also modified. The key issue with this approach is the robust

detection of spatial regions where the motion mapping does not represent real motion.

117

Chapter 6

Occlusion-aware wavelet video coding

6.1 Introduction

In the previous chapter, we investigated the problem of improving the update lifting step

through better motion inversion. We now turn our focus to the improvement of the pre-

diction lifting step. We investigate how the combination of occlusion-driven update and

occlusion-driven prediction leads to fully adaptive motion-compensated temporal filtering

and improves compression performance. We start this chapter with the analysis of simple

prediction of the Haar DWT (Section 6.2). We discuss the main obstacles of occlusion-

based prediction compared to occlusion-adaptive update in the Haar’s case. Section 6.3

extends the discussion to the 5/3 temporal DWT. We propose a solution where all motion

fields involved in both lifting steps are directly estimated, instead of some of them being in-

directly derived. The proposed iterative algorithm for such motion estimation is described

in detail in Section 6.4, and discussed in the context of fully-adaptive, occlusion-driven

lifting (Section 6.5). Attention is given to efficient motion coding and advanced motion

inversion is used for the predictive motion compression. Experimental results are presented

in Section 6.6. Section 6.7 concludes the chapter.

6.2 Prediction lifting step - the Haar DWT

Motion compensation is a standard method for improving video compression - instead of

original video frames, motion-compensated prediction error is coded and transmitted. In

the Haar case, this prediction error corresponds to the high-pass temporal subband. The

compression goal of minimizing the number of bits required for subband representation is

118

f2k f2k+1

?
Occluded

pixes

Low density of
motion arrowheads

(a)

f2k f2k+1

Exposed pixel

? Low density of
motion arrowheads

(b)

Figure 6·1: Problem of occluded and exposed areas in the Haar MCTF:
a) Prediction step; b) Update step.

equivalent to minimizing the energy of the high-subband. In practice, this energy is used

to find the best motion vector fields. the mean absolute error (MAE) or mean squared

error (MSE) metric, and any popular motion vector search algorithm might be used.

In the case of Haar kernel, a single option for motion prediction exists, as illustrated

in Fig. 6·1(a). Typically, the reference frame (denoted with f2k) immediately precedes

the current frame (f2k+1). Motion vectors from the field M2k→2k+1(x) (solid vectors in

Fig. 6·1(a)) are used to predict the so-called ”well-connected” pixels. The conventional ap-

proach to motion prediction (ISO/IEC JTC1 IS 13818-2 (MPEG-2), 1994) and the original

wavelet video coding proposals (Ohm, 1994; Choi and Woods, 1999) do not treat ”exposed”

pixels (solid circles in frame f2k+1 differently from other pixels in the current frame. In

reality, however, these exposed pixels are indeed without a meaningful reference. In prac-

tical coding scenarios, motion vectors corresponding to exposed pixels are assigned based

not on true correspondences, but rather on local motion in the immediate neighborhood of

the current ”exposed” pixel, as illustrated by a dashed the motion vector in Fig. 6·1(a)).

In the Haar case, the only possible remedy is a spatial prediction of such exposed pixels

(Wiegand et al., 2003). This approach, however, is limited to spatial prediction of the entire

block to which the exposed pixel belongs. In other words, individual exposed pixels cannot

119

be predicted without incurring a high signaling cost. Since exposed areas in real video

sequences are rarely co-aligned with block boundaries, the effectiveness of this approach is

often limited.

From Fig. 6·1(a), it is clear that by analyzing (backward) motion M2k→2k+1(x), an-

chored (defined on the grid) in current frame f2k+1, one can attempt to detect occluded

areas of frame f2k. Indeed, this approach is effectively exploited in conventional update

schemes (Choi and Woods, 1999; Chen and Woods, 2002). Due to the lack of appropriate

reference, original pixel values are substituted directly into the low subband at every ”oc-

cluded” pixel position. This method prevents emergence of annoying artifacts in the low

temporal subbands (due to erroneous update), at the cost of introduced aliasing. The ob-

servation we make here, and that is central to the following discussion, is that the detection

of occluded/uncovered pixels is possible only in the reference, and not in the current frame

of the motion estimation step. In other words, complete occlusion-adaptive update should

be driven by the analysis of ”motion-vector tips distribution” in the reference frame.

When the direction of motion estimation is reversed (i.e., when motion M2k+1→2k(x))

is estimated), we can use the density distribution of its motion arrow tips in frame f2k+1,

in the similar manner (details of this procedure are given in Section 6.4). This can be

subsequently used for proper labeling of ”exposed” pixels in frame f2k+1. Again, the key

fact here is that a direct estimation of motion (i.e., true pixel intensity matching, and not

inversion) must be used to drive this process.

When dealing with these newly exposed pixels (solid circle in frame f2k+1 of Fig. 6·1(b)),

there is no reason to assume that they occur less frequently then unconnected (occluded)

pixels in the update step. They should be treated in a different manner from other ”well-

connected” pixel. The use of smaller blocks (i.e. finer local motion modeling) may reduce

the number of unconnected pixels and improve the overall prediction. This, however,

does not solve the fundamental problem of inappropriate motion modeling - regardless of

(variable-size) motion model or its accuracy, covered/uncovered pixels simply do not have

a proper match in the reference frame, and should be treated differently. To make things

120

worse, not even a correct labeling of exposed pixels can enable the use of similar ”update-

step” solution - the classical approach of ”intra” pixel replacement in prediction subband

is simply inefficient from the coding point of view.

At the end of this section, we also note that all boundary pixels (leaving or entering the

scene) fall into the category of occluded/uncovered pixels. For example, pixels leaving the

scene might be treated as occluded areas while pixels entering the scene can be categorized

as newly uncovered pixels. Depending on the nature of sequence at hand, they can account

for a significant percentage of the total number of pixels, especially in the presence of

camera pan. In Chapter 7, we will demonstrate how a even a simple modification of

motion topology at frame boundaries can lead to moderate compression gains.

6.3 Prediction lifting step - the 5/3 DWT

The number of options for improving motion-compensated prediction increases in the case

of the 5/3 DWT. The goal of the prediction step remains the same: to minimize the

energy of the high temporal subband. However, unlike Haar’s single-reference prediction,

two predictions are now available, as depicted in Fig. 6·2(a). We already demonstrated in

Chapter 5 that the bidirectional approach to 5/3 prediction outperforms the unidirectional

prediction, as it directly minimizes the high-subband energy. Throughout the remainder

of the thesis, we use the bidirectional approach to 5/3 prediction exclusively.

To perform prediction in a single temporal decomposition step of the 5/3 case, both

motion fields M2k→2k+1 and M2k+2→2k+1 are required. The simplest and most commonly

used method for bidirectional prediction is an independent estimation of both motion fields,

using one of the usual distortion measures (SAD or SSD):

M2k→2k+1 = argmin
∑

~x∈B

C
[
f2k+1(~x)− f̄2k(M2k→2k+1(~x))

]
(6.1)

M2k+2→2k+1 = argmin
∑

~x∈B

C
[
f2k+1(~x)− f̄2k+2(M2k+2→2k+1(~x))

]
,

Here, C denotes the selected distortion measure, and B is a current macro-block.

121

f2k f2k+1 f2k+2

?

?

Exposed
pixelsOccluded

pixels

(a)

f2k f2k+1 f2k+2

?
?

Occluded
pixels

Exposed
pixel

(b)

Figure 6·2: Problem of occluded and exposed areas in the 5/3 MCTF:
a) Prediction step; b) Update step. Note that we use terms occluded and
exposed pixels with respect to time direction and not motion vector direction
(that might be opposite).

Interestingly, the 5/3 DWT provides an opportunity for even better prediction; instead

of independently estimating the two required motion mappings, their joint estimation might

lead to further energy reduction of the high-pass subband. The joint estimation of both

motion fields can be formulated, for example, as follows:

(M2k→2k+1,M2k+2→2k+1) =

argmin
∑

~x∈B

C
[
f2k+1(~x)− f̄2k(M2k→2k+1(~x)) + f̄2k+2(M2k+2→2k+1(~x))

2

]

Obviously, the optimal solution of this problem requires an exhaustive search of the entire

state space for both motion fields. As this is an extremely computationally intensive task,

a sub-optimal solution needs to be found. One of the most successful (Pau et al., 2004)

iteratively solves for one motion field while keeping the other constant. This iterative

estimation leads to better prediction and benefits the overall coding gain - improvements

of up to 0.4 dB over independent search were reported (Pau et al., 2004).

Nevertheless, this modification fails to address the problem of inadequate motion mod-

eling of uncovered or occluded areas. As illustrated in Fig. 6·2(a), in the prediction step of

122

the 5/3 lifting, some pixels in the current frame f2k+1 do not have a valid match in one of

the reference frames (f2k and f2k+2). For that reason, those pixels should not be predicted

at all from an inappropriate reference. Standard motion estimation algorithms neglect this

fact and assign motion vector to each current frame pixel, regardless of the existence of its

true reference.

It is therefore obvious that some sort of detection of the exposed/occluded areas is

required for the fully-adaptive lifting, and that an interaction with the motion model is a

natural way to selectively apply both of the lifting steps. As occlusion/uncovered regions

can be reliably detected only in the reference (range) and not in the current frame (domain)

of each motion estimation step,1 this requires that motion be directly estimated in both

directions within each frame pair. This observation serves as the foundation of our new

iterative motion estimation method. Using estimated motion, we derive an occlusion label

field, cO and exposure label field, cE , in each of the video frames. These label fields are

used to adaptively drive both steps of the lifting scheme, as explained in the next section.

6.4 Exposure/occlusion detection and motion estimation

In order to estimate a pair of backward/forward motion fields (e.g., M2k→2k+1(x)

and

M2k+1→2k(x)) between the two video frames f2k+1 and f2k, we propose the following

iterative algorithm. We model the motion using hierarchical variable-size block matching

(HVSBM), with block sizes varying from 16×16 (macro-block size), down to 4×4, similar

to AVC/H.264 (Wiegand et al., 2003; Schafer et al., 2003). Without loss of generality, we

first analyze the problem of motion estimation between a frame pair; this simplifies our

notation as some temporal indices can be omitted and easily deducted from the context.

In the first step, the backward motion field M2k→2k+1(x) is estimated for each macro-

block (MB) in the current frame. This is done by minimization of the conventional rate-

1This is explained earlier in Section 6.2.

123

f2k f2k+1

c
O
= 1

c
O
= 1

c
O
<1

c
E

(a)

f2k f2k+1

c
E
<1

c
E
= 1

c
E
= 1

c
O

(b)

Figure 6·3: Iterative motion estimation and occlusion/exposure detection:
a) Backward ME and occlusion detection. Label field cE is initialized to 1 in
the first iteration and dynamically changed during the estimation process;
b) Forward ME and exposure detection. There is no need to explicitly
initialize occlusion field cO, as its first estimate is already known after the
first half of the first iteration.

distortion cost function on a macro-block level:

JB =
∑

x∈MB

cE(x)|f2k+1(x)− f2k(M2k→2k+1(x))|+ λRB. (6.2)

The subindex B in JB denotes the backward direction of motion, and RB denotes the total

rate used for the coding of backward motion vectors and associated block partition map for

macro-block MB. This initial motion estimation is illustrated in Fig. 6·3(a). The cE(x) is

a label at position x in the coordinates of frame f2k+1, and takes a value between zero and

one (0 ≤ cE(x) ≤ 1, ∀x). As previously mentioned, its goal is to label all newly-exposed

pixels in frame f2k+1 as ”unconnected”, since they have no good reference in frame f2k.

Before the first iteration is started, however, cE is unknown. That is why we initially set

cE(x) = 1,∀x (all pixels are assumed to be ”connected”). From our previous discussion,

since cE is defined over the coordinates of f2k+1, it can be estimated only by analyzing the

distribution of the forward motion field M2k+1→2k, anchored in another frame (f2k). This

also explains the iterative nature of our algorithm (illustrated in Fig. 6·4).

124

Find 2k 2k+1®M (f f c2k+1 2k, , ,)
E

l

c
E
=1, =0,)iter iterMax, e(M

Find label field c
O

(occlusions)
c = c (iter)

O O

Find 2k 2k+1®M (f f c2k 2k+1, , ,)
O

l

Find label field c
E
(exposures)

c = c (iter)
E E

iter < iterMax True

False

iter++, iter)l = l (

DM > (Me)&&

c
E
=1, =0,)iter iterMax, e(M

c
O

, , ,2k 2k+1 2k 2k+1 2k+1 2kc
E

M M® ®

Figure 6·4: Iterative algorithm for detection of occlusion/exposure regions

The estimated backward motion field M2k→2k+1 can now be used to form an initial

label field cO, supported on the coordinates of frame f2k. For this, we use the approach

inspired on the occluded/exposed area detection method proposed by Ince and Konrad

(Ince and Konrad, 2005). In brief, we calculate the density field of a motion field arrow-

tips and threshold it to obtain positions of occluded/uncovered areas (i.e., all pixels with

motion-arrow-tip density lower than a certain threshold are declared as ”innovations”).

Next, the forward motion field M2k+1→2k(x) is estimated by minimizing:

JF =
∑

x∈MB

cO(x)|f2k(x)− f2k+1(M2k+1→2k(x))|+ λRF , (6.3)

where cO is the occlusion label field just derived in frame f2k; RF is the rate associated

125

with the forward motion field. Estimation of the forward motion field M2k+1→2k(x) and

subsequent derivation of label field of exposed pixels (cE) completes the first iteration of

the estimation algorithm.

In the remainder of the estimation process, JB and JF are minimized iteratively one

after the other, with the interleaved estimation of cE and cO. This estimation process is

stoped when either the estimated motion fields reach convergence or when the maximum

number of iterations is achieved (typically 5). Most of the time, 2 to 4 iterations are

sufficient for accurate detection of occluded/uncovered areas.

Obviously, the confidence in the accuracy of label fields cO and cE increases with the

number of iterations. For that reason, occluded/uncovered pixels detected earlier do not

have to be assigned a label 0 immediately. Instead, we decided to gradually reduce the

value of the initial cE/cO label. As the iterations progress, occluded/uncovered labels of

both cO(x) and cE(x) are calculated (using heuristic formula) as c(x)i = max{1− (i
5)2, 0},

with i being the iteration number. Naturally, the ”connected” pixels maintain the label

cE(x) = cO(x) = 1 at all times. After the final iteration, all cE(x) and cO(x) labels

different from 1 are set to zero.

The novelty of this approach lies in the fact that it allows for a different contribution of

”connected” and ”unconnected” areas to the ”live” motion estimation cost function through

(monotonically decreasing) labels of fields cE(x) and cO(x). One of the main reasons for

such a design is the well understood problem of ill-defined reference for un-connected pixels.

Their unwanted contribution to the total distortion can now be suppressed with appropri-

ate cE and cO labels. When the iteration number increases, the probability of correct

occlusion/exposure labeling increases too - this further justifies the use of monotonically

decreasing labels cE and cO.

6.5 Occlusion-adaptive lifting for 5/3 temporal wavelet filtering

We now complete the description of our fully-adaptive lifting based on occlusion/exposure

detection. The bi-directional frame referencing of the 5/3 lifted DWT allows adaptive

126

f2k f2k+1
f2k+2

Adaptive prediction

f2k+3f2k-1

Adaptive update

Bi-prediction

L-prediction

R-prediction

Bi-update

L-update

R-update

(h)k (h)k+1
(h)k-1

Figure 6·5: Adaptive lifting

prediction and update paths based on previously labeled occluded/exposed areas. This is

illustrated in Fig 6·5, where only motion vectors that are actually used in the prediction step

(solid vectors) and update step (dashed vectors) are included. In our simplified example,

an object is expanding and moving down through the 5 represented frames. Clearly, frame

f2k+1 is predicted from frames f2k and f2k+2, while frames f2k and f2k+2 are updated

from the corresponding high subbands. All prediction-step pixels in this example can be

partitioned into one of the following categories: bi-predicted, left-predicted, and right-

predicted. Similarly, all update-step pixels can be categorized as bi-updated, left-updated,

and right-updated.

After both backward and forward motion fields within each frame pair have been esti-

mated, the adaptive lifting for 5/3 DWT can be performed as follows:

hk[x] = f2k+1[x]− wP (x)
2

(
cE
2k+1(x)f̃2k[M2k→2k+1(x)] + cO

2k+1(x)f̃2k+2[M2k+2→2k+1(x)]
)

lk[x] = f2k[x] +
wU (x)

4

(
cE
2k(x)h̃k−1[M2k−1→2k(x)] + cO

2k(x)h̃k[M2k+1→2k(x)]
)
,

where wP =1 for bi-prediction, 2 for uni-prediction, and 0 for intra-prediction. Similarly,

wU=1 for bi-update, 2 for uni-update, and 0 for intra update. In experiments presented

later in this chapter, the ”intra” prediction mode is handled by using a separate pixel-based

spatial prediction. Typically, the number of such pixels is very small, justifying the use of

127

extra (pixel-based) signalization. The subscripts in cE and cO refer to the corresponding

frames where the labels are defined.

This occlusion-adaptive lifting can significantly reduce the occurrence of ”unconnected”

pixels; in order for a pixel to be classified as ”unconnected” in this new scheme, it has to

be ”unconnected” at both sides. This can happen in one of only two cases: (1) at the

beginning or at the end of a GOP (where a reference from one side does not exist and a

pixel is ”unconnected” at the other side), or (2) in the case of a pixel that has reference

neither in the previous nor in the following frame. The latter case assumes an existence of

a pixel that is occluded immediately after it was exposed; this scenario is rare, but it can

also occur due to complicated scene motion or failure in motion estimation.

From the coding efficiency point of view, it is crucial to note that the occlusion/exposure

labels cO and cE need not to be separately coded and transmitted. Instead, they can be

simply derived in the decoder from the received motion fields, by repeating the procedure

from the encoder. This way, the information about occluded/uncovered areas is embedded

into the motion information itself. The penalty is that both backward and forward motion

fields need to be transmitted in order for the fully-adaptive lifting to work. Thus, joint

coding of these two motion fields (Section 6.5.1) must be used to keep the motion bit-rate

overhead low.

A similar idea to the one of adaptive lifting structure presented in this chapter was re-

cently independently proposed by the group at the University of Aachen, Germany (Rusert

et al., 2004). Within the optimization scheme for locally-adaptive MCTF using 5/3 lifting

and HVSBM motion model, Rusert et. al proposed to use different frame and block modes

for adaptive prediction, while keeping the conventional approach to the update step (Choi

and Woods, 1999), which includes nearest-neighbor motion inversion and special treatment

of ”unconnected” pixels. The distinguishing feature of our approach is the iterative motion

estimation of the backward and forward motion fields between each two frames, which

indirectly models both occluded and exposed areas.

128

6.5.1 Joint coding of motion fields

As no gain comes for free, we are now required to code two seemingly independent motion

fields for each frame pair. However, a detailed examination reveals that, due to a coupled

and iterative estimation, these two motion fields are largely correlated. Indeed, they both

closely follow a unique trajectory set for all well-connected pixels; for this reason, these

two fields are very close to being inverses of each another in these areas. This leads to

their efficient joint coding. For the best results, high-quality motion inversion is required;

the spline-based motion inversion developed in Section 5.4.4 is used to that end. In our

implementation, the first motion field (typically the one used for prediction step) is coded

using a standard motion coding procedure similar to that of AVC/H.264. This consists of

median prediction followed by context-adaptive binary arithmetic coding (CABAC). The

spline-based inverse (Section 5.4.4) of this motion field is used as a predictor for coding of

the second motion field, with the final prediction error arithmetically coded.

Additional increase in motion compression efficiency can be obtained if we observe that,

in our approach, the motion vectors assigned to the ”unconnected” pixels (i.e., in regions

where cE(x) = 0 or cO(x) = 0) are not used for MC lifting (Fig. 6·5). Although all motion

vectors still have to be transmitted, those corresponding to occluded/uncovered areas can

be freely adjusted to minimize the total motion bit-rate, as long as there is no impact on

the (derived) label fields cE and cO.

6.5.2 Possible extensions towards motion invertibility

The occlusion-driven motion estimation algorithm presented above can be modified to

include the cost of invertibility (Section 5.6). Our extensive experimentation, however,

advised against its use and showed that benefits of the occlusion-adaptive lifting and in-

vertibility error minimization mostly overlap. Only small compression gains are observed

(on the order of 0.01 dB), not justifying the increased computational cost.

129

(a) Stefan QCIF, frame #7 (b) Stefan QCIF, frame #8

(c) Iteration 1. Faded: cO(x) = 1 (d) Iteration 1. Faded: cE(x) = 1

(e) Iteration 2. Faded: cO(x) = 1 (f) Iteration 2. Faded: cE(x) = 1

(g) Iteration 3. Faded: cO(x) = 1 (h) Iteration 3. Faded: cE(x) = 1

Figure 6·6: Top row: original frames #7 and #8 from Stefan QCIF se-
quence. Rows 2-4: Occlusion (left column) and exposure (right column)
label fields cO(x) and cE(x) through different motion estimation passes.

130

6.6 Experimental results

In this section we present results using our proposed, occlusion-adaptive lifting scheme

with occlusion/exposure detection. Motion is modeled using HVSBM with block sizes

ranging from 16× 16 down to 4× 4. Typically, each iteration starts with large motion rate

regularization parameter λ = 64; this facilitates estimation of smoother motion fields with

less inter-block local variation. With increasing iteration number (one iteration consists of

two independent motion estimations), the value of λ is decreased (typically by 10, so that

the fifth iteration ends with λ = 24). Such an approach allows a quick detection of the

most likely occlusion/exposure regions at the start (using coarser motion estimate), which

is visible in the examples from Figs. 6·6 and 6·7. The estimated motion is then fine-tuned

once the initial estimates of cE and cO are already available.

In Fig. 6·6, we show the progressive estimation of label fields cE and cO for the Stefan

QCIF sequence. The top row displays two original frames (numbers 7 and 8). The second

row shows the field of occluded labels (cO) (overlayed over the reference frame) on the left.

Faded (lighter) areas denote ”connected” pixels, with cO=1. Similarly, the field of exposed

labels (cE), overlayed over the current frame, is displayed on the right. As previously

described, occluded/uncovered pixels in label fields cE and cO are not immediately set to

zero; ”soft-labeling” is used instead. For example, after this first iteration, ”innovation”

labels have a value of 0.96. Labels cE and cO are actively used for subsequent motion

estimation runs, as described in the previous section. With increasing iteration number,

the confidence in accurate detection of occluded and exposed areas increases, and cE and

cO in non-faded areas in Fig. 6·6 are finally set to zero. The algorithm ends either when

the maximum number of iterations is reached, or when the motion estimate between two

iterations does not change by more than a preset threshold.

First, we can notice accurate detection of both occluded and exposed areas around

the moving object. In the Stefan sequence, the player’s legs move from left to right; the

occluded area to the right from both of his legs is appropriately detected and labeled.

131

(a) Flower Garden CIF, frame #233 (b) Flower Garden CIF, frame #234

(c) Iteration 1. Faded: cO(x) = 1 (d) Iteration 1. Faded: cE(x) = 1

(e) Iteration 2. Faded: cO(x) = 1 (f) Iteration 2. Faded: cE(x) = 1

(g) Iteration 3. Faded: cO(x) = 1 (h) Iteration 3. Faded: cE(x) = 1

Figure 6·7: Top row: original frames #233 and #234 from Flower Gar-
den CIF sequence. Rows 2-4: Occlusion (left column) and exposure (right
column) label fields cO(x) and cE(x) through different motion estimation
passes.

132

Table 6.1: R-D performance (luminance PSNR [dB]) - Stefan (QCIF,
30Hz)

Rate [kbps] 128 256 384 512 768

Adaptive 5/3 lift. MCTF 26.11 27.29 30.05 31.99 33.94

Non-adaptive 5/3 lift. MCTF 26.40 27.31 29.54 31.17 32.84

H.264/AVC 27.44 28.35 30.95 32.70 34.65

Also, as the head of the racquet moves up, pixels around it become occluded, which is

also accurately detected. Second, due to the global camera pan from left to right, most

of the pixels along the left frame boundary ”disappear” in-between two frames. This is

a special form of occlusion that is correctly detected. Our adaptive lifting algorithm uses

this information to prevent filtering along these pixels in the update step. Similarly, we

can visually confirm that the estimated field of ”exposed” pixels cE (right column) matches

the exposed image areas relatively well.

Similar progressive results are shown in Fig. 6·7 for the CIF resolution image sequence

Flower Garden. In the first row, original input frames 233 and 234 are shown. Between

these two frames, the tree in the foreground moves quickly from right to left, while the

entire frame also shifts to the left, due to the global camera motion. Again, our indirect

estimation of occluded and exposed regions works well, correctly labeling pixels that are

being occluded by the tree and exposed from behind the tree. Also, occluded/exposed pixels

around a few vertical branches in the top left corner of the image are correctly labeled.

Pixels disappearing from the scene are detected as occluded along the left border of the

reference frame (left column); those entering the scene from the right are also appropriately

labeled.

We use detected occlusion/exposure areas to adaptively drive motion-compensated tem-

poral filtering, as described in the previous section. Typically, three levels of motion-

compensated temporal decomposition are used to obtain temporal subbands. These are

133

Table 6.2: R-D performance (luminance PSNR [dB]) - Mobile and Calen-
dar (CIF, 30Hz)

Rate [kbps] 384 512 768 1024 1536

Adaptive 5/3 lift. MCTF 28.32 29.60 31.50 33.12 35.43

Non-adaptive 5/3 lift. MCTF 28.30 28.74 30.87 32.11 34.35

H.264/AVC 28.56 29.22 31.40 32.87 35.70

Table 6.3: R-D performance (luminance PSNR [dB]) - Flower Garden
(CIF, 30Hz)

Rate [kbps] 384 512 768 1024 1536

Adaptive 5/3 lift. MCTF 26.44 27.54 30.31 32.07 34.40

Non-adaptive 5/3 lift. MCTF 26.56 27.02 29.75 31.23 33.44

H.264/AVC 27.14 28.03 30.87 32.66 35.08

then decomposed over 5 resolution levels using biorthogonal CDF 9/7 wavelets (Taubman

and Marcellin, 2002). The resulting spatio-temporal coefficients are encoded using the

3D-ESCOT from Microsoft Research Asia coder (Xu et al., 2001; Xiong et al., 2005c).

Although the number of motion fields to be coded doubles, a relatively small increase in

motion bitrate is observed (up to only 17%), due to efficient joint coding of motion fields.

This overhead is small enough to justify the application of the algorithm at higher bit-rates,

where motion occupies a smaller relative portion of the total bit budget.

The rate-distortion results in Tables 6.1 - 6.4 compare the occlusion-adaptive method

with the non-adaptive implementation of our scalable coder, and also with a non-scalable

AVC/H.264 codec. The AVC/H.264 implementation used for comparison was the JM 9.2

reference software (AVC/H.264, 2004) (main profile, 5 reference frames, GOP size 15, IBBP

frame structure, rate control enabled).

We observe that the occlusion-adaptive lifting approach constantly outperforms the

134

Table 6.4: R-D performance (luminance PSNR [dB]) - Football (CIF 30Hz)

Rate [kbps] 384 512 768 1024 1536

Adaptive 5/3 lift. MCTF 28.56 30.34 31.94 33.43 35.83

Non-adaptive 5/3 lift. MCTF 28.89 30.43 31.76 32.96 35.11

H.264/AVC 30.01 31.19 33.10 34.68 36.92

non-adaptive coder, with typical gains ranging between 0.5 dB and 1.2 dB, depending on

the sequence. It is clear that this gain is smaller at lower bitrates (due to a higher motion

overhead of occlusion-aware coder) and grows when total decoding bit-rate increases. At

the same time, our occlusion-adaptive lifting coder shows performance comparable (within

1 dB) to non-scalable H.264, with the added scalability feature.

6.7 Conclusions

In this chapter, we analyzed the role of motion in motion-compensated temporal lifting with

the special emphasis on the the prediction lifting step. We proposed a new, fully-adaptive

occlusion-driven temporal lifting scheme, based on 5/3 DWT and indirect detection of

occluded/exposed image areas. Motion fields included into prediction and update steps

are iteratively estimated and jointly coded. Our approach leads to increase in overall

coding performance of up to 1.3 dB when compared to a non-adaptive coder.

135

Chapter 7

Advanced spatial motion modeling

7.1 Introduction

While the design of efficient spatio-temporal transforms dominated research in the arena of

wavelet video coding over the last few years, significantly less attention has been devoted to

advancing spatial motion modeling in the same context 1. The dominance of block models

in the hybrid context can be credited to its good match to a block decorrelating transform

(in addition to relatively low complexity). Yet, there is no obvious reason why block

matching should be favored in the wavelet video coding context. To the contrary, motion

models that can better support the global nature of the DWT might be more suitable for

this task. In addition, the motion invertibility discussion (Chapters 4 and 5) suggests

that wavelet video coding benefits from using invertible motion; block-based motion is

inherently non-invertible and therefore requires special handling, as seen in Chapter 5.

Regarding spatial modeling of motion, the rigid translational model of block-matching

leaves plenty of room for improved spatial modeling. This is especially true when more

complex motion is present in the scene (e.g., zoom in/out, rotation).

Advanced spatial motion models are also better suited for motion modeling at low

resolutions (used in spatially-scalable coding, Chapter 8). It is a well-demonstrated fact

that block matching performs quite well at higher spatial resolutions; the assumption of

locally-homogeneous motion of neighboring pixels, which are usually part of the same

object, is fairly well founded. However, at reduced spatial resolutions, neighboring pixels

originate from physical points further apart and are less likely to have identical (or similar)

1It is most likely that the increased computational burden related to advanced motion models prevented
them from being considered for standardization.

136

Samples
Constant approx.
Linear approx.
Cubic spline approx.
Underlying function: sin(x)

Figure 7·1: Comparison of various interpolators of a sine function (in-
put samples are π/4 apart). Benefits of higher order models are obvious,
especially at low sampling rates (low-resolution data).

underlying physical motion. Clearly, a simple piecewise-constant motion model is not

likely to accurately capture the variations in a motion field at coarser spatial scales. In

a simple 1D illustration of this phenomenon (Fig. 7·1), three different interpolators of

a sine function from relatively sparse samples (π/4 apart) are compared. The superior

performance of higher-order models over a piecewise-constant model is obvious.

In this chapter, we focus on two advanced spatial motion models. The first model is

based on deformable triangular mesh and implements spatially affine motion model. This

model was successfully introduced to wavelet video coding by Secker and Taubman (Secker

and Taubman, 2001) and its basics were presented in Chapter 2. We start with briefly re-

visiting mesh-based motion estimation in Section 7.2 and then propose two modifications to

the standard approach. We first aim to improve handling of frame boundaries by changing

the standard triangular mesh topology (Section 7.2.1). We then propose an improvement

to classic motion estimation of Nakaya and Harashima (Nakaya and Harashima, 1994) in

Section 7.2.2, which modifies the raster-scan order in which the motion of the mesh nodes

is estimated. Combined, these two modifications lead to up to 0.5dB improvement over

the standard mesh-based approach.

137

In the second part of this chapter, we introduce the general framework for hierarchi-

cal motion modeling based on splines (Section 7.4). Depending on the choice of basis

and control-node topology, both block-based and mesh-based models can be analyzed in

this context as zeroth and first-order splines, respectively. To maximize prediction perfor-

mance, we propose to use a third-order (cubic) splines for motion modeling, as they have

been shown to be a good tradeoff between complexity and approximation performance

(Unser, 1999). The hierarchical spline framework is especially well suitable to support

spatial scalability performance of wavelet video coders. In Section 7.5 we demonstrate the

excellent prediction performance of spatially advance spline based motion models especially

at low resolutions. Section 7.6 concludes the chapter.

7.2 Mesh-based motion estimation for wavelet video coding

Mesh-based motion model and motion estimation were introduced in Chapter 2. We briefly

recall that mesh-based model is capable of capturing spatially affine motion. That means

it can account for rotation, zoom, and shear, in addition to pure translation of block-

matching. The estimation algorithm of hexagonal-matching (Nakaya and Harashima, 1994)

is iterative in nature; in every pass, the motion vector at each node point is estimated

by local minimization of the prediction error over six triangular patches (Fig 2·6). This

approach is necessarily related to higher computational cost; nevertheless, following the

significant increase in available computational power in recent years, advanced spatial

motion models (like the mesh-based models) are, deservingly, receiving more attention.

Typically, mesh-based motion estimation algorithms (Nakaya and Harashima, 1994)

are constrained in such a way that connectivity of the mesh is preserved. The mesh mo-

tion field then provides continuous ”one-to-one” mapping between frames, which naturally

solves ”non-connectivity” problems discussed in previous chapters. On the other hand,

it is well-known that motion estimation between two images fails whenever parts of the

scene get occluded or newly exposed due to, for example, object motion. This happens

in majority of real-life video sequences; therefore, most of the time some parts of images

138

(a) (b) (c)

Figure 7·2: Node-point topologies: a) fixed-size block-matching, b) stan-
dard triangular mesh, c) proposed modified triangular mesh.

indeed have undefined (underlying) motion. We saw how this problem can be addressed

using discontinuous block-matching for innovation-driven temporal filtering in Section 6.5.

In the connected mesh-based model, however, there is no similar way to handle the oc-

cluded/exposed areas.

Although the problem of occlusions and uncovering can be partially addressed using

content-adaptive meshes (where mesh topology adapts to image content), this can signif-

icantly increase the already high computational cost related to mesh-based motion esti-

mation. In addition, it can introduce rate-overhead problems (as topology needs to be

communicated to the decoder). For this reason, we propose to improve the coding perfor-

mance of a regular mesh-based model in the presence of innovations for the particular case

of occluded and exposed areas occurring at image boundaries.

7.2.1 Enhanced boundary handling

Whenever a camera moves and/or objects leave or enter the field of view, frame features

appear or disappear. Significant discrepancies between the current and reference frames

along the frame boundaries may lead to a reduced compression gain. In order to address

this, an improved mesh-based motion compensation is needed. Important practical con-

straints on this new motion compensation are regular mesh topology (that is well suited

to compression applications) and acceptable computational complexity of the modified

algorithm.

139

The standard approach to mesh topology has been to use triangular patches, where,

through a suitable model, displacements of three neighboring nodes define displacements

anywhere within a triangle. A triangular mesh can be built from the common square-block

partitioning thus preserving block positions in the reference frame; mesh nodes can be

set at the corners of all square blocks and each block divided in half along its diagonal

(Fig. 7·2(b)). This configuration introduces a slight increase in the number of motion

vectors needed to represent the complete motion field as compared to a block-based repre-

sentation. If original video frames consist of M ×N blocks, then MN motion vectors are

needed for motion representation in standard block-based approach while (M + 1)(N + 1)

vectors are necessary in a triangular mesh motion representation. For the typical block

size of 16× 16 pixels and standard video resolutions, the increase in uncompressed motion

information is 5% (ITU.R-601 - 720×480 resolution), 11% (SIF resolution) and 21% (QCIF

resolution).

Our proposed triangular mesh topology shifts mesh node-points by half of the inter-

node distance toward inside of the frame while constructing a double-density mesh at the

frame boundary (Fig. 7·2(c)). The motivation for this new topology is clear - smaller

patches can allow for more accurate motion modeling at frame boundaries, particularly

in the presence of global motion. Moreover, the proposed modification in mesh topology

prevents the motion outliers (that are likely to occur at boundaries of a typical video

sequence) to affect larger patches that are now removed from the frame boundary.

With the modified mesh topology, the number of nodes needed for complete mesh rep-

resentation is now (M + 2) × (N + 2) − 4, which represents a slight increase in motion

information to transmit as compared to the block-based and standard triangular mesh

configurations. For example, at SIF resolution the increase in the total number of nodes

is approximately 22% as compared to block-based motion and 10% in comparison with

standard triangular mesh configuration. However, smoother motion fields with fewer out-

liers should compress better, thus reducing the negative impact of the increased number

of nodes. For typical video bit-rates this amounts to less than 5% increase in the total

140

(a) Regular mesh - Iteration #1 (b) Modified mesh - Iteration #1

(c) Regular mesh - Iteration #2 (d) Modified mesh - Iteration #2

Figure 7·3: Difference in motion estimation order between standard
scheme (left column) and proposed scheme (right column). The first three
nodes in each iteration are denoted with circles.

bit-rate compared to block-based motion.

7.2.2 Enhanced mesh-based motion estimation

Unreliable motion estimation at frame boundaries is also a reason to modify the existing

sequential search-based node-point motion estimation algorithms. Since in the iterative

hexagonal refinement algorithm (Nakaya and Harashima, 1994) displacements of neigh-

boring nodes affect each other, erroneous vectors at image boundary may adversely affect

neighboring nodes that are located away from the boundary. Motion of mesh nodes is typ-

ically estimated in the raster scan order; this means that potentially significant number of

erroneous motion vectors along the frame border can have an early impact on the accuracy

of motion estimation away from the border.

141

In order to minimize this effect, we propose to start the iterative process of hierarchical

hexagonal refinement on triangular patches closer to the image center (Fig. 7·3). More

nodes that are closer to the frame boundary are included in subsequent iterations. This way,

more reliable node-point displacements are calculated earlier and potential propagation of

erroneous estimates from the frame boundary is avoided. This process helps in dealing

with occlusion-prone (at the boundary) cases like global camera pan or zoom-in. Also

note that constraints imposed on motion vectors by standard block-matching algorithms

before MPEG-4 (e.g., restriction on motion vectors pointing to the interior of the frame)

may often result in motion vector outliers. This inhomogeneity of motion field in the mesh

case can then have a significant negative impact on the both the motion overhead and the

prediction performance.

7.3 Experimental results - mesh-based motion

In this section we analyze the performance of our wavelet video coder when mesh-based

motion is used. All experiments are performed using our own subband coder (Božinović

et al., 2004). We use three levels of the motion-compensated 5/3 lifting transform, with

motion estimated at 1/4 pixel accuracy. Temporal subbands are spatially transformed

and codded using our JPEG2000-based coder. We compare the proposed approach us-

ing modified mesh with standard mesh and block-matching (inversion is performed using

nearest-neighbor approach, Section 5.4.3). To assure a fair comparison, we use fixed-size

(16× 16) block matching, as only fixed-size meshes are used.

We begin with the analysis of the motion bitrate overhead. We estimate motion for

the first 150 frames of Mobile and Calendar and Football sequences (CIF resolution, 30Hz)

and encode it losslessly using JPEG-LS directly on arrays of horizontal and vertical mo-

tion components. All required motion fields from three temporal decomposition levels are

encoded independently, i.e., no temporal cross-resolution prediction was used.2 Average

2Although this approach is sub-optimal from point of view of mesh-based motion coding (Secker and
Taubman, 2003), it is a good indicator of relative motion overhead introduced by different motion models.

142

Table 7.1: Motion bitrate (kbps) for Mobile and Calendar and Football
sequences encoded at CIF resolution (30Hz). Relative increase in number
of nodes and motion bitrate are also shown.

Sequence Mobile and Calendar Football

Motion model Rate(kbps) % nodes % bitrate Rate(kbps) % nodes % bitrate

Block matching 134 100% 100% 179 100% 100%

Mesh 142 +10% +6% 187 +10% +4%

Modified mesh 151 +20% +13% 196 +20% +9%

motion bit-rates for Mobile and Calendar sequence are 134 kbps, 142 kbps and 151 kbps for

block-matching, standard mesh and modified mesh methods, respectively. This presents

6% and 13% increase in motion bit-rate of mesh-based motion compared to standard fixed-

size block matching. The motion overhead increases less than expected from the growing

number of nodes, which is due to the smoothing effect that regularization has on the es-

timated node motion. In the case of Football, this effect is even more visible because of

very dynamic motion in the sequence. Average motion bit-rates increase from 179 kbps for

block-matching, to 187 kbps in the case of standard mesh (4% increase), and to 196 kbps

(9% increase) in the case of modified mesh.

Figures 7·4 and 7·5 show rate-distortion performance of our coder when three different

motion configurations are used. We show average luminance PSNR for first 128 frames of

two CIF sequences: Flower Garden, Mobile and Calendar. Both sequences are character-

ized by strong global (camera) motion, with a significant amount of boundary occlusion

effect. We see that the modified mesh outperforms regular mesh by 0.1 - 0.4dB on average,

while the gain over the fixed-size block motion model is more significant (up to 1.3dB at

high rates). Note that these gains are possible despite increased motion bitrate (Table 7.1),

which is due to better motion modeling and/or boundary handling. At very low bitrates,

the difference between the block and mesh models is less visible, as losslessly coded motion

occupies a significant portion of the overall bit budget. When the decoding bitrate in-

143

0 200 400 600 800 1000 1200 1400 1600 1800
18

20

22

24

26

28

30

32

34

36

Rate[kbps]

P
S

N
R

[d
B

]

Block−Matching
Standard Mesh
Modified Mesh

Figure 7·4: Rate-distortion performance comparing block-matching, mesh,
and modified mesh; Flower Garden sequence at CIF resolution, 30Hz.

0 200 400 600 800 1000 1200 1400 1600
16

18

20

22

24

26

28

30

32

34

Rate[kbps]

P
S

N
R

[d
B

]

Block−Matching
Standard Mesh
Modified Mesh

Figure 7·5: Rate-distortion performance comparing block-matching, mesh,
and modified mesh; Mobile and Calendar sequence at CIF resolution, 30Hz.

144

creases, the significance of motion overhead is reduced, and the better motion modeling of

mesh leads to more substantial gains. We observed similar results, although with somewhat

smaller coding gain of modified mesh configuration,3 in sequences than exhibit small or no

camera motion. This reinforces our claim that advanced spatial modeling and invertibility

support are indeed beneficial to compression performance of wavelet video coders.

7.4 Spline-based motion modeling

In previous section, we have seen how mesh-based model improves spatial motion modeling.

With triangular meshes, the order of the motion model increases from zero (block-wise

constant) to one (patch-wise planar, in both x- and y-coordinate). The improved coding

gain of the mesh model naturally leads to the next question: can we improve the prediction

and compression performance by using even higher order of spatial motion models? In this

section, we present the general framework for motion modeling based on splines. Depending

on the spline order and spline control node topology, both block-based and mesh-based

motion models can be interpreted within this framework. However, our main interest

lies in investigating potential benefits of even higher-order spatial motion models. We in

particular propose to use third-order (cubic) parametric splines, as they have been shown to

offer a good compromise between accurate spatial modeling and manageable computational

complexity. In Fig. 7·6, we show B-splines (Unser, 1999) of degrees 0 to 3.

The spline motion model attempts to keep the best properties of block- and mesh-based

models, while eliminating their drawbacks. Block-based models can capture sharp transi-

tions in the motion field, at the expense of oversimplified uniform translational modeling

of unit patches. Triangular meshes, on the other hand, are capable of supporting higher-

order parametric affine (first-order or planar) motion model. This well-understood model

is solidly founded in the physical camera movement and its effect on the perceived scene

motion. When applied locally, the affine model can also support more complex motion of

the scene objects (e.g., rotation, object approaching, or receding). However, a connected

3This is expected, as most of the gains of modified mesh come from improved boundary handing.

145

−3 −2 −1 0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

n = 0
(a) −3 −2 −1 0 1 2 3

−0.2

0

0.2

0.4

0.6

0.8

1

n = 1
(b)

−3 −2 −1 0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

n = 2
(c) −3 −2 −1 0 1 2 3

−0.2

0

0.2

0.4

0.6

0.8

1

n = 3
(d)

Figure 7·6: The centered B-splines of degree 0 to 3.

mesh representation can ”over-smooth” the scene motion, and bilinear interpolation on

triangles is not always capable of modeling sharp transitions in the motion field. It is here

that we find a major motivation for our research on higher-order spatial models that can

preserve a continuous motion representation and improve transition handling at the same

time.

Similar to other motion models used for video compression, the spline-based model

falls in between local (pixel-based) and global (frame-based) models. The spline-based

motion model can be viewed as a local parametric model, since the motion within each

spline patch is defined by a finite number of control vertices. Parametric splines naturally

provide continuous motion representation. In Sections 4.4 and 4.5, we have seen that

only in the context of continuous mapping with well-defined inverse we can interpret the

temporal lifting-implemented MC-DWT as operating along motion trajectories. When the

node topology of the model is preserved, continuous models exhibit a desirable invertibility

property. In addition, it has been shown that the composition of continuous motion fields

146

at different temporal scales can facilitate compact motion representation and reduce motion

overhead (Secker and Taubman, 2003).

Our practical approach to spline-based motion flow estimation revisits, to a certain

degree, the work of Szeliski and Shum (Szeliski and Shum, 1996), which was carried out

in the context of image registration. In practice, most of their work was implemented for

the case of a bilinear spline basis; we extend this model to more advanced cubic splines.

We replace the node topology of hierarchical spline basis with the one more suitable to

spatially scalable wavelet-based video compression applications; the estimated spline-based

motion fields are then used for video compression in this context. In another notable work

on the advanced multi-scale motion representation, Moulin et al. (Moulin et al., 1997)

have proposed an integrated system with motion vectors represented using hierarchical

basis functions in the form of linear splines.

In our discussion, we limit the temporal motion modeling to piece-wise linear trajecto-

ries, i.e., a single motion mapping defines motion between two frames only. In this case,

the motion field anchored in the current frame fk is independent from fields defined at

all other times. Under this assumption, we can study the two-frame problem without any

loss of generality. If the current and reference intensity images (respectively, fk(x, y) and

fm(x, y)) are known,4 the standard motion prediction error measure, i.e., sum of squared

differences (SSD) can be written as:

J({ui, vi}) =
∑

i

(
fk(xi, yi)− fm(xi − ui, yi − vi)

)2
. (7.1)

The standard approach to motion estimation is then defined as a minimization problem

over displacement fields ui , u(xi, yi) and vi , v(xi, yi) representing x and y components

of a motion mapping Ml→k. We model these two motion fields as two-dimensional spline

functions controlled by a smaller number of spline coefficients ûj and v̂j , which lie on a

coarser spline control grid. This is illustrated in Fig.7·7; we use d = [u, v]T to denote a

4We sometimes also use the vector form to denote spatial coordinates as x = [x, y]T .

147

d

g

Figure 7·7: Example of the spline control grid; a small number of spline
coefficients γ defined at control points j is used to represent values of motion
vectors d at pixel positions i.

motion vector and γ = [û, v̂]T to denote spline coefficients. Index j is used to denote spline

control vertices, while i still refers to pixel indices. The horizontal displacement at pixel i

can then be written as:

u(xi, yi) =
∑

j

ûjBj(xi, yi) or ui =
∑

j

ûjwij , (7.2)

and similarly for the vertical component of the motion field:

v(xi, yi) =
∑

j

v̂jBj(xi, yi) or vi =
∑

j

v̂jwij , (7.3)

where Bj(x, y) are spline basis function, and are usually non-zero only over a small interval

(finite support). We call the wij = Bj(xi, yi) weights to emphasize the fact that (ui, vi) are

known linear combinations of (ûj , v̂j).

In order to recover the local spline-based motion parameters, we need to minimize

the cost function (7.1) with respect to the (ûj , v̂j). We do this using a variant of the

Levenberg-Marquardt iterative non-linear minimization technique (Press et al., 1992). We

here present an overview of the estimation process; detailed algorithm steps can be found

148

elsewhere (Szeliski and Shum, 1996).

We begin with a single resolution case (non-hierarchical motion representation). In

other words, in this scenario, all spline control nodes are located on a single uniform lattice

(e.g., nodes denoted with × in Fig. 7·7). In this case, the gradient of J in (7.1) is first

computed with respect to each of the parameters (ûj and v̂j):

gu
j =

∂J

∂ûj
= 2

∑

i

eiG
x
i wij ,

gv
j =

∂J

∂v̂j
= 2

∑

i

eiG
y
i wij ,

where

(Gx
i , Gy

i) = ∇x fm(x)|x=xi−di

is the intensity gradient of the reference frame fm evaluated at the displaced position of

pixel i (di = [ui, vi]T), and

ei = fk(xi, yi)− fm(xi − ui, yi − vi)

is the intensity error at pixel i. The wij are the sampled values of the spline basis function

(7.2).

Algorithmically, we compute the above gradients by first forming the displacement

vector (ui, vi) at each pixel of the current frame fk using (7.2) and (7.3),5 then computing

the resampled intensity and gradient values of fm at (x′i, y
′
i) = (xi−ui, yi− vi), computing

intensity error at pixel i (ei), and finally incrementing the gu
j and gv

j values of all control

vertices affecting that pixel.

For the Levenberg-Marquardt algorithm, we then calculate the approximate Hessian

matrix A (Press et al., 1992) and compute an increment ∆u to the current displacement

5Before the first iteration, displacement vectors have to be initialized either with zeros or with the result
of another (typically faster) initial motion estimation technique.

149

estimate u which satisfies:

(A + λI)∆u = −g,

where u is the vector of concatenated displacement estimates {ûj , v̂j}, g is the vector of

concatenated energy gradients {gu
j , gv

j }, and λ is a stabilization factor which varies over

time (Szeliski and Coughlan, 1994a). To solve this large, sparse system of linear equations,

we use the well-known preconditioned gradient descent method (preconditioning adjusts

the descent direction and accelerates convergence). There are several methods for practical

speed-up of the described algorithm. One is to initialize the motion field with the estimate

obtained using fast block-matching. We can also run the algorithm in a coarse-to-fine

fashion, which helps handling larger displacements. These two approaches can be combined

to obtain a maximally computationally efficient solution.

7.4.1 Extension to hierarchical splines

The above algorithm describes the process of calculating spline-based motion parameters

at single resolution level. In order to improve efficiency and make the motion model

more suitable to spatially-scalable applications, a hierarchical representation is required.

Hierarchical basis splines are based on pyramidal data representation. Standard approaches

typically rely on Gaussian image pyramids; however, in the context of wavelet video coding,

it is beneficial to create the pyramid using the same spatial decomposition wavelets that

are later used for coding anyhow. In this scenario, every input frame first undergoes an

appropriate spatial wavelet filtering before the motion estimation process is started (for

more details on this coding scheme please refer to Chapter 8).

Hierarchical basis splines can be introduced in two formats; one where the total number

of nodes in the pyramid is equal to the original number of nodes at the finest level (Szeliski

and Coughlan, 1994b), and the other where spline nodes at different resolution levels

”overlap” spatially. This is illustrated in Fig. 7·8.

The first approach, with node distribution depicted in Fig. 7·8(a), assumes that all

150

l=0

l=2

l=1

resolution level

(a)

l=0

l=2

l=1

resolution level

(b)

Figure 7·8: Hierarchical basis representation for L = 3 pyramid levels.
The circles indicate the nodes in hierarchical basis. a) The total number of
nodes is equal to the number of variables at the finest (l = 0) pyramid level
(notice the ”missing” nodes at all but coarsest resolution); b) All nodes are
populated at each spatial resolution level.

spline parameters across different scales are (iteratively) estimated at the same time. While

this compact and elegant solution leads to optimal high-resolution motion flow representa-

tion, the optimality at low and intermediate resolutions is not guaranteed. Therefore, this

approach is not practical from the standpoint of spatially-scalable motion representation

and cannot be used for spatially scalable coding.6 For now, we note that for the best

spatially scalable compression performance, motion should ideally be optimized for each

supported resolution level.

We, therefore, decided to use node configuration presented in Fig. 7·8(b). In this case,

rate-distortion optimized motion representation can indeed be obtained at each spatial

level; no subsequent re-estimation of coarse scale parameters is necessary when more pixels

from higher-resolution pyramid levels are included in the estimation. This approach is

better matched to the spatially-scalable coding structure introduced in Chapter 8.

6As discussed in Section 8.4, the MCTFs of spatially-scalable coding scheme are applied independently
at each supported spatial resolution.

151

In addition, our approach supports seamless integration of different spline basis function

at various model resolutions.

Using the node topology from Fig. 7·8(b), our motion estimation process could be

described as follows. We first estimate the motion at the coarsest (lowest resolution) level

of the spatial pyramid, as described in Section 7.4. Once this coarse-resolution motion is

known, it is projected (interpolated) onto the next finer resolution level. The minimization

process is repeated (using the low-resolution estimate as a predictor) until the final nodal

representation is obtained. For compactness, we chose to use a ”residual” motion flow

representation at each spatial scale; converting from the hierarchical basis representation to

the usual nodal (fine-level) motion representation, can then be straightforwardly performed

as:

u(xi, yi) =
∑

l∈L

∑

j∈Jl

ûl
jw

l
ij . (7.4)

Here, Jl is a collection of spline control points at spatial level l, as shown in Fig 7·8(b).

This representation obviously has a layered structure; it is relatively easy to show that,

with respect to the cost of motion coding, this representation is equivalent to spatially

predictive coding of motion fields from lower spatial resolutions.

We already mentioned that, with an appropriate node selection at each level of the

pyramid, the hierarchical spline model is flexible enough to support different basis func-

tion at different hierarchical levels. In this chapter, we use cubic splines (Unser, 1999)

at all pyramid levels; a new approach that combines spline-basis of different order will

be introduced in Chapter 8. The hierarchical structure of motion estimation algorithm

naturally improves the implementation speed; typically only three to four iterations of

preconditioned Levenberg-Marquardt algorithm at each resolution are sufficient to obtain

high-quality motion estimate. For additional speed-up, the initialization of spline coeffi-

cients at the coarsest level can be performed using some fast motion estimation algorithm

(e.g. fast block matching).

Finally, at this time we discuss the issue of hierarchical variable-size splines, sometimes

152

referred to as quadtree splines. The variable-size block-matching (VSBM) approach, first

introduced in MPEG-4 visual and extended in AVC/H.264, proved to be very popular and

successful. Similar concepts were proposed and deployed - with more or less success - to

motion models based on triangular meshes (where motion within the patch is obtained

using bilinear interpolation within the triangles), and, in similar manner, to block-based

bilinear model (Szeliski and Shum, 1996). As we previously mentioned, both the uniform

translational model and the affine model can be interpreted in the more general context

of spline basis functions, with basis order zero and one, respectively. It is exactly this

extremely short support (of one and two inter-nodal distances, respectively) of spline basis

functions in these two cases that allows for convenient application of quadtree approach.

To illustrate this, we take a look at the VSBM; the decision to split one macroblock

into smaller blocks (effectively introducing new nodes to the spline topology) does not in

any way affect the motion estimate in any of the neighboring macroblocks. A similar idea

can be implemented, with appropriate node topology, using hierarchical triangular meshes

(for details, see Section 9.2.2).

Unfortunately, longer support of advanced cubic spline basis functions (extending to

four inter-nodal distances), prevents us from easily embracing the quadtree concept in

this higher spatial order case. Any new quadtree node that is introduced on the denser

spline-based grid will create undesirable ”ripples” in neighboring patches that might not

require to be divided on their own. This, in turn, would require re-estimation of the coarse

scale spline parameters, which would then affect even more patches and generate a global

response to the local change in motion field. For this reason we decided to use only fixed-

size node topology for cubic spline basis at all resolution levels. A potential solution to this

problem might be to use a high-order spline basis at the lowest spatial resolution (similar to

fixed-size macroblocks in AVC/H.264), but then combine it with lower-order (e.g., linear, or

zeroth-order) splines that could facilitate efficient quadtree implementation. The problem

of hierarchical variable-size (quadtree) splines for the case of higher order basis functions

remains an interesting and open topic for future research.

153

7.5 Experimental results - spline-based motion

In this section, we evaluate motion prediction performance of the introduced spline motion

model that is based on cubic basis functions. We compare it with both fixed-size (16× 16)

block matching (used in MPEG-2), and hierarchical variable-size block matching (used

in AVC/H.264). To speed-up the implementation we run our algorithm in coarse-to-fine

hierarchical fashion, even when motion is being estimated at a single resolution only.

Three motion fields estimated between two frames of Flower Garden QCIF sequence

(frames #234 and #235) using three different motion models are presented in Fig.7·9. We

use these fields to illustrate the most important differences between the discussed models.

At the top, the fixed-size block matching motion field (1/4 pixel precision) exhibits visible

outliers (the top right corner), and results in the motion-compensated prediction luminance

PSNR7 of 27.48dB. In the middle, we show the motion field estimated using HVSBM (with

the same 1/4 pixel precision). This model clearly renders the underlying scene motion more

accurately, and it improves the prediction PSNR to 28.39dB. The hierarchical approach

helps in removing most of the outliers, while variable size blocks improve prediction around

object boundaries. The increased prediction performance is related to a somewhat higher

cost of motion coding (because of the larger number of motion vectors and the motion

quad-tree map that needs to be encoded). Finally, the spline based flow is shown in

Fig.7·9(c). For a fair comparison with both block-based models, spline motion parameters

are correspondingly quantized (one way to do this is to quantize the cardinal-form spline

coefficients to 1/4 accuracy). We can see that despite the fixed (16× 16) node topology of

the spline model,8 its prediction outperforms the HVSMB at PSNR 28.45dB. A hierarchical

estimation prevents the occurrence of large outliers and creates a regularized motion field,

while high third-order motion model can properly adapt to rapid changes in the motion

7Motion prediction PSNR represents a distortion between the current and predicted frame, and it is
based purely on motion compensation performance, as no further prediction error is used. We use it purely
to compare motion prediction performance; it cannot be directly used to assess coding performance nor it
should be mixed with true reconstruction PSNR.

8The total number of spline motion parameters is in this case very similar to the number of motion
vectors in the fixed-size block-matching case.

154

(a) FSBM, PSNR = 27.48dB

(b) HVSBM, PSNR = 28.39dB

(c) Spline motion field, PSNR 28.45dB

Figure 7·9: Comparison of three different motion models. Flower Garden
sequence, frame #235. Motion-prediction luminance PSNR is computed
between the current frame and predicted frame.

155

HVSBM Fixed-size spline model

0

0.5

1

1.5

2

2.5

x-component

0

0.5

1

1.5

2

2.5

x-component

−1

−0.5

0

0.5

1

1.5

2

y-component

−1

−0.5

0

0.5

1

1.5

2

y-component

Figure 7·10: x- and y-components of motion fields from Fig. 7·9 as
grayscale images; left column: HVSBM; right column: spline-based model.

field (especially visible around the foreground tree).

Fig. 7·9 displays motion vectors on the subsampled grid for visualization purposes.

To emphasize the continuous nature of spline-based motion field, we also represent x- and

y-components of HVSBM and spline-based motion fields as grayscale images in in Fig. 7·10.

Next, we take a look at motion-compensated prediction performance at three different

spatial resolutions: QQCIF, QCIF, and CIF. It is important to note that, in parallel

with the increased interest in high-resolution video coding and delivery (e.g., HDTV), the

plethora of devices supporting only QCIF or sub-QCIF resolutions (e.g., most multimedia

cell phones) emerged recently. They form a wide device and application base for low-

resolution coding, providing a strong motivation for future research in the area of compact

and efficient motion representation at these spatial scales.

In Tables 7.2, 7.3, and 7.4, a single-resolution cubic-spline model is compared to two

block-matching models for a variety of sequences. In order to use 16 × 16 macro-blocks

156

Table 7.2: Motion-compensated prediction PSNR(dB) at QQCIF, 30Hz;
no prediction error is encoded and used. Average over the first 50 frames.

No motion FSBM HVSBM SP16 SP8

(16× 16) (λ = 34)

Flower Garden 27.66 30.57 31.83 32.04 32.17

Stefan 25.62 29.16 29.79 30.40 30.61

Foreman 30.39 33.86 36.07 36.15 36.37

Mobile 28.31 28.83 29.88 30.34 30.62

Table 7.3: Motion-compensated prediction PSNR(dB) at QCIF, 30Hz; no
prediction error is encoded and used. Average over the first 50 frames.

No motion FSBM HVSBM SP16 SP8

(16× 16) (λ = 34)

Flower Garden 21.29 29.09 30.14 30.04 30.23

Stefan 23.18 28.06 28.82 28.91 29.09

Foreman 29.01 34.98 36.23 36.11 36.21

Mobile 25.52 28.23 28.93 28.79 29.13

Table 7.4: Motion-compensated prediction PSNR(dB) at CIF, 30Hz; no
prediction error is encoded and used. Average over the first 50 frames.

No motion FSBM HVSBM SP16 SP8

(16× 16) (λ = 34)

Flower Garden 18.00 28.34 30.89 30.25 30.67

Stefan 21.13 28.25 29.13 28.76 28.93

Foreman 27.15 34.15 35.44 34.65 35.19

Mobile 20.36 27.47 28.11 27.76 28.04

157

at QQCIF resolution, 4 pixels have been cropped from each side of the frame. Also,

QQCIF resolution sequences are obtained as an LL spatial subband of QCIF resolution

image, after a single level of the CDF 9/7 spatial DWT, typically used for spatial wavelet

coding (Taubman and Marcellin, 2002). In each table, the first column shows PSNR of

the temporal prediction error without motion compensation. In the next two columns, the

prediction performance of fixed-size block matching (block size of 16) and HVSBM (λ = 34,

block size 16× 16 down to 4× 4) is presented. Finally, the last two columns represent two

spline-based motion models; SP16 and SP8 denote cubic spline models with inter-nodal

distances of 16 and 8 pixels, respectively.

It is important to note that results presented in Tables 7.2 - 7.4 compare solely the

motion-compensated prediction performance of different motion fields, without taking mo-

tion bit-rate into account. A full assessment of motion compensation performance is pos-

sible only in the context of a complete coding system, which would also take into consid-

eration a true motion bit-rate. These results are presented in the next chapter; for now,

in order to justify and motivate a further exploration of spline-based models, we limit our

analysis to the number of motion parameters needed to represent a motion field.9 In this

case, motion-compensated prediction using fixed-size block matching (column two) can be

effectively compared to that of spline-based SP16 motion field (column four). Both fields

use a fixed number of motion vectors per motion field; for a frame size M ×N , FSBM pro-

duces M
16 × N

16 motion vectors, while the number of motion vectors in SP16 motion field is

slightly larger at (M
16 +1)×(N

16 +1), due to a different node topology, illustrated in Fig. 7·12.

This difference should be taken into account when motion prediction results are compared;

we can, however, observe that consistent and substantial gains of SP16 over FSBM motion

are large enough to justify this increase in the number of motion parameters.10

Comparing the motion prediction performance of HVSBM (column three) and SP8

9Under the assumption of the same motion accuracy and similar entropy coding in different coding
scenarios, the number of motion parameters is closely related to the total motion bit-rate.

10For example, at CIF resolution, the number of motion vectors per motion field increases from 396 in
FSBM to 437 in SP16 configuration, i.e., by only about 10%.

158

(column five) is substantially more difficult - the main reason for this is a variable number

of motion vectors in HVSBM that depends on the regularization parameter λ. For example,

a very large λ would result in the number of motion vectors being identical to the FSBM

case (all blocks of size 16× 16); on the other hand, λ = 1 would significantly increase this

number and result predominantly in 4× 4 blocks. In our experiments, for commonly used

value of λ = 34, the number of motion vectors in HVSBM field was relatively close (most

of the time within 15%) to that of fixed-size SP8 configuration. This moderate λ value

results in roughly equal number of blocks larger and smaller than 8× 8 - a typical motion

field for λ = 34 is presented in Fig. 7·9(b). In conclusion, an informative comparison

between block- and spline-based motion fields in terms of motion-compensated prediction

is possible between FSBM and SP16 configurations, and HVSBM and SP8 configurations.

A more detailed assessment of different motion models in the context of a complete video

coder and with motion bit-rate included is given in Section 8.5.

Going back to results in Tables 7.2 - 7.4, we can see that, in terms of motion-compensated

prediction error, the spline-based models slightly outperform block-based models at QCIF

resolution and more significantly at QQCIF resolution. We can notice that the gain over

block-matching is consistently the largest at the lowest (QQCIF) resolution - this is ex-

pected in the light of our earlier discussion on advanced spatial motion modeling. In

Figs. 7·11 and 7·12, we visually inspect motion fields and corresponding prediction errors.

It is clear that when the inter-nodal distance becomes relatively large compared to frame

dimensions, the advanced cubic-spline motion model excels and demonstrates superior per-

formance.

However, at CIF resolution (Table 7.4), HVSBM outperforms the fixed-size SP8 con-

figuration; the probable explanation for this is that the use of variable-size blocks at the

finest 4×4 level provides a sufficiently localized support for efficient prediction using a sim-

ple translational motion model. Until the problem of variable-size cubic splines (discussed

in the previous section) gets solved, this result suggests that fixed-size splines might be a

good choice for motion representation at very low resolutions. In the next chapter, we show

159

how different motion fields based on cubic splines and block matching can be combined at

different spatial resolutions.

For a more complete evaluation of spline-based motion model, and its comparison with

block-matching models, we need to compare the objective compression performance of video

coders that take the true encoded motion bitrate into account and use the estimated motion

fields for motion-compensated temporal filtering. As we will see in the experimental results

section of Chapter 8, the excellent spline-based motion-compensated prediction, together

with one-to-one mapping and natural invertibility support of continuous splines, indeed

assures an excellent compression performance.

7.6 Conclusions

In this chapter, we discussed advantages of two spatially-advanced motion models, one

based on deformable triangular mesh, and the other based on cubic splines. Both of these

methods show good results in the context of wavelet video coding. Two main reasons

for this are better spatial motion modeling (resulting in improved prediction) and explicit

invertibility of both schemes (enabling efficient implementation of wavelet filters along

well-defined motion trajectories).

Both models, however, incur high computational complexity (when compared to block-

matching). In addition, they are not capable of supporting modeling of innovation areas

(occlusions and uncovering). For these reasons, in the next chapter, along with a new

scheme for spatio-temporal wavelet processing, we propose a scalable and hierarchical mo-

tion representation that combines the best properties of various motion models at different

spatial scales.

160

Current frame - QQCIF Reference frame - QQCIF

Zero-motion field

−80

−60

−40

−20

0

20

40

60

80

No motion, RMSE = 19.18, PSNR = 22.47dB

FSBM motion field

−40

−30

−20

−10

0

10

20

30

40

FSBM, RMSE = 8.71, PSNR = 29.32dB

HVSBM motion field

−40

−30

−20

−10

0

10

20

30

40

HVSBM, RMSE = 8.07, PSNR = 29.99dB

Figure 7·11: Motion-prediction performance of block-based motion models
at QQCIF resolution, Flower Garden sequence.

161

SP16 motion field

−40

−30

−20

−10

0

10

20

30

40

SP16, RMSE = 7.89, PSNR = 30.19dB

SP8 motion field

−40

−30

−20

−10

0

10

20

30

40

SP8, RMSE = 7.63, PSNR = 30.48dB

Figure 7·12: Continued from Fig. 7·11: spline-based motion fields outper-
form block-based motion at very low resolutions in terms of motion predic-
tion error.

162

163

Chapter 8

Motion modeling for spatial scalability

8.1 Introduction

Spatial video scalability gained a lot of attention recently and became one of the most

sought after features in modern video coding systems. The reason for this lies in the

dramatic proliferation of visual displays of different resolutions. Demand for simultaneous

availability of the video on variety of different devices (e.g., cell phone, video iPod, PDA,

notebook, TV, high-definition TV) has increased the interest in video compression schemes

capable of decoding a ”once-encoded” video at a range of supported video resolutions and

with high quality.

Wavelet video coders and their open-loop non-predictive architecture provide an elegant

solution to the problem of rate, temporal, and spatial scalability. In Section 8.2, we review

the ”t+2D” wavelet video coding architecture introduced earlier in Section 4.2 with special

emphasis on the design details related to spatial scalability. It has been recently reported

that, in the case when motion-compensated temporal filtering is performed along poor or

non-existent motion trajectories, this architecture introduces visually disturbing artifacts.

One possible solution to this problem includes a modification of the classical ”t+2D”

scheme to the so-called ”2D+t+2D” coding structure, presented in Section 8.3. This

structure specifically targets the spatial scalability performance as it allows a tradeoff

between energy compaction and the potential for artifacts at lower spatial resolutions.

From the perspective of this thesis this structure is interesting as it permits the use of

different motion fields for separate MCTFs over spatial subbands of original video signal.

In order to explore this possibility, in Section 8.4 we introduce a framework for spatially-

164

scalable motion that is well-matched to ”2D+t+2D” structure. A spatially-layered motion

model provides an effective solution for predictive estimation and coding of motion fields at

different spatial scales. In addition, at different resolutions, standard block matching may

be combined with higher-order motion models, like that based on cubic splines discussed

in the previous chapter. This effectively creates the so-called mixture motion model. In

Section 8.5, we demonstrated that advanced spatial motion modeling is especially suitable

at lower resolutions, where gains of the mixture motion model over block-only hierar-

chical model can exceed 1 dB. The optimal number of spline-based motion layers in the

mixture motion model is heuristically determined, depending on the number of spatial res-

olution levels and application requirements. Finally, we compare coding efficiency of the

”2D+t+2D” scheme to the standard ”t+2D” scheme at full spatial resolution (architecture

penalty) and analyze the impact of motion overhead introduced by the layered structure

of mixture motion model (motion overhead penalty). Section 8.6 concludes the chapter.

8.2 Scalability analysis of ”t+2D” wavelet coding structure

Over the last few years, the issue of spatial scalability has gained particular prominence

because of the variety of emerging displays supporting a wide range of resolutions. This is

further compounded by the growth of high-definition TV; most of the future video material

will be captured using high-resolution video cameras and its presentation on low-resolution

devices will require spatial scaling. There are several solutions to this problem. First, video

data can be transmitted at the highest spatial resolution and downconverted at the receiver,

but this requires a high-bandwidth channel down to the very receiver. Alternatively, the

full-resolution bit-stream can be transcoded to a lower resolution (lower rate) at the in-

terface of different-bandwidth networks but this requires complex and costly transcoding-

capable network switching gear. Another solution, used notably in video databases, is to

encode and store the video material at different spatial resolutions (and, thus, different

bit-rates) but this requires more complex data management as well as additional storage

capacity. A better solution is to employ spatially-scalable video coding. As detailed in

165

Section 4.2.1, the goal is to assemble a single bit-stream from which a sub-stream can be

extracted and transmitted at lower bit-rate, and subsequently decoded at a lower spatial

resolution.

It was recognized early that scalability can be easily embedded into ”t+2D” wavelet

coding schemes (Fig 4·1). Rate scalability presents the strong point of this and simi-

lar wavelet-based schemes; the open-loop non-predictive structure and bit-plane coding

of spatio-temporal subbands enable excellent quality scalability performance. Temporal

scalability in the ”t+2D” architecture is typically implemented by terminating temporal

synthesis in the decoder at a desired temporal resolution (target frame-rate), which is illus-

trated in Fig 8·1(a). As this is the last synthesis block in the ”t+2D” decoder, there is no

negative impact on the decoded sequence quality (other than loss of temporal resolution).

The issue of spatial scalability is significantly more complicated and it recently received

a lot of attention in the wavelet video coding community. The classic ”t+2D” wavelet

schemes show excellent performance when video is decoded at full spatial resolution, i.e.,

when the inverse MCTF in the decoder matches the forward MCTF in the encoder. Fur-

thermore, it can be shown that the ”t+2D” architecture necessarily maximizes compression

efficiency for full-resolution decoding (Mehrseresht and Taubman, 2006). However, struc-

tures of this form may lead to artifacts when a decoder attempts to extract video at reduced

spatial resolution by omitting one or more levels of spatial synthesis. The block scheme of

the ”t+2D” decoder operating at reduced spatial resolution is presented in Fig 8·1(b). We

can see that the removed spatial synthesis block is followed by the inverse MCTF; in the

case of motion failure, a mismatch between the motion in forward and inverse MCTF may

introduce visual artifacts.

The main source of visible artifacts is motion failure, i.e., filtering over erroneous or

non-existent motion trajectories at the original (highest) spatial resolution in the ”t+2D”

encoder. This motion failure causes spatial aliasing, present due to the use of finite-length

spatial filters (more detail on this topic is presented in the next section), to appear as

nonaligned artifacts in reduced spatial resolution sequences (Mehrseresht and Taubman,

166

4CIF
CIF

T T S S E

T
-1

T
-1

S
-1

E
-1

~~

Encoder

Decoder

4CIF 4CIF4CIF
CIF

QCIF

QCIF

QCIF

QCIF

S
-1

4CIF 4CIF

(a)

CIF

T T S S E

T
-1

T
-1

S
-1

E
-1

~~

Encoder

Decoder

4CIF 4CIF4CIF
CIF

QCIF

QCIF

QCIF

QCIF

S
-1

CIFCIF

Different resolution

MCTF and IMCTF

(b)

Figure 8·1: Block diagram of a ”t+2D” coding scheme. a) Removal of the
last temporal synthesis stage causes no transform or motion mismatch; b)
When a spatial synthesis block is removed, subsequent temporal synthesis
is affected as the inverse MCTF now operates at a resolution different from
forward MCTF.

167

(a) (b)

(c) (d)

Figure 8·2: Visible artifacts in CIF-encoded/QCIF-decoded sequences Ste-
fan (frame #20) and Foreman (frame #72), when the ”t+2D” scheme from
Fig. 8·1(b) is used. Motion for temporal synthesis is obtained by scaling-
down motion estimated at CIF-resolution (HVSBM, λ = 34). a) LL spatial
subband of the original CIF Stefan frame, b) CIF-encoded/QCIF-decoded
Stefan frame. Notice the artifacts around player’s left arm and right foot. c)
LL spatial subband of original CIF Foreman frame, d) CIF-encoded/QCIF-
decoded Foreman frame. Notice visible artifacts across the face.

2006). In the next section, we first illustrate the effect of motion failure on spatially-scalable

performance of a ”t+2D” coder, before investigating the cause of this effect and possible

solutions.

8.2.1 Motion failure and subband leakage

When one or more spatial synthesis stages are dropped, the inverse MCTF operates at a

different resolution from that of the direct MCTF during encoding. The motion for inverse

filtering at lower resolutions is not directly available - it is instead indirectly generated

168

from the original-resolution motion, often by simple spatial and amplitude scaling.

In the areas where motion is accurately estimated and properly employed for motion-

compensated filtering, no visual distortions will be present in the low-resolution decoded

”t+2D” video. However, in areas where the motion model fails, the spatially-reduced

output frames exhibits visually annoying artifacts. To illustrate this effect, we show two

such examples in Fig. 8·2. To emphasize the artifacts and make them more visible, we

applied the MCTF along all motion trajectories, i.e., we considered all pixels in the sequence

to be connected. To get a reconstructed frame, we used the ”t+2D” structure with three

levels of 5/3 MCTF, followed by five levels of spatial DWT. No quantization and entropy

coding was used, which means that no additional quantization error is introduced (subband

coefficients received by the QCIF-resolution decoder are identical to those coming out from

the CIF-resolution encoder). When QCIF video is reconstructed using the approach from

Fig 8·1(b), artifacts are clearly visible in the reconstructed sequences in all areas where

motion is not accurately captured (e.g., at player’s left hand and right shoe for the Stefan

sequence and in the face in Foreman sequence). As no quantization error is present, the

artifacts clearly arise from motion failure, affecting both subjective and objective coding

performance.

To fully explain the source of these artifacts, the problem of ”subband leakage” (Mehrseresht

and Taubman, 2006) needs to be understood. To that end, we take a look ”under the hood”

of a standard ”t+2D” encoder, presented in Fig. 8·3(a). Fig. 8·3(b) shows a block-diagram

that is equivalent to such a coder. We consider the input to the ”t+2D” coder as composed

of low- and high-frequency component, by means of a spatial DWT. First, the input video

sequence is spatially separated into two sequences. This is done by means of (finite sup-

port) spatial DWT analysis, zero-padding of appropriate subbands, and DWT synthesis.

These two sequences are then subjected to independent MCTF (both MCTFs use the same

motion), and spatial DWT. Due to linearity of all transforms, the resulting spatio-temporal

subbands will be the same as if the MCTF were performed on the original sequence. This

new interpretation of the coder, however, can shed significant light on the impact of dif-

169

MCTF

M
0

0

Entropy
Encoder

S-DWT

~~

t + 2D

(a) ”t+2D” scheme with one temporal and one spatial decomposition level.

S-DWT MCTF

M
0

0
+

+

Entropy
Encoder

S-IDWT

S-IDWT M
0

0

S-DWT

S-DWT

Entropy
Decoder

~~

W
1

0

IMCTF

t + 2D

Leaks

Figure 8·3: (b) Block diagram of the same ”t+2D” scheme illustrating the
subband leakage phenomenon.

170

ferent spatial frequencies from the input video sequence on the generated low/high spatial

subbands.

Due to the non-ideal spatial filtering in the finite-length 2D DWT step (typically, CDF

9/7 (Taubman and Marcellin, 2002)), spatial aliasing will be present in both high- and low-

frequency sequences. It is a well-known fact that an MCTF of image sequence containing

low spatial frequencies will result in an output with some high spatial frequencies. An

excellent coverage of this topic can be found in (Mehrseresht and Taubman, 2006; Xiong

et al., 2005a). Similarly, a motion-compensated temporal filtering of image sequence with

high frequencies will create some low spatial frequencies. This effect is referred to as subband

leakage (Fig. 8·3) and it is caused by critical sampling and non-ideal spatial filtering of the

DWT.

The dyadic decimation of the DWT causes the subband leakage problem after one level

of temporal analysis to be the most severe when displacements equal an odd number of pix-

els; it decreases when displacements approach an even number of pixels, and it is zero when

displacements corresponds to an even number of pixels. Naturally, the strength of leakage

depends on the quality of filters used in 2D DWT. Filters with better frequency discrimina-

tion can help reduce the leakage, at the cost of increased computational-complexity. Instead

of the widely-used CDF 9/7 (Taubman and Marcellin, 2002), adopted by JPEG2000, sev-

eral longer filters were proposed to reduce inter-resolution frequency leakage, like CDF

13/11, and CDF 17/11. Although leakage effects are reduced using better spatial filter,

the improvement is reported to be relatively small (Mehrseresht and Taubman, 2006). A

similar attempt at limiting the amount of spatial aliasing by constructing better spatial

filters was proposed by Wu (Wu, 2005). Inspired by MPEG-4 lowpass filtering, two content-

adaptive methods for aliasing reduction were designed, effectively improving low-resolution

reconstruction by an average of about 2dB.

The well-known ”2D+t” schemes provide one solution for breaking this subband de-

pendency; spatial synthesis in the ”2D+t” decoder is performed last. When dropped at

the decoder, it does not affect other decoding steps. Unfortunately, this approach comes

171

at the cost of lower coding efficiency due to significantly less efficient motion compensation

in the critically-sampled wavelet domain.

Other more recent solutions proposed in the literature that aim at addressing the spatial

scalability performance of the ”t+2D” coder and reduction of the amount of subband leak-

age include shift of motion compensation to the overcomplete DWT domain (Andreopoulos

et al., 2003), and optimal subband rate allocation (Xiong et al., 2005a). The latter ap-

proach preserves a certain share of otherwise completely discarded spatially-high subband;

the total bit-budget is split between the coefficients corresponding to low and high spatial

frequencies in such a way that the overall reconstruction error is minimized.

8.3 Alternative architecture using parallel MCTF design

While better spatial filters and highly accurate motion estimation (coupled with its careful

employment in the MCTF) can be used to significantly reduce the number of visible arti-

facts, ”t+2D” scheme still fails to guarantee an ”artifact-free” decoding at reduced spatial

resolutions.

In order to overcome this limitation and guarantee artifact-free reconstruction, a modi-

fied structure for implementing MCTF was recently proposed under the name of ”2D+t+2D”

(Mehrseresht and Taubman, 2006) or ”in-scale” MCTF (Xiong et al., 2005b). In the

”2D+t+2D” approach, several levels of the so-called ”pre-S” spatial DWT decomposition

are followed by subband-independent temporal filtering (Fig. 8·4). Additional levels of spa-

tial 2D-DWT decomposition (used primarily to increase coding efficiency) complete the

subband analysis. This structure trades off energy compaction for a removal of artifacts

at lower spatial resolutions.

In our notation, we use subscript/superscript index of motion field M to denote spa-

tial/temporal resolution at which the MCTF is performed. The most important thing

to note is that the parallel implementation of MCTFs at different scales eliminates the

subband leakage, at the cost of lower energy compaction (mainly due to the sub-optimal

172

Figure 8·4: ”2D+t+2D” encoder supporting three levels of spatial scala-
bility.

motion filtering of low spatial frequencies).1 It is important to notice that that MCTFs

at all but the lowest spatial resolution are not performed in the transform domain - each

modified temporal processing block (”Mod.-MCTF” in Fig. 8·4) consists of zero padding,

inverse 2D-DWT, MCTF, and forward 2D-DWT.

Most interestingly, this structure opens a possibility for constructing spatially-scalable

motion representation, which can be estimated and optimized for each spatial resolution

level. In the majority of prior work on this topic, the motion used for MCTF at all

spatial scales of an ”2D+t+2D” architecture was derived from the motion estimated at

full-resolution, by means of scaling and subsampling (Mehrseresht and Taubman, 2006). In

the next section, we present a novel framework for spatially-scalable motion representation

that is well-matched to the hierarchical structure of spatially-scalable ”2D+t+2D” coder.

8.4 Modeling motion for spatial scalability

Scalable coding of motion became an issue relatively recently with the introduction of

scalable wavelet video coders. Motion with a degree of coding error, not permitted in

1Some form of low-to-high leakage compensation can still be used to communicate the high-frequency
subbands generated during IMCTF from lower to higher resolution MCTFs, in order to limit the structure
loss at higher resolutions.

173

hybrid coders, is permitted in wavelet-based coders due to the open-loop nature of the

MCTF. Rate scalability of motion has been considered in order to improve compression

performance at lower bit-rates (Secker, 2004), by means of shifting a portion of the total

bit-budget from motion to texture. However, simple bit-plane coding of motion parameters

is highly sub-optimal and not suitable for motion compensation at lower spatial resolutions.

In the context of the MC-EZBC coder, Wu (Wu, 2005), proposed a method for generating

spatially-scalable motion by layering motion in two or more spatial layers. Still, in Wu’s

approach, all motion is estimated at the highest resolution only. Below, we present a general

framework for the estimation of spatially-scalable motion fields. This framework can be

seen as an extension of the model previously introduced in Section 7.5, but more closely

analyzed in the context of spatially-scalable video coding and rate-distortion optimization.

Let M be a set of motion fields at all spatial scales that are supported by a spatially-

scalable coder, M = {M0,M1, ...,ML−1}, where L is the number of spatial scales. In the

most general case, the formulation of joint motion estimation across all spatial scales is:

M̂ = argmin J(M), J =
L−1∑

l=0

cl(Dl + λlRl), (8.1)

where cl’s are scale-normalization factors, and Dl, λl and Rl are the standard distortion,

regularization factor, and motion rate at resolution level l (it should be made clear that M

is implicitly included in both distortion and motion rate cost, as discussed in Section 2.2).

Obviously, minimizing this cost function simultaneously across all scales is a computation-

ally challenging task. Instead, we propose to solve iteratively, starting from the highest

spatial scale2 L− 1, a simpler cost function:

M̂l = argmin Jl(Ml), Jl = Dl + λlRl|M̂l+1,M̂l+2,...,M̂L−1
, (8.2)

l = L− 1, ..., 1, ML , 0,

where M̂k, k > l are motion fields already estimated at scales higher than the current

2The highest scale corresponds to the lowest resolution and vice versa.

174

scale l. Rl is the rate needed to represent motion at scale l (possibly using prediction

from previously-estimated motion fields). A practical design of this prediction model and

its prediction contexts depends on the particular motion models used. In the next two

sections, we propose two motion estimation schemes: one employing variable-size block

matching (VSBM) at all spatial scales, and the other using a mixture of hierarchical cubic

splines (at lower scales) and VSBM.

8.4.1 Spatially-scalable motion estimation using VSBM

In modern video coders, motion vectors obtained by HVSBM are, typically, predictively

coded by sequentially following the quad-tree decomposition structure. The prediction

residual is then coded using the context-based adaptive arithmetic coding (CABAC). The

majority of attempts to generate scalable motion relied on estimating motion at a single

(highest) spatial resolution. A large λ was used to generate motion base layer and progres-

sively smaller λ’s were used for the refinement of this motion field, but still at the same

spatial resolution (Xiong et al., 2005b). In our method, motion is hierarchically estimated

at all spatial scales; for the purpose of coding, both spatial and cross-resolution predictors

are allowed (Fig. 8·5). This adaptive prediction scheme is deployed at macroblock level.

The decision on a particular prediction mode is controlled by the variance of motion esti-

mates and the current depth in partition tree. The most frequently used prediction modes

are median, weighted median, and average of ~A, ~B, ~C, ~P (Fig. 8·5), as well as simple

prediction using ~P . In addition, macroblock partitioning from the next lower resolution is

used to initialize the state of four MBs in the current layer; while these initial sub-blocks

may be subject to additional partitioning, their subsequent merging is not allowed. In or-

der to speed up motion estimation at higher resolutions, (scaled) motion vectors estimated

at lower resolution are used as search candidates.

175

Figure 8·5: Motion prediction: both same-scale (~A, ~B, ~C) and previous-
scale (~P) motion vectors are used to predict motion vector of the current
block (~D).

8.4.2 Mixture motion model

Most of the current MC-DWT coders rely on block-based motion models inherited from the

hybrid coding structure. The excellent performance of block matching in the hybrid context

can be easily explained: block-based motion perfectly aligns with block-based decorrelating

DCT transform used. In contrast to the hybrid scenario, there is a mismatch between the

local support of the block motion model and a global (multi-scale) nature of spatial 2D-

DWT. This motivated us to introduce a more flexible motion model based on hierarchical

cubic splines in Chapter 7. With more degrees of freedom, this model is bound to result

in better motion compensation at high spatial scales than the block-constant model.

We already demonstrated excellent motion-compensated prediction performance of

higher-order cubic spline motion fields at low spatial resolutions, like QQCIF and QCIF

(Section 7.5). We now create a ”mixture motion model” by replacing VSBM with splines

at lower layers of the spatially-scalable motion. A small number of spline control nodes can

accurately describe motion field at high scale, resulting in improved motion compensation,

lower motion rate, and better prediction of motion at the next spatial level.

176

At the ”switch” layer,3 the motion prediction scheme is similar to that of VSBM

(Fig. 8·5). The biggest difference is that the predictor ~P from the previous layer l + 1 is

now derived from a spline-based field and may vary over the MB support. We note that, in

contrast to VSBM, the continuous spline model can improve the accuracy of a cross-scale

(low resolution) predictor; instead of a simple scaling of motions vectors, a better predictor

might be available when the continuous spline is re-evaluated at the current resolution.

8.5 Experimental results

We implemented the motion estimation algorithms for mixture motion model within the

framework of the MSRA (Xu et al., 2001; Xiong et al., 2005c) scalable wavelet coder. For

VSBM, we used both spatial and cross-scale motion prediction, 16×16 initial macroblocks

(with block sizes down to 4 × 4), and 1/4-pel motion accuracy at each resolution level.

For spline-based motion estimation, we used only fixed-size control grid (8 × 8) within

each spatial resolution, for the reasons described in Section 7.4.1. Motion from different

temporal resolutions was independently coded; in the future, more efficient joint temporal

motion coding should be addressed to maximize coding gain by reducing the overall motion

overhead.

In the context of the ”2D+t+2D” coding scheme, the new layered motion model (mix-

ture motion model) increases the number of possible parameter combinations in coding

configuration. With several additional axes of freedom in the coding setup available, our

main focus remains the performance of the mixture motion model, which includes estima-

tion of the optimal number of spline-based motion layers at the top of the spatial pyramid

and its comparison (where possible) with the performance of a single-layer HVSBM motion.

In our experiments, we analyze the ”2D+t+2D” coder that supports three spatial

resolutions: CIF, QCIF, and QQCIF. As inputs, we use CIF sequences, Foreman and

Mobile and Calendar. We vary the number of spline-based motion layers (K), and use the

3A switch layer is a spatial layer of motion based on a different model than the next- or previous-scale
layer, e.g., block versus spline and spline versus block.

177

50 100 150 200 250 300
36

37

38

39

40

41

42

43

R[kbps]

P
S

N
R

[d
B

]

"2D+t+2D", K = 0
"2D+t+2D", K = 1

(a)

0 50 100 150 200 250 300
29

30

31

32

33

34

35

36

37

38

R[kbps]

P
S

N
R

[d
B

]

"2D+t+2D", K = 0
"2D+t+2D", K = 1

(b)

Figure 8·6: Comparison of ”2D+t+2D” CIF-encoding/QQCIF-decoding,
15Hz. a) Foreman; b) Mobile and Calendar.

VSBM for the rest of L − K high-resolution levels. In our practical setting with L = 3,

the no-splines case corresponds to K = 0, while the all spline model is defined by K = 3.

For comparisons at the highest (CIF) resolution only, we also use a single-layer HVSBM

motion estimated at the highest resolution.4

Results obtained from spatially-scalable QQCIF decoding of a bitstream produced by

the ”2D+t+2D” encoder are presented in Fig. 8·6. This is, at the same time, the lowest

supported spatial scale of our configuration. There are only two possible choices for motion

at this spatial level: VSBM (corresponding to K = 0) and spline (K = 1). We notice

that the spline-based model outperforms the block-based motion model at this very low

resolution, typically by more than 1dB. It is important to note that this result, at the same

time, completes the comparison of two motion models started in Section 7.5. In Table 7.2,

for example, only the motion prediction performance of VSBM and SP8 motion models

was compared (columns 3 and 5), without taking into account the cost of motion coding.

Only after implementation of both motion estimation algorithms and models in the context

4Due to a non-layered structure of this motion field, comparison with methods using a layered motion
structure is difficult because of the motion overhead issue. A fair comparison would require using some of
the more sophisticated methods for layered-motion generation from the highest-resolution motion, like that
of Wu (Wu, 2005).

178

100 150 200 250 300 350 400 450 500 550
33

34

35

36

37

38

39

40

41

42

43

R[kbps]

P
S

N
R

[d
B

]

"2D+t+2D", K = 0
"2D+t+2D", K = 1
"2D+t+2D", K = 2

(a)

150 200 250 300 350 400 450 500 550
27

28

29

30

31

32

33

34

35

R[kbps]

P
S

N
R

[d
B

]

"2D+t+2D", K = 0
"2D+t+2D", K = 1
"2D+t+2D", K = 2

(b)

Figure 8·7: Comparison of ”2D+t+2D” schemes for CIF-encoding/QCIF-
decoding, 15Hz. a) Foreman; b) Mobile and Calendar.

of a real video coder, as done to obtain results in Fig 8·6, and with the motion bit-rate

included, can we indeed claim that splines (with internodal distance of 8) are outperforming

the VSBM at QQCIF resolution.

A similar comparison at the intermediate QCIF resolution is presented in Fig. 8·7.

At QCIF, the possible options for motion are two-block layers (K = 0), one spline and

one block (K = 1), or two spline layers (K = 2). Depending on the sequence, the best

performance at QCIF resolution is achieved with one or two spline-based motion layers.

Notice that the all-spline model up to QCIF resolution (K = 2) performs best at lower bit-

rates, while the combination of splines and VSBM (K = 1) shows improved performance

at higher bit-rates.

In Fig. 8·8 we visually compare a QCIF decoded frame #33 from Mobile and Calendar

sequence, and draw a similar conclusion. As a reference for the both visual and PSNR

comparison we use the ”2D+t+2D” natural reference, which is an LL spatial subband of

the CIF original video.

Finally, we investigate performance of the mixture motion model in the ”2D+t+2D”

configuration and the effect of the number of spline-based motion layers at full resolution.

We compare high-resolution (CIF) decoding of schemes with K = 0, K = 1, K = 2, or

179

(a) LL subband of original CIF-resolution frame (b) K = 0, PSNR = 27.18dB

(c) K = 1, PSNR = 28.01dB (d) K = 2, PSNR = 28.56dB

Figure 8·8: Comparison of reconstructed frame #33 from Mobile and
Calendar sequence at 192kbps, ”2D+t+2D” CIF-encoding/QCIF-decoding,
15Hz. a) LL subband of CIF-resolution frame; b) K = 0 (VSBM); c) K = 1
(one spline-base motion layer); d) K = 2 (two spline-base motion layers).

180

0 200 400 600 800 1000
29

30

31

32

33

34

35

36

37

38

39

40

R[kbps]

P
S

N
R

[d
B

]

"2D+t+2D", K = 0
"2D+t+2D", K = 1
"2D+t+2D", K = 2
"2D+t+2D", K = 3
"2D+t+2D", single layer
"t+2D"

Figure 8·9: R-D performance as a function of the number of spline-based
motion layers (K) for Foreman sequence, CIF encoding/CIF decoding at
30Hz. The best results for ”2D+t+2D” with layered-motion are obtained
for K = 1.

K = 3 levels of spline-based motion (for K < 3, VSBM is used at higher resolutions). For

both coded sequences, the best results were obtained with K = 1 spline layers (Figs. 8·9 and

8·10); this result adds to an already excellent performance of spline-based model at QQ-

CIF and QCIF resolutions. We can also notice that full-resolution decoding performance

drops when more than one spline motion layers are included at higher spatial resolutions;

clearly, the fixed-size spline model is outperformed by variable-size block matching at high

resolutions.

There are two explanations for the poor CIF-resolution performance of all-spline model.

First, as demonstrated in Section 7.5, variable-size blocks are doing a better job in terms of

motion rendering than fixed-size splines at higher resolutions. More generally, even if the

variable-size concept is introduced in the spline framework in the future, the smooth spatial

model of cubic splines might be too smooth at the highest resolutions and prevent accurate

modeling of discontinuities. Certainly, both of these issues deserve further investigation.

While we would expect results to improve with the use of variable-topology splines, it is

likely that a mixture of spline- and block-based models would still be the most R-D-effective

181

solution, this time possibly with more spline levels included. More generally, future work

should include a larger number of different testing points (at both reduced resolutions and

reduced frame rates), in order to determine the optimal motion layer configuration.

To assess the coding loss due to motion overhead of the layered mixture model, we

also include results of the ”2D+t+2D” scheme using a single-layer high-resolution motion

(lower resolution motion is generated by resolution and amplitude scaling). We observe

that the loss caused by motion overhead rarely exceeds 1 dB (in the case when zero or

one layers of spline-based motion are used), which testifies to the good predictive coding

performance of hierarchical motion model and its relatively small motion overhead.

Finally, to this full resolution comparison, we add a ”t+2D” coding result using a single

spatial layer of HVSBM at the highest spatial resolution.5 The set of motion fields used

is the same as the single-layer motion is the same motion used for a ”single-layer” motion

in ”2D+t+2D” coder. In this case, the difference between the two R-D curves can be seen

as a penalty introduced by the ”2D+t+2D” architecture at the highest spatial resolution.

Clearly, the performance of ”t+2D” coder cannot be matched by any of the ”2D+t+2D”

configurations, due to the aforementioned sub-optimal motion-compensated filtering of low

spatial frequencies; depending on the number of spline-based levels, however, it can be kept

relatively small (under 1.5 dB).

Although performance of the ”2D+t+2D” structure with layered motion suffers at the

highest resolution, this coding loss is often not objectionable (Fig. 8·11) and might be

acceptable if artifact-free reconstruction at lower spatial resolutions is of primary concern.

Naturally, a larger number of supported spatial levels in the ”2D+t+2D” scheme would

further reduce the full-resolution coding gain; some tradeoff and a good balance should be

heuristically determined, based primarily on the coding application.

5For the same resolution encoding/decoding, regardless of the quality of motion estimate and filtering,
”t+2D” is an optimal configuration.

182

200 400 600 800 1000
22

24

26

28

30

32

34

R[kbps]

P
S

N
R

[d
B

]

"2D+t+2D", K = 0
"2D+t+2D", K = 1
"2D+t+2D", K = 2
"2D+t+2D", K = 3
"2D+t+2D", single layer
"t+2D"

Figure 8·10: R-D performance as a function of the number of spline-based
motion layers (K). for Mobile sequence, CIF encoding/CIF decoding at
30Hz. The best results for ”2D+t+2D” with layered-motion are obtained
for K = 1.

8.6 Conclusions

In this chapter, we analyzed the spatial scalability performance of wavelet video coders.

In the context of recently introduced ”2D+t+2D” wavelet video coders, we proposed amd

implemented the a new approach to spatially-scalable estimation of motion and introduced

a mixture motion model combining cubic-spline motion model with block-based motion

model at different supported spatial scales. The improved spatial modeling by cubic splines

can lead to a significantly improved R-D performance of ”2D+t+2D” schemes (in excess of

1 dB), especially at very low resolutions. We experimentally determined that at least one

spline-based motion layer should always be used for the lowest supported spatial resolution;

the particular choice of the number of supported spatial resolutions (number of different

MCTF levels in ”2D+t+2D” structure) and the best number of spline-based motion layers

is application dependent and should be determined heuristically.

183

(a) PSNR = 34.68 dB (b) PSNR = 33.30 dB

Figure 8·11: Comparison of reconstruction at 256kbps, frame #44 from
Foreman sequence, CIF/CIF encoding decoding, 30Hz. a) ”t+2D”; b)
”2D+t+2D” using K = 1 spline motion levels.

184

185

Chapter 9

Conclusions and future directions

This chapter summarizes the contributions of this dissertation and analyzes directions for

future research in this area.

The major inspiration for our work has been a substantial improvement observed over

the last five years in motion compensation performance of sophisticated rate-distortion

optimized block-based motion models. Most often, these motion models are applied in

the context of hybrid (block-transform) video coders. It has been clearly demonstrated

that most of the coding gains observed in the new generation of hybrid video coders (e.g.,

AVC/H.264) are indeed a result of better motion handling. At the same time, a new class of

open-loop non-predictive video coders emerged, under the common name 3D video coders.

This shift in the spatio-temporal transform and in coding paradigm carries the need to

revisit many old and ask some important new questions regarding motion modeling.

The goal of this thesis is to provide answers to these motion-related questions in the

context of 3D video coding. The main issues include: possible motion representation and

compensation in the frequency, rather than spatial, domain; importance of well-defined mo-

tion trajectories and the related motion invertibility problem; issues related to detecting

and using occluded/uncovered frame regions for maximum temporal video decorrelation;

advanced spatial motion modeling, better suited to capturing a true scene motion (espe-

cially when the number of motion-compensating patches per frame is limited); and finally,

efficient and flexible motion representation across a number of desired spatial resolutions.

Before we summarize the main findings of this thesis, we offer a high-level view of our

approach to motion modeling and compare it to the mainstream R-D optimized motion

estimation approach. We would like to make clear that the majority of immediate applica-

186

tions for the theoretical results and algorithms developed over the course of our research are

found in video compression. However, we believe that our approach has an added benefit

over the rate-distortion optimization motion search (like the one found in AVC/H.264).

With an increasing level of sophistication in R-D motion optimization, the AVC/H.264

approach may result in motion fields that have little or no physical meaning,1 and should

be interpreted purely in a video coding context. Most of the time, we formulate the motion

representation and estimation problem in such a way that the true physical motion in a

scene is closely modeled, which might be beneficial not only for the purpose of efficient

temporal decorrelation but also for the more general scene analysis. While it is certainly a

challenging task to match the performance of R-D optimized motion estimation algorithms,

we believe that our approach is much more likely to be reused in various image and video

processing problems (e.g., video segmentation, occlusion detection) and it therefore has a

potential to benefit a wider research community.

There are two major problems addressed in this dissertation - each of our efforts is ori-

ented towards overcoming one of the limiting factors encountered in hybrid video coding

systems. In the context of low-complexity video coding, we proposed and implemented a

3D DCT-based video coder that can successfully compete with more efficient profiles of

the MPEG coding family (MPEG-2 and MPEG-4), sometimes at less than half computa-

tional complexity. The main computational savings are obtained by omitting the expensive

motion compensation step in spatial domain and applying the fast separable 3D DCT trans-

form directly to input video data. The DCT spectrum obtained in this way is, however,

strongly dependent on spatio-temporal motion in the original sequence. For that reason,

we first performed a theoretical analysis of spectral properties of a 3D DCT-transformed

video and developed a closed form solution for the 3D DCT spectrum in the case of uniform

translational motion.

We then proposed to use the resulting characteristic energy footprint for efficient video

1The most obvious example for this is the multi-hypothesis approach, where different regions of the same
frame may be predicted from completely different temporal references, therefore departing from the idea of
motion as a temporally-continuous phenomenon.

187

coding in the DCT domain. As the first step, we introduced a new 3D quantization model.

In order to improve entropy coding of the quantized 3D DCT coefficients, a reduced set of

motion parameters is estimated2 and used for motion-adaptive scanning. This approach

results in our proposed coder outperforming all previously proposed 3D DCT-based coders

by a wide margin (more than 2 dB). It also compares favorably to standard MPEG-2

video coder at complexity reduced by about 25% and closely matches the performance of

MPEG-4 coder at less than half complexity.

To the best of our knowledge, our work on motion analysis for 3D DCT coding provides

the most complete theoretical and practical coverage of the topic. In addition to respectable

coding performance, the importance of this work also lies in the fact that it the first time

it shows theoretically and demonstrates practically why a fixed scan of the transformed

3D DCT coefficients, regardless of the level of its sophistication, cannot provide a viable

solution to efficient 3D DCT video coding. As a number of papers are still being published

on the topic of 3D DCT coding every year, our theoretical analysis showing both the

limits and limitations of the approach might prove beneficial to the wider community of

researchers.

The second part of this thesis deals with some of the most important motion-related

issues within the 3D DWT/MCTF coding framework. A new paradigm of MC temporal

filtering (as opposed to MC prediction used in hybrid schemes), combined with the re-

placement of the block-based DCT with DWT, requires a special consideration for motion

compensation problems. We start by providing a theoretical foundation to the problem of

motion invertibility, central to the interpretation of the popular lifting MCTF. We then

demonstrate experimentally that factors other than motion-compensated prediction error

also play an important role in the coding performance of MCTF-based coders. To quantify

this effect, we introduced an objective measure for motion invertibility error, that can be

used both as an indicator of coding performance and a regularization factor in the motion

estimation process. The existence of motion trajectories (i.e., both forward and backward

2This can be done in either spatio-temporal or DCT domain.

188

motion fields between the same two video frames) opens a door for additional improvement

of both prediction and update lifting steps, based on implicit occlusion/uncovered area de-

tection. The implemented approach of ”occlusion-aware” motion-compensated temporal

filtering can lead to significant (larger than 1 dB) coding gains, and can also facilitate

better spatial scalability performance of wavelet video coders, by preventing filtering over

non-existent motion trajectories.

The last part of this thesis deals with advanced spatial motion modeling that has a po-

tential for driving future state-of-the art video coding systems. Our extension of deformable

mesh motion model includes advanced handling of boundary areas (scene parts leaving or

entering a frame) and results in up to 0.5 dB improvement over the regular mesh. Being

well-matched to physical camera and object motion, mesh-based models, and their hierar-

chical extensions in particular, will remain of interest in the future. We also introduced to

wavelet video coding a novel framework for motion modeling based on hierarchical cubic

splines. We demonstrated that advanced (third-order) motion modeling can significantly

improve motion-compensated prediction and, subsequently, the overall coding performance

over block-based models, especially at very low spatial resolutions. By combining spline-

and block-based motion into a consistent motion framework, we create the so-called ”mix-

ture motion model”. This motion structure is particularly suitable for flexible and layered

motion representation across a broad range of spatial resolutions; high-order motion mod-

eling improves prediction performance at coarsest scales. Combining it with rate-distortion

optimized variable-size block model at finer scales may help in achieving a globally efficient

solution. We demonstrated that even a simple implementation relying on fixed-size spline

motion model can lead to additional coding gain over the block-motion structure.

9.1 Contributions

This thesis investigate motion-related issues in two coding contexts: low-complexity com-

pression (based on 3D DCT) and scalable compression (based on 3D DWT). In the area

of low complexity coding, the main contributions of this dissertation are:

189

• Development of the closed form solution for 3D DCT spectrum of uniformly trans-

lating frame sequence.

• Introduction of new 3D DCT quantization model and motion-adaptive scanning of

transformed coefficients.

• Development of complete end-to-end video coder based on 3D DCT competitive with

MPEG-2 and MPEG-4 hybrid coders at significantly reduced complexity.

The main contributions of this dissertation in the field of scalable wavelet-based video

coding are:

• Theoretical analysis of motion invertibility problem and its quantification through a

novel motion invertibility measure.

• Introduction of novel spline-based motion inversion and classification of existing mo-

tion inversion methods.

• Development of new occlusion-driven temporal filtering based on indirect occluded/exposed

area detection.

• Extension of mesh-based motion model to allow better handling of frame boundaries.

• Introduction of spatially-advanced motion modeling in the form of cubic splines to

scalable video coding.

• Development of a mixture motion model that is suitable for ”2D+t+2D” coding

architecture and which combines spline-based and block-based motion models at

different spatial resolutions.

9.2 Future work

In this section we briefly describe several directions in which our work on low-complexity

and scalable video coding might be extended.

190

1

2 3

54

6

8

9

7

1110

12

1413

15

16 17

(a)

16 171513 14

10 11 127 8 9

54 6

1 2 3

(b)

Figure 9·1: Hierarchical variable-size mesh: (a) Example of hierarchi-
cal partitioning of a triangular patch; by adding new nodes, hierarchical
variable-size mesh model can accurately track motion in the areas of high
motion variability (e.g., patch 15-16-17) while in the areas of smooth mo-
tion larger patches might be used (4-2-6). (b) ”3-tree” (”ternary-tree”)
corresponding to partitioning in (a).

9.2.1 Extension of 3D DCT coder to include more complex motion modeling

Our current implementation of 3D DCT coder models motion as a uniform translation

over the entire GOP. When the length of the GOP is sufficiently small and/or the 3D DCT

volume covers the region with motion that is close to a uniform translation, this approach

is justified. However, for maximal coding gains, a 3D DCT coder should support more

advanced motion trajectories, like temporally-accelerated models of Chahine and Konrad

(Chahine and Konrad, 1995). The development of a close-form solution for the case of

temporally non-uniform motion, and investigation of appropriate scanning order might

additionally improve the performance of our coder.

9.2.2 Extension to variable-size mesh- and spline-based motion models

Impressive coding gains followed the introduction of variable-size blocks into block match-

ing. In order to compete with VSBM and improve its prediction performance, new motion

models should also employ non-uniform (variable-size) node topology.

Both variable-size triangular meshes and quadtree splines could provide a convenient

191

way to use adaptively-sized patches for motion estimation, while maintaining inter-patch

continuity. The practical issues on how to actually determine the topology of patches still

remain open. Ideally, one would like each patch to cover a region of the image within which

a parametric motion model is valid.

One of the many interesting issues related to the ”patch-partitioning” problem is illus-

trated in Fig. 9·1. Similarly to quad-tree partitioning of VSBM, each ”split” step in the

case of triangular mesh produces four new smaller patches, effectively refining the motion

estimate (one example of triangular patch partitioning is given in Fig. 9·1(a)). Unlike quad-

tree, however, the corresponding dependency tree now has three leaves in each branch - we

therefore call it ”3-tree” or ”ternary tree” (Fig. 9·1(b)). Similar structures have been inves-

tigated in computer science as ”B-trees” or ”2-3 trees” (Bayer, 1971; Cormen et al., 2001).

In addition to the problem of optimized patch partitioning, an efficient representation of

these trees would play an important role if motion is to be efficiently coded.

9.2.3 Relaxation of one-to-one mapping constraint for higher-order motion
models

Mesh-based motion estimation implicitly includes a strong regularization required to pre-

serve mesh connectivity (i.e., preserve node topology). This can result in excessively smooth

motion fields and reduced coding performance. In the future, investigation of a possible

relaxation of one-to-one mapping constraint (Section 2.2.2), especially when new nodes in

hierarchical variable-size mesh models are introduced, may lead to improved handling of

occlusion/uncovered areas. Naturally, discontinuities in the motion field created in such

a way should be properly addressed. In addition, new ad-hoc or optimized methods for

motion inversion in such cases should be investigated.

9.2.4 Introduction of fine-granularity motion scalability to the mixture motion
model

Our current implementation of the mixture motion model supports only a single-layer

non-scalable motion representation per spatial-resolution level. In the future, our model

192

could be improved to support layered and rate-scalable motion with more than one motion

layer at each of the spatial resolutions. Although the impact of lossy motion coding on

the reconstruction error is highly nonlinear, promising results were reported (Secker and

Taubman, 2004; Wu, 2005) using scalable motion. In addition, a significant contribution

might be possible in the related rate-distortion optimization selection of the switching layer

(spatial layer at which motion model changes, as detailed in Chapter 8).

9.2.5 Joint coding of motion from different temporal resolutions

In order to maximize the compression performance, video coders based on wavelets rely on

several levels of motion-compensated temporal filtering. Typically 3 to 5 decomposition

levels are used, depending on motion activity in the scene and performance of motion

estimation block (e.g., the number of unconnected pixels can be used to control further

temporal decompositions). The majority of current video encoders independently compress

motion fields from different temporal resolutions, despite an obvious redundance (e.g.,

motion fields from higher frame rates can be combined to predict slower framerate motion).

9.2.6 Further investigation of scalable coding architectures

The two structures analyzed in Chapter 8, ”t+2D” and ”2D+t+2D”, present the two

ends of the spectrum. The ”t+2D” scheme maximizes energy compaction and compression

efficiency while the ”2D+t+2D” structure guarantees ”artifact-free” low-resolution recon-

struction. One of the interesting opportunities for future research might the design of a

system that would balance this tradeoff by providing a solution with close-to-maximum

coding gain and significantly reduced potential for low-resolution visual artifacts, even in

the case when motion model fails. As we discussed in Chapter 8, in the ”t+2D” scheme,

all spatial frequencies are MCT filtered using the high-resolution motion, while in the

”2D+t+2D” scheme each spatial subband is MCT filtered independently. An architec-

ture combining these two approaches might be able to optimize both visual and objective

performance across all spatial scales.

193

9.2.7 Real-time implementation

Significant portions of our motion estimation algorithms (e.g., spline-based motion esti-

mation) were originally developed in MATLAB; for better performance, improved and

optimized port to C is required, and it is mandatory for an integration with the MPEG’s

reference software. Although computational power of modern video devices continues to

rapidly increase, proliferation of portable and low-power devices extends the demand for

fast and efficient coder implementation.

194

References

Ahmed, N., Natarajan, T., and Rao, K. R. (1974). Discrete cosine transform.

IEEE Transactions on Computers, C-23:90–93.

Altunbasak, Y., Mersereau, R., and Patti, A. (2003). A fast parametric motion

estimation algorithm with illumination and lens distortion correction. IEEE

Transactions on Image Processing, 12(4):395–408.

André, T., Cagnazzo, M., Antonini, M., Barlaud, M., Božinović, N., and Konrad,

J. (2004). (N,0) motion-compensated lifting-based wavelet transform. In Pro-

ceedings of the IEEE International Conference on Acoustics, Speech, and Signal

Processing, volume III, pages 121–124.

Andreopoulos, Y., Schaar, M. V. D., Munteanu, A., Barbarien, J., Schelkens, P.,

and Cornelis, J. (2003). Complete-to-overcomplete discrete wavelet transforms

for fully-scalable video coding with MCTF. In Proceedings of SPIE Visual Com-

munications and Image Processing, volume 5150, pages 719–731.

Antonini, M., Barlaud, M., Mathieu, P., and Daubechies, I. (1992). Image coding

using wavelet transform. IEEE Transactions on Image Processing, 1(2):205–

220.

AVC/H.264 (2004). Reference software: http://iphome.hhi.de/suehring/tml/.

Bayer, R. (1971). Binary B-trees for virtual memory. ACM-SIGFIDET Workshop

1971, pages 219–235.

Bjontegaard, G. (2001). Calculation of average PSNR differences between RD-

curves. Document VCEG-M33, VCEG 13th meeting, Austin, TX, USA.

195

196

Božinović, N., Konrad, J., André, T., Antonini, M., and Barlaud, M. (2004).

Motion-compensated lifted wavelet video coding: toward optimal motion/transform

configuration. In Signal Processing XII: Theories and Applications (Proceedings

of the Twelfth European Signal Processing Conference), pages 1975–1978.

Brusewitz, H. (1990). Motion compensation with triangles. In Proceedings of 3rd

International Conference on 64-kbit Coding of Moving Video.

Chahine, M. and Konrad, J. (1995). Estimation and compensation of accelerated

motion for temporal sequence interpolation. Signal Processing, Image Commu-

nication, 7(4–6):503–527.

Chan, Y.-L. and Siu, W.-C. (1997). Variable temporal-length 3-D discrete cosine

transform coding. IEEE Transactions on Image Processing, 6:758–763.

Chen, P. and Woods, J. W. (2002). Improved MC-EZBC with quarter-pixel

motion vectors. MPEG document, MPEG2002/M8366.

Chen, P. and Woods, J. W. (2004). Bidirectional MC-EZBC with lifting imple-

mentation. IEEE Transactions on Circuits and Systems for Video Technology,

14:1183–1194.

Choi, S.-J. and Woods, J. (1999). Motion-compensated 3-D subband coding of

video. IEEE Transactions on Image Processing, 8(2):155–167.

Clark, R. J. (1985). Transform Coding of Images. Academic Press, Orlando,

Florida.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction

to Algorithms, Second Edition. MIT Press and McGraw-Hill.

Daubechies, I. and Sweldens, W. (1998). Factoring wavelet transforms into lifting

steps. Journal of Fourier Analysis and Applications, 4(3):247–269.

197

Dubois, E. (1985). The sampling and reconstruction of time-varying imagery with

application in video systems. Proceedings of the IEEE, 73(4):502–522.

Feng, B., Xu, J., Wu, F., and Yang, S. (2004). Energy distributed update steps

(EDU) in lifting based motion compensated video coding. In Proceedings of

the IEEE International Conference on Image Processing, volume 4, pages 2267–

2270.

Flierl, M. and Girod, B. (2003). Generalized B pictures and the draft H.264/AVC

video-compression standard. IEEE Transactions on Circuits and Systems for

Video Technology, 13:587–597.

Flierl, M. and Girod, B. (2004). Video coding with motion-compensated lifted

wavelet transforms. Signal Processing, Image Communication, 19:561–575.

Flierl, M., Wiegand, T., and Girod, B. (2002). Rate-constrained multihypothesis

prediction for motion compensated video compression. IEEE Transactions on

Circuits and Systems for Video Technology, 12:957–969.

Furht, B., Gustafson, K., Hesong, H., and Marques, O. (2003). An adaptive three-

dimensional DCT compression based on motion analysis. In Proceedings of the

ACM Symposium on Applied Computing, pages 765–768.

Gall, D. L. and Tabatabai, A. B. (1988). Sub-band coding of digital images using

symmetric short kernel filters and arithmetic coding techniques video compres-

sion. In Proceedings of the IEEE International Conference on Acoustics, Speech,

and Signal Processing, pages 761–764.

Girod, B. and Han, S. (2005). Optimal update for motion-compensated lifting.

IEEE Signal Processing Letters, 12:150–153.

Glassner, A. (1995). Principles of Digital Image Synthesis, 1st edition. Morgan

Kaufmann, San Francisco, CA.

198

Golwelkar, A. (2004). Motion compensated temporal filtering and motion vec-

tor coding using longer filters. PhD thesis, Rensselaer Polytechnic Institute,

Electrical, Computer, and Systems Engineering Deptartment.

Golwelkar, A. and Woods, J. (2003). Scalable video compression using longer

motion compensated temporal filters. In Proceedings of SPIE Visual Commu-

nications and Image Processing, volume 5150, pages 1406–1416.

Heeger, D. (1988). Optical flow using spatiotemporal filters. International Jour-

nal of Computer Vision, 1:279–302.

Hsiang, S.-T. and Woods, J. (1999). Invertible three-dimensional analysis/synthesis

system for video coding with half-pixel-accurate motion compensation. In Pro-

ceedings of SPIE Visual Communications and Image Processing, volume 3653,

pages 537–546.

Hsiang, S.-T., Woods, J., and Ohm, J.-R. (2004). Invertible temporal sub-

band/wavelet filter banks with half-pixel-accurate motion compensation. IEEE

Transactions on Image Processing, 13:1018–1028.

Hsiang, S.-T. and Woods, J. W. (2000). Embedded image coding using zeroblocks

of subband/wavelet coefficients and context modeling. In Proceedings of the

IEEE International Symposium on Circuits and Systems, pages 662–665.

Ince, S. and Konrad, J. (2005). Geometry-based estimation of occlusions from

video frame pairs. In Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing, volume II, pages 933–936.

ISO/IEC JTC1 IS 13818-2 (MPEG-2) (1994). Information Technology - Generic

Coding of Moving Pictures and Associated Audio.

Izquierdo, E. (1997). Stereo matching for enhanced telepresence in three-dimensional

videocommunications. IEEE Transactions on Circuits and Systems for Video

199

Technology, 7(4):629–643.

Jacobson, L. and Wechsler, H. (1987). Derivation of optical flow using a spatiotemporal-

frequency approach. Computer Vision, Graphics, and Image Processing, 38:29–

65.

JPEG2000 (2000). Information technology JPEG 2000 image coding system -

part 1: Core coding system. ISO/IEC 15444-1:2000.

Karlsson, G. and Vetterli, M. (1988). Three-dimensional subband coding of video.

In Proceedings of the IEEE International Conference on Acoustics, Speech, and

Signal Processing, volume 2, pages 1100–1103.

Kim, B. J. and Pearlman, W. A. (1997). An embeded wavelet video coder using

three-dimensional set partitioning in hierarchical trees (SPIHT). In Proceedings

IEEE Data Compression Conference, pages 251–260.

Kim, B. J., Xiong, Z., and Pearlman, W. A. (2000). Low bit-rate scalable video

coding with 3-d set partitioning in hierarchical trees (3-D SPIHT). IEEE Trans-

actions on Circuits and Systems for Video Technology, pages 1374–1387.

Konrad, J. (2004). Transversal versus lifting approach to motion-compensated

temporal discrete wavelet transform of image sequences: equivalence and trade-

offs. In Proceedings of SPIE Visual Communications and Image Processing,

volume 5308, pages 452–463.

Lee, G., Song, J., and Park, R.-H. (1997a). Three-dimensional DCT/WT com-

pression using motion vector segmentation for low bit-rate video coding. In Pro-

ceedings of the IEEE International Conference on Image Processing, volume 3,

pages 456–459.

Lee, M., Chan, R., and Adjeroh, D. (1997b). Quantization of 3D-DCT coefficients

and scan order for video compression. Journal of Visual Communication and

200

Image Representation., 8(4):405–422.

Luo, L., Li, J., Li, S., and Zhang, Y.-Q. (2001). Motion compensated lifting

wavelet and its application in video coding. In Proceedings of the IEEE Inter-

national Conference on Multimedia and Expo, pages 481–484.

Luo, L., Wu, F., Li, S., and Zhuang, Z. (2003). Advanced lifting-based motion-

threading (MT) technique for 3D wavelet video coding. In Proceedings of SPIE

Visual Communications and Image Processing, volume 5150, pages 707–718.

Marpe, D. and Cycon, H. (1999). Very low bit-rate video coding using wavelet-

based techniques. IEEE Transactions on Circuits and Systems for Video Tech-

nology, 9:85–94.

Marpe, D., Schwarz, H., and Wiegand, T. (2003). Context-based adaptive bi-

nary arithmetic coding in the H.264/AVC video compression standard. IEEE

Transactions on Circuits and Systems for Video Technology, 13:620–636.

Mehrseresht, N. and Taubman, D. (2006). A flexible structure for fully scalable

motion-compensated 3-D DWT with emphasis on the impact of spatial scalabil-

ity. IEEE Transactions on Image Processing, 15:740–753.

Moulin, P., Krishnamurthy, R., and Woods, J. (1997). Multiscale modeling and

estimation of motion fields for video coding. IEEE Transactions on Image

Processing, 6(12):1606–1620.

Nakaya, Y. and Harashima, H. (1994). Motion compensation based on spatial

transformations. IEEE Transactions on Circuits and Systems for Video Tech-

nology, 4:339–356.

Natarajan, T. and Ahmed, N. (1977). On interframe transform coding. IEEE

Transactions on Communications, 25:1323–1329.

201

Ohm, J. (1994). Three-dimensional subband coding with motion compensation.

IEEE Transactions on Image Processing, 3(5):559–571.

Ohm, J. (2002). Motion-compensated wavelet lifting filters with flexible adap-

tation. In Proceedings of International Workshop on Digital Communications,

pages 113–120.

Oppenheim, A., Schafer, R., and Buck, J. (1999). Discrete-Time Signal Process-

ing. Prentice-Hall.

Pau, G., Tillier, C., and Pesquet-Popescu, B. (2004). Optimization of the predict

operator in lifting-based motion compensated temporal filtering. In Proceedings

of SPIE Visual Communications and Image Processing, volume 5308, pages 712–

720.

Pearson, D. (1975). Transmission and Display of Pictorial Information. John

Wiley & Sons.

Pesquet-Popescu, B. and Bottreau, V. (2001). Three-dimensional lifting schemes

for motion compensated video compression. In Proceedings of the IEEE Interna-

tional Conference on Acoustics, Speech, and Signal Processing, pages 1793–1796.

Pitas, I. (2000). Digital Image Processing Algorithms and Applications. John

Wiley & Sons.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1992). Numerical

recipes in C: The art of scientific computing. Cambridge University Press, 2-nd

edition.

Roes, J., Prat, W., and Robinson, G. (1977). Interframe cosine transform image

coding. IEEE Transactions on Communications, 25:1329–1338.

Rusert, T., Hanke, K., and Wien, M. (2004). Optimization for locally adaptive

MCTF based on 5/3 lifting. In Procedings Picture Coding Symposium.

202

Said, A. and Pearlman, W. (1996). A new, fast, and efficient image codec based

on set partitioning in hierarchical trees. IEEE Transactions on Circuits and

Systems for Video Technology, 6(3):243–250.

Schafer, R., Wiegand, T., and Schwarz, H. (2003). The emerging H.264/AVC

standard. EBU Technical Review.

Secker, A. (2004). Motion-adaptive transforms for highly scalable video compres-

sion. PhD thesis, University of New South Wales, School of Electrical Engi-

neering and Telecommunications.

Secker, A. and Taubman, D. (2001). Motion-compensated highly scalable video

compression using an adaptive 3D wavelet transform based on lifting. In Pro-

ceedings of the IEEE International Conference on Image Processing, pages 1029–

1032.

Secker, A. and Taubman, D. (2003). Lifting-based invertible motion adaptive

transform (LIMAT) framework for highly scalable video compression. IEEE

Transactions on Image Processing, 12(12):1530–1542.

Secker, A. and Taubman, D. (2004). Highly scalable video compression with

scalable motion coding. IEEE Transactions on Image Processing, 13:1029–1041.

Shapiro, J. (1993). Embedded image coding using zerotrees of wavelet coefficients.

IEEE Transactions on Signal Processing, 41(12):3445–3462.

Sweldens, W. (1996). The lifting scheme: A custom-design construction of

biorthogonal wavelets. Applied and Computational Harmonic Analysis, 3(2):186–

200.

Szeliski, R. and Coughlan, I. (1994a). Hierarchical spline-based image registra-

tion. In IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, pages 194–201.

203

Szeliski, R. and Coughlan, J. (1994b). Spline-based image registration. Technical

Report CRL 94/1, Digital Equipment Corporation, Cambridge Research Lab.

Szeliski, R. and Shum, H.-Y. (1996). Motion estimation with quadtree splines.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(12):1199–

1210.

Taubman, D. (2000). High performance scalable image compression with EBCOT.

IEEE Transactions on Image Processing, 9:1158–1170.

Taubman, D. and Zakhor, A. (1994). Multirate 3-D subband coding of video.

IEEE Transactions on Image Processing, 3(5):572–588.

Taubman, D. S. and Marcellin, M. W. (2002). JPEG2000, Image compression

fundamental, standards and practice. Kluwer academic Publishers Group.

Thomas, G. (1987). Television motion measurement for DATV and other appli-

cations. Technical Report 11, BBC Research Deptartment.

Tillier, C. and Pesquet-Popescu, B. (2004). A new 3-band MCTF scheme for

scalable video coding. Proc. of Picture Coding Symposium (PCS).

Tillier, C., Pesquet-Popescu, B., and van der Schaar, M. (2004). Improved update

operators for lifting-based motion-compensated temporal filtering. IEEE Signal

Processing Letters, 12:146–149.

Toklu, C., Erdem, A., Sezan, M., and Tekalp, A. (1996). Tracking motion and

intensity variations using hierarchical 2-D mesh modeling for synthetic object

transfiguration. Graphical Models and Image Processing, 58:553–573.

Unser, M. (1999). Splines: A perfect fit for signal and image processing. IEEE

Signal Processing Magazine, 16(6):22–38.

204

Valentin, V., Cagnazzo, M., Antonini, M., and Barlaud, M. (2003). Scalable

context-based motion vector coding for video compression. In IEEE Picture

Coding Symposium, pages 63–68.

Vázquez, C., Dubois, E., and Konrad, J. (2005). Reconstruction of irregularly-

sampled images in spline spaces. IEEE Transactions on Image Processing,

14(6):713–725.

Vetterli, M. and Kovacevic, J. (1995). Wavelets and subband coding. Prentice

Hall, Englewood Cliffs, NJ, USA.

Wang, A., Xiong, Z., Chou, P., and Mehrotra, S. (1999). Three-dimensional

wavelet coding of video with global motion compensation. In Proceedings Data

Compression Conference, pages 404–413.

Wang, Y., Ostermann, J., and Zhang, Y. (2002). Video Processing and Commu-

nications. Prentice Hall.

Wang, Z. and Hunt, B. (1985). The discrete W transform. Applied Mathematics

and Computation, 16:19–48.

Westwater, R. and Furht, B. (1996). Three-dimensional dct video compression

technique based on adaptive quantizers. In Second IEEE International Confer-

ence on Engineering of Complex Computer Systems, Montreal, Canada.

Wiegand, T., Sullivan, G. J., Bjontegaard, G., and Luthra, A. (2003). Overview

of the H.264/AVC video coding standard. IEEE Transactions on Circuits and

Systems for Video Technology, 13(7):560–576.

Wu, Y. (2005). Fully scalable subband/wavelet video coding system. PhD thesis,

Rensselaer Polytechnic Institute, Electrical, Computer, and Systems Engineer-

ing Deptartment.

205

Xiong, R., Wu, F., Xu, J., Li, S., and Zhang, Y.-Q. (2004). Barbell lifting

wavelet transform for highly scalable video coding. In Proceedings Picture

Coding Symposium.

Xiong, R., Xu, J., Wu, F., and Li, S. (2005a). Optimal subband rate allocation

for spatial scalability in 3D wavelet video coding with motion aligned temporal

filtering. In Proceedings of SPIE Visual Communications and Image Processing,

volume 5960, pages 381–392.

Xiong, R., Xu, J., Wu, F., and Li, S. (2005b). Studies on spatial scalable frame-

works for motion aligned 3D wavelet video coding. In Proceedings of SPIE

Visual Communications and Image Processing, volume 5960, pages 189–200.

Xiong, R. Q., Ji, X. Y., Zhang, D. D., Xu, J. Z., Pau, G., Trocan, M., and Bottreau,

V. (2005c). Vidwav wavelet video coding specifications. (ISO/IEC) ISO/IEC

JTC1/SC29/WG11 Document M12339.

Xu, J., abd S. Li, Z. X., and Zhang, Y.-Q. (2002). Memory-constrained 3-D

wavelet transform for video coding without boundary effects. IEEE Transac-

tions on Circuits and Systems for Video Technology, pages 812–818.

Xu, J., Xiong, Z., Li, S., and Zhang, Y.-Q. (2001). Three-dimensional embedded

subband coding with optimized truncation (3-D ESCOT). Applied and Compu-

tational Harmonic Analysis: Special Issue on Wavelet Applications, 10.

Yeo, B. and Liu, B. (1995). Volume rendering of DCT-based compressed 3D

scalar data. IEEE Transactions On Visualization And Computer Graphics,

1(1):29–43.

Zhang, Y.-Q. and Zafar, S. (1992). Motion-compensated wavelet transform coding

for color video compression. IEEE Transactions on Circuits and Systems for

Video Technology, 2:285–296.

206

Zhao, W. (2004). Motion compensation in temporal discrete wavelet trans-

forms. Technical Report 2004-04, Boston University, Department of Electrical

and Computer Engineering.

207

CURRICULUM VITAE

Nikola Božinović

39 Bay State Rd., Apt. 4F, Boston, MA 02215

nikolab@bu.edu

http://iss.bu.edu/nikolab

Vita

Birth year: 1974.

Birthplace: Nǐs, Serbia, Yugoslavia.

Education

Current Ph.D. in Electrical and Computer Engineering, Boston

University (GPA: 4.0/4.0).

Advisor: Prof. Janusz Konrad; expected graduation: May 2006.

2001 M.S. in Electrical and Computer Engineering, Boston

University (GPA: 3.97/4.00).

2000 Dipl.Ing. in Electrical Engineering, School of Electrical

Engineering, University of Nǐs, Serbia, Yugoslavia

(GPA: 9.5/10.0).

Research and work experience

May 2001 - Research Assistant, Visual Information Processing Laboratory,

Department of Electrical and Computer Engineering, Boston

University. Advisor Prof. Janusz Konrad.

208

Summer 2005 Visiting Student, Microsoft Research Asia, Beijing.

Host Dr. Feng Wu.

Summer 2003, 2004 Visiting Researcher, University of Nice, Sophia Antipolis,

France. Host Prof. Michael Barlaud.

1998 - 2000 Head of Astronomy Department, Petnica Science Center,

Serbia, Yugoslavia.

Fall 1997 System Engineer, DPO, Muak Lek, Thailand

Honors and Awards

2005 National Science Foundation, EAPSI Summer Fellowship

2002 – 2004 Studenica Foundation/DNCT Fellowship

2000 Dean’s Fellowship,College of Engineering, Boston University

1995 – 1998 City of Nǐs Academic Fellowship, Serbia, Yugoslavia.

1994 Ranked 1st out of more than 3,000 at the Joint Entrance Exam,

University of Belgrade

Public Service and Leadership

2000 – 2002 Treasurer, Student Association

of Graduate Engineers (SAGE), Boston University

1998 – 1999 President of the Student Union, University of Nǐs

1996 – 1997 Leader and spokesperson,

Student protest against S. Milošević, Serbia

1995 – 1998 Founder and first officer, Astronomical Society ”Alpha”, Nis

209

Publications

Journal Papers

[1] N. Božinović and J. Konrad. Motion analysis in 3D DCT domain and its

application to video coding. Signal Processing, Image Communication, pages

510–528, Jul 2005.

Conference Papers

[1] N. Božinović and J. Konrad. Modeling motion for spatial scalability. Pro-

ceedings IEEE International Conference on Accoustic, Speech, and Signal Processing,

May 2006.

[2] N. Božinović and J. Konrad. On the importance of motion invertibility in

MCTF/DWT video coding. Proceedings IEEE International Conference on Ac-

coustic, Speech, and Signal Processing, vol. II, pp. 49-52, March 2005.

[3] J. Konrad and N. Božinović. Importance of motion in motion-compensated

temporal discrete wavelet transforms. Proceedings of SPIE Visual Communi-

cations and Image Processing, vol. 5685, pp. 354-365, Jan. 2005.

[4] N. Božinović, J. Konrad, T. Andrè, M. Antonini, and M. Barlaud. Motion-

compensated lifted wavelet video coding: toward optimal mo-

tion/transform configuration. in Signal Process. XII: Theories and Applica-

tions (Proceedings Twelfth European Signal Processing Conference, pp 1975-1978, Sep.

2004.

[5] N. Božinović and J. Konrad. Mesh-based motion models for wavelet video

coding. Proceedings IEEE International Conference on Accoustic, Speech, and Signal

Processing, vol. III, pp. 141-144, May 2004.

210

[6] T. Andrè, M. Cagnazzo, M. Antonini, M. Barlaud, N. Božinović, and J. Konrad.

(N,0) motion-compensated lifting-based wavelet transform. Proceedings

IEEE International Conference on Accoustic, Speech, and Signal Processing, vol. III,

pp. 121-124, May 2004.

[7] N. Božinović and J. Konrad. Scan order and quantization for 3D-DCT coding.

Proceedings of SPIE Visual Communications and Image Processing, vol. 5150, pp.

1204-1215, July 2003.

[8] J. Konrad and N. Božinović. Interpretation of uniform translational image

motion: DCT versus FT. Proceedings of IEEE International Conference on Image

Processing, vol. 2, pp. 281-284, Sept. 2002.

Selected Invited Talks

Mar. 2006 Ricoh Innovations, Menlo Park (California Research Center)

Nov. 2005 Mitsubishi Electric Research Labs, Cambridge (MERL Technology Lab)

Aug. 2005 Microsoft Research Asia, Beijing (Internet Media Group)

Jan. 2005 UC Berkeley, (Berkeley Audio Visual Signal Processing and Communi-

cation Systems)

Sep. 2004 Rensselaer Polytechnic Institute, Troy, (Center for Next Generation Video)

May 2004 Stanford University, (Information Systems Laboratory)

July 2003 EPFL, Lausanne, Switzerland (Signal Processing Institute)

June 2003 University of Nice, France (Team CReATIVe)

