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PEOPLE COUNTING USING AN OVERHEAD FISHEYE

CAMERA

SHENGYE LI

ABSTRACT

As climate change concerns grow, the reduction of energy consumption is seen as one

of many potential solutions. In the US, a considerable amount of energy is wasted

in commercial buildings due to sub-optimal heating, ventilation and air conditioning

that operate with no knowledge of the occupancy level in various rooms and open

areas. In this thesis, I develop an approach to passive occupancy estimation that

does not require occupants to carry any type of beacon, but instead uses an overhead

camera with fisheye lens (360 by 180 degree field of view). The difficulty with fisheye

images is that occupants may appear not only in the upright position, but also upside-

down, horizontally and diagonally, and thus algorithms developed for typical side-

mounted, standard-lens cameras tend to fail. As the top-performing people detection

algorithms today use deep learning, a logical step would be to develop and train a

new neural-network model. However, there exist no large fisheye-image datasets with

person annotations to facilitate training a new model. Therefore, I developed two

people-counting methods that leverage YOLO (version 3), a state-of-the-art object

detection method trained on standard datasets. In one approach, YOLO is applied

to 24 rotated and highly-overlapping windows, and the results are post-processed to

produce a people count. In the other approach, regions of interest are first extracted

via background subtraction and only windows that include such regions are supplied

to YOLO and post-processed. I carried out extensive experimental evaluation of both

algorithms and showed their superior performance compared to a benchmark method.
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Chapter 1

Introduction

As climate change concerns drive both social and political movements in many coun-

tries, reduction of energy consumption is one of many solutions under consideration.

In the United States, among many energy uses, heating and cooling of buildings is one

of the most wasteful. The US Department of Energy estimates that a considerable

amount of energy is wasted in commercial buildings due to sub-optimal heating, ven-

tilation and air conditioning (HVAC). In order to optimally control HVAC equipment,

and therefore save energy, a building automation system (BAS) must be supplied with

occupancy level (number of people) in all rooms and open areas. Equipped with this

information, BAS can provide optimal amount of air wherever and whenever needed,

without unnecessary waste.

In addition to optimal HVAC control, occupancy information can be of substan-

tial value in space management, hospitality industry, etc. For example, in order to

optimize office use, especially in high-cost real-estate markets, companies would like

to know how well space is utilized in a building they rent (How often are conference

rooms in use? Can their number be reduced to save on rent?). In hospitality industry

(e.g., hotels), management would like to know which and when rooms are unoccupied.

Therefore, indoor space occupancy estimation has become an active topic of re-

search. At a high level, there are two types of approaches to occupancy sensing:

active methods and passive methods. Active methods require that each potential oc-

cupant carry a “beacon”, a portable device that communicates with a data collection
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unit mounted nearby. This mechanism necessitates the use of beacons which may be

invasive, inconvenient, unreliable (when one forgets) and costly to implement, thus

making this approach less attractive. As for passive methods, a common solution

are PIR (passive infra-red) sensors mounted overhead, but they can only provide a

binary occupancy estimate (occupied or unoccupied). Therefore, even if one person

enters a conference room with maximum occupancy of 20 people, the HVAC system

will deliver maximum airflow. While energy savings will be realized when the room is

empty, no energy will be saved when the room is partially occupied. Clearly, a more

fine-grained occupancy estimate is needed to realize further energy savings. In other

words, BAS must know the number of people in a space and based on the ratio of

this number to the maximum number of people allowed, adjust the airflow.

Reliable counting of people in a room by passive approach requires a sufficiently

wide field of view and sufficiently high resolution of a sensing device. One such

common device these days is surveillance camera, often seen at building entrances,

in elevators, hallways, etc. While most surveillance cameras are side-mounted (at

sufficient height in order to cover a large area) and are equipped with a lens that

typically delivers a 30-90◦ field of view (FOV), they are not optimal for indoor appli-

cations as several such cameras may be needed to fully cover a room. An alternative

are cameras with fisheye lens, sometimes also called panoramic or 360◦ cameras, for

the fisheye lens typically provides a 360◦ horizontal by 180◦ vertical field of view.

When mounted overhead, such cameras can provide a full view of the room while

largely avoiding occlusions. This is very difficult and costly to accomplish with side-

mounted, standard-lens cameras (several cameras are needed along with substantial

post-processing to eliminate double counting of people). A single fisheye camera is

often sufficient in such scenarios.

However, a fisheye camera mounted overhead captures human body in various
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orientations depending where the person stands in the room. The body can be seen

from above (only head and shoulders of a person standing directly under the camera)

or in upright, upside-down, horizontal or diagonal orientation. This impedes a direct

application of standard people detection algorithms developed for the usual upright

pose. An additional complication is the fact that image captured by a fisheye cam-

era exhibits significant geometric distortions that increase close to the periphery of

camera’s FOV.

Many people detection algorithms, both model-based and data-driven, have been

developed for side-mounted, standard-lens cameras. Among data-driven methods,

those leveraging the generalization capacity of deep convolutional neural networks

(CNNs) have been particularly successful. Some of these methods will be reviewed

in Chapter 2. The success of CNNs in people detection has inspired me to adopt

them to images captured by overhead, fisheye cameras. However, this adoption is

not straightforward and I will develop two approaches that leverage state-of-the-art

deep-learning object detection algorithms. In one approach, called “activity-blind

method”, I apply a deep-learning object detection algorithm to a sequence of rotating,

partially-overlapping windows extracted from a fisheye image. Since these windows

partially overlap, multiple detections may be associated with one person. In order to

combat this, I developed a post-processing algorithm that fuses redundant detections

and performs the final count. In another approach, called “activity-aware method”,

I first detect regions of interest (ROIs) to which the same deep learning algorithm is

applied. I detect ROIs by means of background subtraction, a computational algo-

rithm that detects changes in the field of view of the camera. This approach attempts

to detect people only in areas that undergo change without wasting computational

resources on areas that are unlikely to contain people (no change).

This thesis is organized as follows. Chapter 2 reviews the current state of the
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art. In Chapter 3, I present the activity-blind method for people detection based on

a state-of-the-art deep learning object detection algorithm. In Chapter 4, I describe

ROI detection and the activity-aware algorithm. In Chapter 5, I show a wide range

of experimental results including a comparison between the activity-blind method,

activity-aware method, and a benchmark method. Finally, I draw conclusions in

Chapter 6.
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Chapter 2

Relevant Work

There exists vast literature in the area of people detection from a single RGB image,

the focus of this thesis. I will not consider people detection from depth images, stereo

images or video. First, I will briefly review recent, top-performing people detection

methods from an RGB image captured by a side-mounted, standard-lens camera

(pinhole projection model). Then, I will describe some very recent methods applied

to fisheye images captured by an overhead camera.

2.1 People detection from side-mounted, standard-lens cam-

eras

The literature is vast in this area, so I will concentrate on 3 methods from the last

decade or so that have been dominant in terms of their popularity and performance.

Arguably, the most often cited person-detection algorithm is the Histogram of

Gradients (HOG) employed in conjunction with Support Vector Machine (SVM) clas-

sifier (Dalal and Triggs, 2005). This method combines model-based and data-driven

approaches. The features selected to characterize human-body shape are hand-crafted

and use local orientations of spatial gradients in an image. Typically, gradient orien-

tations are quantized to 9 angles (including one bin for small-norm gradients), and

then gradient norms, instead of counts, are used to construct a weighted histogram

of gradient orientations. After various normalizations, a feature vector of length 36

is associated with each 16×16 block of an image. For an image with N such blocks
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an N × 36-length vector results. Such feature vectors are then used for training a

linear SVM classifier. This approach has been very successful in people detection

from side-mounted cameras.

Another very successful and fast pedestrian detector is based on aggregate chan-

nel features (ACF) (Dollár et al., 2014). It uses 6 channels of the HOG descriptor

in combination with 3 LUV luminance/color channels and a channel of normalized

gradient magnitudes. These channels are used to construct a feature pyramid with

7 or 8 scales per octave. This pyramid is used as feature vector for training an Ad-

aBoost classifier (Friedman et al., 2000). The method is very fast and allows real-time

pedestrian detection. ACF counts among state-of-art people detection methods using

hand-crafted features.

Among recent, fully data-driven approaches (no hand-crafted features), convo-

lutional neural networks (CNNs) have been most successful for their generalization

capacity. While several methods of this type have been developed in the last few

years, including R-CNN and Faster R-CNN, the method that has perhaps attracted

most attention is You Only Look Once (YOLO) (Redmon et al., 2016). This is a

deep CNN architecture that allows object detection with excellent classification per-

formance, and whose newer version (e.g., YOLO version 3 or YOLO v3) does it in

almost real time. YOLO has inspired my work on people detection from overhead

fisheye cameras.

2.2 People detection from overhead, fisheye-lens cameras

People detection from top-view, 360◦×180◦ cameras is a much less researched area

with the vast majority of papers being published in the last few years. While a

side-mounted, standard-lens camera usually captures people in the upright pose, an

overhead, fisheye camera records people in a wide range of poses (upright, upside-
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down, horizontal, diagonal or top-view head and shoulders) depending where they

are in the field of view of the camera.

In a very recent method, Wang et al. proposed to model people as upright cylin-

ders and derived a series of elliptic detection masks whose size diminishes with the

distance from image center (Wang et al., 2007). They applied four SVM classifiers

to features derived from each detection mask: HOG feature vector and LBP (local

binary pattern) feature vector both from full-size masks as well as HOG and LBP

features from half-size masks. Features of half-size masks are computed from the top

portion of the full mask. They proposed a simple scene (room) model to help with

occlusion handling. The classifiers are trained separately for each concentric layer

of same-size masks using manually-extracted masks with people. During detection,

they extracted elliptical detection masks in each concentric layer, and derived the

visibility of masks from the scene model. The final result is a linear combination of

scores from two pairs of SVMs (full- and half-size masks) for HOG and LBP features.

The method has been tested and quantitatively evaluated in the context of people

tracking on a private dataset of several 2-minute 480×480-pixel videos recorded in a

5m×14m room producing 50-93% MOTA (multiple object tracking accuracy) score.

In another method using HOG features, Chiang and Wang proposed to rotate a

fisheye image in 4◦ steps, and extract a long and narrow window (Chiang and Wang,

2014). The window has height equal to half image height and extends from image

center to the top boundary covering image area where people appear upright. The

window’s width is much smaller than its height; it is wide enough to capture a person

but small enough to minimally overlap windows extracted after ±4◦ image rotations.

From this narrow but tall window, they extracted detection windows of various sizes

(to capture a range of body sizes). Subsequently, they computed HOG features from

each detection window and applied Gaussian-kernel SVM to detect a person. Since
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multiple detections of the same person are possible due to window overlap, Chiang and

Wang developed a merging procedure based on SVM scores to eliminate overlapping

detections. They have manually extracted and labeled 583 windows with people and

automatically captured 1,166 windows with background (from frames void of people).

They used a private dataset consisting of a 2.5-hour 384×384-pixel video of a dance

game and demonstrated performance of 98.3% correct classification rate (CCR) on

this dataset. This method was an inspiration for me as I followed a similar strategy

of extracting rotating windows but with a different classification method and merging

procedure.

A Bayesian approach to people detection from fisheye cameras was proposed by

Saito et al.; this approach leverages a maximum a posteriori probability (MAP) model

and its subsequent maximization (Saito et al., 2010). In particular, upright human

body and top-view head-and-shoulders silhouettes are modeled by means of proba-

bilistic shape features as a function of distance from the camera. They used principal

component analysis (PCA) and kernel ridge regression (KRR) to build a template

model for human body and used it in MAP formulation. The proposed method was

tested on a private detaset composed of 320 overhead, fisheye 640×480-pixel images

of a T-shaped hallway, and delivered 86–91% CCR.

In contrast to training new classifiers with top-view, fisheye images, Krams and

Kiryati proposed a method that uses ACF trained on side-view, standard-lens im-

ages (Krams and Kiryati, 2017). However, the method does not dewarp fisheye im-

ages into a panorama image, but instead dewarps features extracted from the fisheye

image. This is important since image dewarping uses non-uniform spatial interpola-

tion thus introducing spatially-variant smoothing in the dewarped image. As features

used for detecting humans usually apply spatial derivative operators (e.g., to detect

edges), this spatially-variant smoothing is detrimental to derivative operator’s local-
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ization accuracy. Extracting features in the fisheye image and dewarping them to

the panorama image avoids this issue. Krams and Kiryati also proposed a method

to optimize the feature dewarping model with the explicit goal of maximizing people

detection performance. They used an overhead, fisheye-view dataset called BOMNI

(Demirz et al., 2012) to test their method and obtained about 0.3 miss rate at 0.1

false positive rate per image.

Recently, CNN-based people detection methods have been proposed for overhead,

fisheye images. In one method, YOLO was modified and directly trained on full fish-

eye images (Nguyen et al., 2016). Unlike original YOLO working on RGB images, the

authors used only grayscale channel but augmented it with foreground/background

segmentation image obtained using adaptive Gaussian mixture model (Stauffer and

Grimson, 1999). With a simplified network structure to compensate for the compu-

tational cost of foreground/background segmentation, the method can reach speeds

needed for real-time people detection. The method was trained on one sequence from

the BOMNI dataset and tested on two other sequences from the same dataset as

well as on a private overhead, fisheye 704×576-pixel video. The method achieved

96-99% precision at 96-98% recall when trained on 2,000 frames from several videos

and tested on other frames from the same videos. However, when tested on videos

with different background or number of people, the method delivered only 50-90%

precision at 48-90% recall.

Another YOLO-based people detection method was proposed by Seidel et al. The

approach leverages YOLO trained on side-view, perspective images to detect people

in fisheye images, without specific training on such images (Seidel et al., 2018). The

authors proposed to extract highly-overlapping windows in order to avoid misses,

and to dewarp those windows by means of an omnidirectional-to-perspective image

mapping (local-area projection via a perspective model). The dewarped window was
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then fed into standard YOLO trained on perspective images. In a post-processing

step, mutiple detections of the same person (due to window overlap) were fused by

means of several variants of non-maximum suppression. The method was evaluated

quantitatively on the PIROPO perspective and omnidirectional 600×600-pixel image

dataset (del Blanco and Carballeira, 2016) and a private dataset of 1,680×1,680-pixel

overhead, fisheye images. The average precision of the best-performing variant of the

proposed method (non-maximum suppression with Gaussian smoothing) was 64.6%

for the PIROPO dataset and 77.6% for the private dataset.
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Chapter 3

Activity-Blind Application of YOLO

3.1 System overview

The success of CNNs in object detection from images captured by standard cameras

(pinhole projection, perspective camera model) typically held at human-head height,

has inspired me to consider CNNs for people detection from overhead cameras with

fisheye lens. However, as stated earlier, the application of CNNs in this scenario

is not straightforward because people in top-view images may appear in different

orientations. People in image center occupy a large area and appear in the shape of an

ellipsis; only head and shoulders are visible. People at field-of-view periphery appear

smaller than those close to image center but their appearance is similar to those seen in

images obtained by standard, side-mounted cameras, although the orientation varies.

The body pose, orientation and size in other image areas change gradually. While

one could apply CNNs trained on standard-view, perspective images, the performance

would suffer. On the other hand, training a new network would require a vast number

of overhead, fisheye images with carefully annotated human body locations.

It is easy to observe that a standing person in an image captured by a side-

mounted, standard-lens camera is typically vertical to the ground. A corresponding

observation can be made about an image captured by overhead, fisheye-lens camera

– people standing upright are always aligned with the direction of FOV’s radius (line

through image center). Therefore, it is safe to say that the appearance of a standing

person in the top-center portion of a fisheye image (radius aligned with the vertical
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axis) is similar to that in side-view, perspective images (Figure 3·1). This observation

leads to the first method I am proposing. The main idea is to extract a rectangular

window, that I shall call focus window, at the top-center of an overhead, fisheye

image (Figure 3·3(a)) and apply a people detector to this window. In the next step, I

propose to rotate the image by a small angle, extract the same window and apply the

detector to the window with new data. Subsequent rotations make sure that windows

are extracted from all parts of the image (Figure 3·3(b)). While it is the image that is

being rotated, this is equivalent to rotating the focus window; I will refer to this as a

rotated window. It is worth noting that since the FOV of a fisheye camera is circular,

unlike in the case of perspective cameras with rectangular FOV, image rotation does

not cause difficulties due to image locations moving outside of the rectangular image

domain or outside locations entering into the domain of the image.

(a) (b)

Figure 3·1: (a) People in an image captured by side-mounted,
standard-lens camera are vertical to the ground. (b) People in an image
captured by overhead, fisheye-lens camera are aligned with the direction
of FOV’s radius.
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Since the people detector must be applied many, many times, a fast CNN detection

method with excellent performance is essential. Given this constraint, I have opted

for YOLO v3, the fastest CNN object detection method to date. This method is

based on YOLO v1 (Redmon et al., 2016) and YOLO v2 (Redmon and Farhadi,

2016) and differs primarily in the implementation of various enhancements to make it

faster and more precise. Since YOLO detects a wide range of objects, the first post-

processing step must retain only those detections (bounding boxes) that correspond to

a person with high confidence. Furthermore, weaker detections (YOLO may produce

multiple overlapping detections) need to be eliminated. Also, detections close to

rotated window’s boundary are eliminated for they may be unreliable (a person may

be only partially visible). Since the previous steps are implemented after the image

has been rotated, the final detections need to be mapped back to the original location

of the person in the fisheye image. This mapping may result in multiple bounding

boxes being associated with one person since the rotated windows overlap. Again,

multiple detections of the same person need to be paired down to a single detection.

The final output of the algorithm is the total people count in an image. A block

diagram of the proposed method is shown in Figure 3·2; each block in this diagram

will be detailed in the remainder of this chapter.

3.2 Window selection and image rotation

The shape and size of focus window to which a people detector will be applied are

two important factors to consider. In the case of images captured by an overhead,

fisheye camera, the FOV is circular. Therefore, a natural approach would be to

extract windows in the shape of rings, so that human bodies are of similar size in

each ring window, or in the shape of a wedge, so that human bodies at the same

orientation appear in one wedge window. However, a ring-shaped window is not a
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Figure 3·2: Block diagram of the activity-blind method that applies
YOLO v3 to 24 rotated windows. Blocks within the blue-shaded rect-
angle are common to both methods: activity-blind method discussed in
this chapter and activity-aware method presented in Chapter 4, while
those within the beige-colored rectangle are unique to the activity-blind
method.

good choice since standing people will appear in many different orientations depending

where they are located in camera’s FOV, thus making it more difficult for a standard

people detector to work reliably. As for wedge-shaped windows, they are appropriate

for people close to or at FOV periphery because body shapes look similar to those

captured by a side-mounted, perspective camera. However, bodies in the central

part of the image can be only partially captured due to window’s tapered shape.

In contrast, a rectangular window is free of these disadvantages and will be used

throughout this thesis.

Unlike methods discussed in Chapter 2, that use HOG features and therefore

require that a detection window contain one person occupying majority of the window,

the YOLO approach was developed for object detection in full-size images. This

facilitates extraction of large focus windows after image rotation. Since the Axis

M3057 PLVE fisheye-lens camera, that I am using in this project, is equipped with

a 6 Megapixel CMOS sensor that effectively records 2,048×2,048-pixel frames with a

circular field of view, I selected a window with height of 1,300 pixels and width of 800

pixels centered horizontally and with window’s top aligned with the upper boundary
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of the image (Figure 3·3(a)). This window placement captures human bodies in an

upright or almost upright position in the upper half of the window.

As for image rotation, a small angular increment would result in extraction of

many focus windows with significant overlap and the need for many applications of a

people detector. In order to keep the overall complexity reasonable, I selected a 15◦

angular step, thus resulting in 24 rotations and extraction of 24 focus windows from

each captured frame. Figure 3·3(b) shows 8 rotated focus windows, that is effective

rectangular areas extracted after each image rotation.

(a) (b)

Figure 3·3: (a) Placement of the 1,300×800-pixel focus window whose
RGB values are used by people detector. (b) Rotated focus windows,
that is effective rectangular areas that are captured after each image
rotation.

3.3 People detection

The YOLO v3 algorithm, that I apply to every focus window, is a Fully Convolutional

Network (FCN) consisting of 75 convolutional layers plus upsampling layers and skip-
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connection layers. YOLO v3 produces predictions with a stride of 32, 16, and 8, that

can be considered a division of the input image into blocks of size 32×32, 16×16, and

8×8, respectively. Each block produces 3 predictions. Each prediction results in a

vector of size 85 that contains coordinates of the center and the size of the bounding

box, objectness score, and class scores for 80 class items included in the COCO

dataset (Lin et al., 2014) on which the model was trained. The first five elements

(horizontal and vertical coordinates of the center, horizontal and vertical size of the

bounding box, and objectness score), are obtained through sigmoid function, and the

80 class scores are obtained from the softmax function. For an image of size H ×W ,

YOLO v3 produces 3×H ×W × ( 1
322

+ 1
162

+ 1
82

) predictions in total.

3.4 Post-processing of detections in the focus window

Since YOLO v3 recognizes up to 80 types of objects, a mechanism is needed to reject

non-people detections. Also, by its very nature YOLO v3 may detect a person with

several bounding boxes that significantly overlap each other within a single focus

window. In order to avoid over-counting people, only one representative among the

overlapping detections should be retained. Finally, people close to the left, right or

bottom boundary of the focus window may not be fully visible resulting in unlikely

bounding-box shape and/or size. This will deteriorate the performance of people

counting since methods to be proposed in Section 3.6 highly depend on the assumption

that bounding boxes for the same person have similar location and size, despite being

detected in different focus windows. Thus, detections close to the left, right or bottom

focus window boundary need to be suppressed. Detections close to the top of the

focus window correspond to a fully-visible body (unless occluded by furniture or

other objects) by the very nature of fisheye lens properties.

The three objectives discussed above are accomplished by post-processing the raw
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detections in 3 steps shown in the block diagram (Figure 3·2) and described below.

1. Confidence Thresholding: First, only detections with “objectness” score

(confidence level on the scale of 0 to 1 that the detection is a true object from

one of the 80 classes) above threshold γ = 0.3 are retained. Then, out of the

retained object detections only those are kept whose person-class score is the

highest among all class scores.

2. Non-Maximum Suppression (NMS): All people detections after confidence

thresholding are sorted in descending order according to their person-class score.

Then, all detections in the sorted list that have a high bounding-box overlap

with the detection at the top of the list are suppressed. A high degree of overlap

is declared if the intersection over union (IOU) between two bounding boxes:

IOU =
area of intersection of two bounding boxes

area of union of the same bounding boxes
(3.1)

is above threshold ρ = 0.4. Details of NMS implementation are shown as

pseudo-code in Algorithm 1.

3. Spatial Outlier Rejection: In this step, the remaining bounding boxes of

which any part is contained within a ∆-wide margin inside the focus window

along left, right and bottom boundaries (Figure 3·4) are rejected. Since for the

angular step of 15◦ the neighboring rotated windows overlap by 84.7%, even

with a relatively wide margin ∆ no part of camera’s FOV will be uncovered.

For the 1,300×800-pixel focus window, I selected ∆ = 50.

3.5 Reverse mapping of detections

People detection results (bounding boxes) need to be mapped from the relative po-

sition within each extracted focus window to the absolute position in the full fisheye
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Data: X // The list of input bounding boxes

Result: Y // The list of output bounding boxes

/* Initialization */

Sort all bounding boxes in X by their confidence score in descending order;
Y = [ ] ;
/* iteration begins */

for x ∈ X do
if Y is empty then

Y.append(x);
else

Flag = True;
for y ∈ Y do

if IOU of x and y > TH then
Flag = False ;
break ;

end

end
if Flag then

Y.append(x)
end

end

end

Algorithm 1: Pseudo-code for Non-Maximum Suppression

image. A näıve approach would be to rotate each bounding box in reverse (i.e., by

-15◦ for a focus window obtained by +15◦ image rotation). However, if a person were

perfectly detected (tight bounding box around body silhouette) in two focus windows

obtained by image rotations differing by 15◦, then the näıve approach would result in

the two bounding boxes being at a 15◦ angle with respect to each other after reverse

rotations. Since a perfect detection was assumed, the bounding boxes should have

perfectly overlapped. This misalignment reduces the IOU, and may lead to sub-par

results. In order to avoid this problem, the center of a bounding box is first reverse-

rotated and the bounding box is aligned with FOV radius passing through the new

bounding-box center. Both reverse mapping results are illustrated in Figure 3·5.
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Figure 3·4: Focus window (red) and outlier margin ∆ = 50 (green). If
a bounding box of detected person overlaps the green area, it is rejected.

3.6 People counting

The reverse mapping of all retained people detections will typically result in multiple

overlapping bounding boxes despite bounding box suppression during post-processing

(Figure 3·5(b)). This is due to the fact that neighboring focus windows significantly

overlap and a person is detectable in several windows. In order to assure an accurate

people count, duplicate person detections need to be eliminated so that one bounding

box is associated with one person only. In order to accomplish this, I propose two

methods. One method is based on the earlier-used NMS while the other method is

based on clustering. An experimental comparison of these methods will be carried

out in Chapter 5. After the elimination of detection duplicates, one extra step is

applied to maximally reduce False Positives (FP), namely YOLO v3 is again applied

to the remaining bounding boxes with the goal of verifying if the detected object is

indeed a person.
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(a) (b)

Figure 3·5: (a) Näıve approach: a bounding box is rotated in reverse
by the angle of the original image rotation (reverse-mapped bounding
boxes are misaligned). (b) Improved approach: the center of a bounding
box is rotated in reverse by the angle of the original image rotation and
the bounding box is aligned with FOV radius passing through the new
center (reverse-mapped bounding boxes are aligned).

3.6.1 NMS-based merging of multiple detections

While multiple detections of the same person can result from different focus win-

dows, the size and location of the corresponding bounding boxes should be similar

(the same person may be observed in neighboring focus windows at slightly different

relative angles). Based on this assumption, it is logical to apply NMS to all reverse-

mapped bounding boxes (Section 3.5) with significant overlap (IOU) to retain only

one representative detection. An example result of NMS-based merging is shown in

Figure 3·6(a).
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(a) (b)

Figure 3·6: (a) Result of NMS-based multiple-detection merging. (b)
Result of clustering-based multiple-detection merging.

3.6.2 Clustering-based merging of multiple detections

However, the NMS-based merging algorithm has several limitations. First, it uses size

and location of bounding boxes only while ignoring the underlying color and texture

information. This leads to difficulties in distinguishing people standing close to each

other. Secondly, the outcome of NMS is as good as the detections provided by YOLO

v3; NMS cannot link together two detections that are not close enough or similar

enough. Since YOLO v3 has been trained on side-view, perspective images, it is

natural to expect that its person localization error will increase for overhead, fisheye

images. Clearly, NMS may inherit people detection errors and, therefore, cause errors

in people counting.

In order to mitigate these difficulties, I propose to treat people counting as a

clustering problem. I propose to cluster the location information for each detection

together with the underlying structural information. More specifically, I propose a
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12-dimensional feature vector composed of x, y coordinates of the center of a bounding

box and a 10-bin normalized histogram of grayscale values within the box. Represent-

ing all bounding boxes (both overlapping and non-overlapping) in a full-size fisheye

image as 12-dimensional vectors allows application of K-means clustering. Since one

needs to provide the value of K to the algorithm and since K is the people count, I

added a regularization term to the cost function to limit the number of clusters. The

cost function is defined as follows:

Cost(K) =
(K−1∑
i=0

∑
Dj∈Ci

(dj − ξi)2
)

+ α ·K2, (3.2)

where K is the number of clusters, Dj is the jth bounding box, dj is a 12-dimensional

feature vector describing Dj, Ci is the i-th cluster of bounding boxes, ξi is the centroid

of cluster Ci, and α is the regularization parameter set to 1
400

in all experiments. An

example of this cost function plotted against K is shown in Figure 3·7(b).

The value of K at which Cost(K) attains minimum defines the final clustering

(K = 5 in Figure 3·7(b)). Then, x, y coordinates of each cluster’s centroid are selected

as the center of the representative (output) bounding box for this cluster, while the

average width and height of all boxes within the same cluster define the width and

height of the representative bounding box. The result of clustering-based people

counting is shown in Figure 3·6(b).

3.6.3 Verification

The final step of people counting is the reduction of false positives that may be due

to erroneous detections by YOLO v3 and which may not have been eliminated by the

preceding steps. I propose to accomplish this by extracting a new rectangular win-

dow around a bounding box produced by either the NMS-based or clustering-based

merging algorithm, but slightly larger. Since the body pose may be at any angle, I
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(a) (b)

Figure 3·7: Clustering-based merging of multiple detections: (a) in-
put bounding boxes (blue) and resulting bounding boxes (green and
red); and (b) corresponding cost function (3.2) with and without regu-
larization for bounding boxes from (a).

(a) (b) (c) (d)

Figure 3·8: (a) Fisheye image with a candidate detection of a person
to be verified (red bounding box in bottom-right). (b-d) Rectangular
window around detection from (a) rotated to upright position and fur-
ther rotated by +15◦ and -15◦. The red bounding box signifies that
in each window a person was detected, thus confirming the original
detection from (a).
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first rotate this new window to obtain a roughly upright pose (Figure 3·8(c)), and

then apply additional rotations by +15◦, and -15◦ to account for some angular mis-

alignments (Figure 3·8(b) and 3·8(d)). These three variants of the extracted window

are passed to YOLO v3 again and then undergo confidence thresholding and NMS

as detailed in Section 3.4 (no spatial outlier rejection is applied). If of the 3 results,

either 2 or 3 confirm this is a person then verification is successful (Figure 3·8), and

the original bounding box is accepted as showing a person; otherwise it is rejected.

The final people count is the number of bounding boxes remaining after this step.
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Chapter 4

Activity-Aware Application of YOLO

4.1 System overview

While the activity-blind method performs well, it is computationally complex for the

whole chain of steps described in Chapter 3 needs to be applied to each of the 24 focus

windows, even if no person is present. Although this is not a problem for a GPU that

leverages parallelism, it is a significant obstacle for non-GPU architectures. There-

fore, in this chapter I propose an activity-aware method to reduce the computational

complexity of people detection from overhead, fisheye cameras. Since it is unlikely

that at least one person would be present in each of the 24 focus windows used in

the activity-blind method, the main idea in the activity-aware method is to identify

regions of interest (ROIs) in camera’s FOV, that is regions where people are likely

present, and apply a people detector only to these regions. In order to detect ROIs,

I apply background subtraction, a well-known methodology in the literature. The

block diagram of the activity-aware method is shown in Figure 4·1. Except for ROI

extraction and background model update, that I will describe in detail in this chapter,

other blocks were detailed in Chapter 3.

4.2 ROI extraction

The purpose of ROI extraction is to identify which among the 24 rotated windows used

in the activity-blind method are likely to contain people. To find ROIs, I propose to
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Figure 4·1: Block diagram of the activity-aware method that applies
YOLO v3 only to regions of interest. Blocks within the blue-shaded
rectangle are common to both methods: activity-aware method dis-
cussed in this chapter and activity-blind method presented in Chap-
ter 3, while those within the beige-colored rectangle are unique to the
activity-aware method.

detect changes in the FOV of the camera with respect to some reference FOV, often

called background, for example a video frame captured in the absence of people.

Certainly, a change in camera’s FOV does not necessarily imply appearance of a

person (it could be a moved chair), but this can substantially limit the computational

complexity of the overall algorithm since people detector is applied only to windows

containing ROIs. In case a window is triggered by, for example, a moved chair, the

expectation is that people detector will fail to acknowledge that it contains a person.

A detailed block diagram of ROI extraction is shown in Figure 4·2. Each block

from this diagram will be discussed in subsequent sections.

4.2.1 Background subtraction

Let I t(x, y) denote a color pixel value captured by overhead, fisheye camera at time t

and spatial coordinates x, y. I assume that the camera captures color in RGB space

so I t = [IRt , I
G
t , I

B
t ], where I∗ is a corresponding RGB component of the color image.

Also, let Bt(x, y) denote reference background at time t and spatial location x, y. It

is also a color image, so Bt = [BR
t , B

G
t , B

B
t ]. The next section will describe how the
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Figure 4·2: Block diagram of ROI extraction steps.

reference background is obtained.

In the first step, the following thresholding is applied to produce an initial mask

of changes St(x, y):

St(x, y) =


1, if

∑
A∈{R,G,B} |IAt (x, y)−BA

t−1(x, y)| > θ

0, otherwise

(4.1)

where θ is a threshold. If θ is too small, the thresholding may produce too many

false positives (a slightest departure from the reference background may trigger a

detection), and if θ is too large, the thresholding may produce too many false negatives

(some changes may be missed). Note that at time t, the current frame is compared

with reference background from time t − 1. Furthermore, it is the sum of absolute

differences for three color components that is compared against threshold θ, not each

color component individually; a sufficiently large difference for red, green or blue

component will trigger a detection. An example of reference background and input

frame are shown in Figure 4·3.

Subsequently, two morphological operations are applied to mask St(x, y) in order

to remove outliers and make the mask compact. First, opening with a 3×3 rectangular

structuring element is applied to remove tiny patches that are likely due to larger-
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(a) (b)

Figure 4·3: Example of: (a) reference background; (b) current frame.

amplitude noise. Then, dilation operation with a 25×25 elliptical structuring element

is applied to expand the remaining areas of detected changes.

Following the morphological operations, connected-component analysis is per-

formed and small-area components (with less than 3,600 pixels, equivalent to a 60×60-

pixel patch) are removed. This leads to the final ROI mask.

The initial mask St(x, y), the same mask after morphological operations and the

final ROI mask with differently-colored connected components are shown in Figure 4·4

for the current and background frames from Figure 4·3.

4.2.2 Background model

The main difficulty in background subtraction is to obtain a reliable reference back-

ground to which the current frame can be compared. In general, a reference back-

ground can be modeled as a static or dynamic image.

A static background model is usually an “empty frame” captured by the camera

when no people are present in camera’s FOV. However, it is difficult to capture such
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(a) (b) (c)

Figure 4·4: (a) Initial mask St(x, y) after background subtraction
(4.1); (b) the same mask after morphological filtering; (c) final ROI
mask after connected component analysis and area thresholding (each
connected component is shown in different color).

a frame automatically in real-life situations, unless side information is available (PIR

sensor not triggered for hours, strict time schedule of events, etc.) Furthermore, a

static background model, by its very nature, cannot reflect changes in the background,

such as illumination variations or furniture movement. This, in turn, may lead to

unnecessarily large ROIs (lots of false positives). For example, if the current frame is

captured under different illumination than that of the background, then the difference

in illumination may be detected as change; in extreme case, this may cover the whole

FOV. Similarly, if a piece of furniture is moved between the time of background

capture and current frame capture, both past and new location of the furniture may

be detected as changed areas.

Dynamic background models have been developed primarily to deal with illumi-

nation changes. Typically, such models use statistics derived from recent frames to

update model’s state. If illumination changes on a time scale longer than the derived

statistics, then background subtraction can work reliably even in the presence of sig-

nificant illumination variations. However, dynamic background models can easily get

contaminated if a person stays still or almost still on a time scale of the derived statis-
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tics; the person will become part of the background causing false change detections

later.

In order to minimize the impact of illumination variations, I opt for a dynamic

background model but to avoid model contamination by a static person I propose

to leverage the result of people detection in the background update mechanism as

described below.

The dynamic background model is updated as follows:

Bt(x, y) = γt(x, y) ·Bt−1(x, y) + (1− γt(x, y)) · I t(x, y), (4.2)

where γt(x, y) is an indicator whether a pixel at time t and location x, y belongs to a

bounding box associated with a detected person:

γt(x, y) =


1, if (x, y) belongs to bounding box of a detected person,

0, otherwise.

(4.3)

Clearly, at time t people detection is performed first (so that indicator γt can be

computed) and then the background is updated. The update mechanism (4.2) uses

the indicator γt (4.3) to decide at each location (x, y) whether to use the current image

value at time t as the new background (pixel belongs to the background) or to use the

previous background value at time t− 1 (pixel belongs to bounding box of a detected

person). As long as a person is detected at location (x, y), some previous background

value from time t−2, t−3, ... will be used, that is the bounding box with a person will

not get included in the background model. This prevents background contamination

common to many dynamic background models, as elucidated above. Since background

locations outside of a person’s bounding box get immediately updated by the current

image value, the model is robust to illumination changes that are challenging for static

background models. Illumination changes may be impactful only if a detected person
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remains static on a time scale longer than that of illumination variations. Clearly, the

proposed update mechanism offers benefits of both static and dynamic background

models.

There exists a practical issue of initializing the model. Since for the very first frame

of a fisheye video (t = 0), there is no past information available (whether past frames

or past people detections), the background is initialized as zero: B0(x, y) = 0, ∀(x, y).

No other processing is applied.

In subsequent frames, in order to update background Bt (4.2) the indicator γt is

needed and this, in turn, requires background subtraction to detect ROI (Figure 4·4)

followed by people detection applied to this ROI (activity-aware method). However,

since for frame at t = 1 background subtraction uses backgroundB0 (4.1), which is set

to 0, no reliable ROI can be computed. Therefore, at t = 1 the activity-blind method

with 24 rotated windows (Chapter 3) is applied to find bounding boxes with people.

Once a more reliable background is obtained at t = 1, 2, 3, ..., background subtraction

is used to find ROI areas and followed by people detection applied selectively in those

areas only (Section 4.2.3).

Figure 4·5 shows an example of background model update. While B0 in Fig-

ure 4·5(a) is black (zero values), B1 shows the background scene except for bounding

boxes where 4 people were detected (bounding boxes are black since B0 is zero-

valued). However, after 20 updates, as people have moved out, the black rectangles

get filled in by image values from frames I2, I3, ...

4.2.3 Focus window selection

Having found the final ROI in camera’s FOV (Figure 4·4), I could build a focus

window around each component. However, individual connected components may be

inaccurate and may contain an incomplete person (or incomplete several people). I

could select a larger window but it is unclear how large. Instead, I propose to use
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(a) (b) (c)

Figure 4·5: (a) Initial background model B0; (b) background model
B1 after the first update; (c) background model B20 after 20 updates.

one or more of the 24 rotated windows used in the activity-blind method (Figure 3·3)

and apply the same methodology to each window as in Chapter 3. An additional

advantage of using large windows is that all connected components at a similar angular

position are likely to be processed in one people-detection step.

In some cases, a connected component may be too large for one single window to

fully contain it. In other cases, a connected component can be located off center and

extend beyond the window. These two cases are challenging for people detection.

I propose the following algorithm to address these issues. In order to ensure full

coverage of a connected component by a rotated window of width W and height H,

I define the central part of this window as a rectangle of width Wc < W and height

H. A set of focus windows will be selected to cover all connected components as

described below.

First, centroid C of a connected component (Figure 4·4(c)) is calculated. Let O

denote the center of camera’s FOV and Ri, i = 1, ...24 the center of each of the 24

rotated windows. Window number k = mini ∠( ~OC, ~ORi) is selected as the focus

window for this connected component.

If the connected component exceeds the left boundary of the central part of the



33

(a) (b)

Figure 4·6: Focus windows for the current frame from Figure 4·3: (a)
overlaid on the current frame; (b) overlaid on the connected components
of final ROI.

focus window, the neighboring window counterclockwise is added to the final window

selection. Then, the same check is performed for the newly-added window. The

process is repeated until the connected component does not exceed the left boundary

of the central part of the last newly-added window. A similar procedure is applied to

the right boundary and neighboring windows in the clockwise direction.

The above steps are repeated for all remaining connected components. Then,

people detection by YOLO v3, post-processing, reverse mapping and people counting

are applied to all focus windows selected above (see block diagram in Figure 4·1).

An example of selected focus windows for the background and input frames from

Figure 4·3 are shown in Figure 4·6.
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Chapter 5

Experimental Results

5.1 Experimental setup

A series of experiments have been conducted to evaluate the proposed activity-blind

method (AB) presented in Chapter 3 and activity-aware method (AA) presented in

Chapter 4. First, experiments demonstrating the need for spatial outlier rejection

and verification of detections (Figures 3·2 and 4·1) will be described. Secondly, a

quantitative comparison between NMS-based and clustering-based merging of multi-

ple detections will be presented. Then, the activity-aware and activity-blind methods

will be compared in terms of people counting accuracy and computational efficiency.

Finally, the activity-aware algorithm will be compared with a benchmark method.

In order to facilitate experimental evaluation, I collected one overhead, fisheye

video in a lab and two videos in a conference room (Figure 5·1). The videos were

captured by two Axis M3057 PLVE cameras (3,072×2,048-pixel resolution) installed

on the ceiling. The three videos depict several people moving around in each space.

In all example frames in this section, blue bounding boxes are at the output of

reverse mapping, while green ones are after merging of multiple detections (Figures 3·2

and 4·1). Since NMS-based merging selects one of the reverse-mapping results, the

resulting green bounding box also belongs to the results of reverse mapping (it covers

a blue bounding box). In contrast, clustering-based merging produces a bounding box

whose location and size are averages of locations and sizes of all bounding boxes from

the same cluster, respectively. Clearly, this means that the bounding box resulting
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(a) (b)

(c)

Figure 5·1: (a–c) Sample frames from three test videos.
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from clustering-based merging does not belong to the results of reverse mapping

(an additional green bounding box is created). After the verification step (second

application of YOLO v3), red bounding boxes show the final detection result.

To quantitatively evaluate each method’s performance, I manually labeled each

computed result by identifying the following:

• True Positives (TPs):

– people detected correctly with a single detection per person (as per sub-

jective evaluation), or

– people detected correctly but with multiple detections, i.e., if P detections

(red bounding boxes) are associated with the same person (subjectively-

evaluated overlap of a red bounding box with person’s body), then 1 de-

tection is deemed a true positive and P − 1 detections are considered to

be false positives.

• False Positives (FPs):

– objects detected as people by mistake (e.g., chair detected as a person), or

– multiple detections of the same person, i.e., if P detections (red bounding

boxes) are associated with the same person (subjectively-evaluated overlap

of a red bounding box with person’s body), then P − 1 detections are

considered to be false positives and 1 detection is deemed a true positive.

• False Negatives (FNs): people missed during detection.

Three performance measures: Recall, Precision, and F-score, are calculated for

each frame as follows:

Recall =
TP

TP + FN
(5.1)
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Precision =
TP

TP + FP
(5.2)

F-score =
2× Precision×Recall
Precision+Recall

(5.3)

Then, each metric’s mean µ and standard deviation σ are computed from single-frame

metrics and reported in tables in this chapter.

All experiments were conducted on Intel Xeon 2.3GHz CPU and Tesla K80 GPU

provided by Google Colaboratory. The computing times reported in this chapter are

for this environment.

5.2 Evaluation of the proposed methods

5.2.1 Impact of spatial outlier rejection on people counting

As mentioned in Chapter 3, spatial outlier rejection (SOR) is needed to eliminate

bounding boxes near the boundary of each rotated window since person’s body may

be only partially visible in this window. In order to demonstrate that this step is

essential for high detection accuracy, I conducted experiments with and without SOR

for both activity-blind method and activity-aware method, in each case using NMS-

based merging of multiple detections. The results are shown in Table 5.1.

Table 5.1: People-counting performance of the activity-aware and
activity-blind method with and without SOR

Method TP FP FN Recall Precision F-score

µ σ µ σ µ σ

AA with SOR 504 14 43 0.92 0.16 0.98 0.07 0.94 0.11

AA without SOR 513 170 34 0.94 0.15 0.81 0.19 0.84 0.14

AB with SOR 519 71 28 0.95 0.12 0.91 0.14 0.92 0.10

AB without SOR 526 659 21 0.96 0.10 0.48 0.16 0.62 0.12

It is clear that Precision and F-score for both methods without spatial outlier re-

jection decrease significantly, which is caused by spurious FP detections. One example
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of an FP occurrence is shown in Figure 5·2. Note the partially-visible person at the

right edge of the focus window in Figure 5·2(a) - no spatial outlier rejection is applied

and the person is counted (likely, because the bounding box is much larger than same-

person’s bounding box in the neighboring rotated window and merging of multiple

detections is not effective). However, when SOR is applied (the detected bounding

box overlaps the green margin area) the bounding box is rejected (Figure 5·2(b)) and

the person is not counted in this window.

The activity-aware method without SOR performs better than the activity-blind

method without SOR, primarily because there are fewer focus windows in the activity-

aware method if only a few people are sparsely scattered. In this case, it is less likely

on average that people are close to focus window boundary and thus partially visible.

However, if the number of people increases, and thus people are closer to each other,

the number of partially visible bodies will likely increase as well; FP will increase and

Precision and F-score will decrease. Clearly, spatial outlier rejection is a necessary

step in people detection using overlapping windows.

Figure 5·3 shows sample frames produced by the activity-blind and activity-aware

method with and without SOR. While without SOR many bounding boxes that con-

tain part of a person’s body cannot be merged with larger bounding boxes for the

same person due to size difference, this is not the case when SOR is applied since

partial-body bounding boxes at focus window margin are rejected resulting in reduc-

tion of false positives.

5.2.2 Impact of person-detection verification on people counting

Person-detection verification (PDV) was proposed in Chapter 3 to reduce false pos-

itives when counting people. While YOLO v3 is applied to a 1,300×800-pixel focus

window in the earlier stages, at the output of the merging step much smaller bounding

boxes are available around likely person detections. A second application of YOLO v3
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(a) (b)

Figure 5·2: The impact of spatial outlier rejection (SOR) in a focus
window (margin area is in green): (a) without SOR, a partially-visible
person is counted; (b) after applying SOR, a partially visible person is
excluded.

to each bounding box is expected to confirm/reject person detection with improved

reliability due to focus on a much smaller window than in the first YOLO v3 applica-

tion. In order to verify this, I have performed experiments with and without PDV for

both activity-blind and activity-aware method using NMS-based merging of multiple

detections.

Table 5.2: People-counting performance of the activity-aware and
activity-blind method with and without PDV

Method TP FP FN Recall Precision F-score

µ σ µ σ µ σ

AA with PDV 504 14 43 0.92 0.16 0.98 0.07 0.94 0.11

AA without PDV 516 20 31 0.94 0.13 0.97 0.09 0.95 0.09

AB with PDV 519 71 28 0.95 0.12 0.91 0.14 0.92 0.10

AB without PDV 532 170 15 0.98 0.08 0.79 0.16 0.86 0.11
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(a) activity-blind method (b) activity-blind method + SOR

(c) activity-aware method (d) activity-aware method + SOR

Figure 5·3: Sample frames produced without SOR by: (a) activity-
blind method; (c) activity-aware method. Many bounding boxes con-
taining only part of a person’s body cannot be merged with those con-
taining a complete person due to excessive difference in size, thus caus-
ing false positives. Sample frames produced with SOR by: (b) activity-
blind method; (d) activity-aware method. By using SOR, bounding
boxes containing part of a person are eliminated, so the correct num-
ber of people is produced.
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As can be seen in Table 5.2, PDV has a strong influence on people-counting per-

formance of the activity-blind method as both Precision and F-score are substantially

reduced in the absence of PDV (since the FP value dramatically increases while the

TP value increases only a little). Examples of a miss (reduction of TP value) and a

simultaneous correct rejection of a false positive detection (chair), both due to the

application of PDV, are shown in Figure 5·4.

As for the activity-aware method, however, PDV slightly reduces both the F-score

and Recall because the number of false negatives is already small, and thus even few

erroneous rejections of person detections can reduce both metrics. The underlying

reason for this phenomenon is that the ROI extraction step excludes areas of little/no

change, and thus people detectors in the activity-aware method are not likely to be

applied to the areas where most false positives occur in the activity-blind method.

However, when more people are present in camera’s FOV, false positives are more

likely and the PDV step should be beneficial.

5.2.3 Performance of person-detection verification on its own

While Table 5.2 shows the impact of PDV on the accuracy of the overall people

counting, it does not capture the performance of PDV itself. As we have stated in

Section 5.1, if there are P final person detections (red bounding boxes) associated with

the same person (subjectively-evaluated overlap of a red bounding box with person’s

body), then P − 1 detections are considered to be false positives and 1 detection is

deemed a true positive. Although these false positives justly contribute to the lowering

of the Precision metric in people counting, they are still correct detections from the

standpoint of PDV (indeed, a person was present in a bounding box). Therefore, in

order to assess PDV performance on its own, I considered the following 4 cases of

input versus decision:

• Correct Acceptance (CA): input bounding box with a person is accepted,
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(a) (b)

Figure 5·4: Sample detection result obtained by the activity-blind
method: (a) without PDV (all detections from the first application of
YOLO v3 are accepted in the final output); (b) with PDV (a far-away
person by the partition is rejected by mistake, while a falsely-detected
chair at the bottom is correctly rejected).

• Wrong Acceptance (WA): input bounding box with a non-person object is ac-

cepted,

• Correct Rejection (CR): input bounding box with a non-person object is re-

jected,

• Wrong Rejection (WR): input bounding box with a person is rejected.

Clearly, PDV produces bounding boxes claimed to contain people. Those that indeed

contain a person are correct decisions and those that do not (contain another object

claimed to be a person) are errors. The counts of both types of acceptances and rejec-

tions for the activity-blind and activity-aware algorithms on 3 videos tested are shown

in Table 5.3. Ideally, one would like PDV to produce the fewest wrong acceptances and

wrong rejections. Clearly, PDV applied to the output of the activity-aware method
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wrongly accepts only 7 bounding boxes without a person and erroneously rejects 13

bounding boxes with a person. However, it correctly rejects only 5 bounding boxes

without a person. This suggests that the activity-aware method already performs

well and any potential improvement due to PDV is small. To the contrary, in the

case of the activity-blind method PDV correctly rejects 97 bounding boxes without

a person but wrongly accepts 53 such boxes. It also erroneously rejects 15 bounding

boxes with a person. Since the activity-blind method produces many spurious person

detections by applying YOLO to 24 focus windows, many incorrect person detections

result and most of them are rejected by PDV.

Table 5.3: Performance of person detection verification for activity-
aware and activity-blind methods after NMS-based merging

CA WA CR WR

PDV in AA 511 7 5 13

PDV in AB 537 53 97 15

Among the total of 1,238 detections fed by both algorithms into the verification

step (1,076 correct person detections and 162 incorrect person detections produced by

the merging step), 92.90% are correctly accepted or rejected. In more detail, 97.40%

of correct person detections at input are correctly accepted by PDV, and 62.96% of

incorrect person detections at input are correctly rejected.

These results indicate that the proposed person-detection verification step per-

forms well in confirming correct person detections, and only a few correct detections

are erroneously rejected. As for rejecting incorrect person detections, there exists

significant room for improvement.
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5.2.4 Impact of NMS-based and clustering-based merging of multiple de-

tections on people counting

The step of merging multiple detections using either NMS-based approach or clus-

tering is evaluated in terms of performance in Table 5.4 and in terms computing

time in Table 5.5 (column: “Merging of detections”). Since the number of bounding

boxes undergoing merging may be quite dramatically different in activity-aware and

activity-blind method, they are compared separately.

Table 5.4: People-counting performance of the activity-blind and
activity-aware methods using either NMS-based or clustering-based
merging of multiple detections.

Method TP FP FN Recall Precision F-score

µ σ µ σ µ σ

AA with NMS 504 14 43 0.92 0.16 0.98 0.07 0.94 0.11

AA with clustering 502 15 45 0.92 0.16 0.98 0.07 0.94 0.10

AB with NMS 519 71 28 0.95 0.12 0.91 0.14 0.92 0.10

AB with clustering 516 55 31 0.95 0.12 0.92 0.13 0.93 0.11

It is clear from Table 5.4, that people-counting performance is similar when apply-

ing either NMS- or clustering-based merging, whether in the activity-blind or activity-

aware method. However, clustering-based merging is much slower than NMS-based

clustering. This is caused by the fact that in order to learn the number of clus-

ters, K-means clustering needs to be applied a number of times to feature vectors

for all bounding boxes resulting from the reverse mapping. Furthermore, it is time-

consuming to form a feature vector as a 10-bin normalized histogram of grayscale

values needs to be computed in each bounding box.

As mentioned in Chapter 3, people counting using NMS-based merging may not

be able to merge bounding boxes with significant difference in size, and test results

support this statement (Figure 5·5(a)). However, typically NMS-based merging does
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not need to deal with this problem because of reliable people detection (tight bounding

boxes around human bodies).

As for clustering-based merging, its performance is more limited. First, the size

and location of a bounding box produced in this case is an average of sizes and

locations of all bounding boxes in the same cluster. Therefore, this box is not an

actual outcome of people detection and may contain no person. This strategy is

likely to generate more false negatives because such a bounding box may be located

between two people (with partial overlap of each person) and will be easily rejected

in the subsequent verification step (Figure 5·5(b)). Secondly, when there is a great

difference in size, two bounding boxes may cover areas with different grayscale content,

although they include the same person. Clearly, these bounding boxes cannot be

merged together as well (Figure 5·5(c)).

5.2.5 Comparison of activity-blind and activity-aware method

In this section, I compare the activity-blind method with the activity-aware method

in terms of performance/complexity trade-off. Table 5.4 shows the people-counting

performance for both methods with either NMS-based or clustering-based merging of

multiple detections, while Table 5.5 shows the mean computing time µ and standard

deviation σ for various stages of processing and for each full algorithm, computed

over the three test videos used in this study.

It is clear from Table 5.5 that the activity-aware method has a significant ad-

vantage over the activity-blind method in terms of computing time. However, its

people-counting performance slightly lags behind that of the activity-blind method.

It can be seen from Table 5.4 that the activity-aware method has fewer true positives

than the activity-blind method and, correspondingly, more false negatives. This is

caused by the fact that most people appear in a single focus window in the activity-

aware method (focus window is constructed around ROI). However, even if a person
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(a)

(b) (c)

Figure 5·5: (a) Example of NMS-based clustering fails to merge two
red bounding boxes at the top that have significantly different sizes and
yet contain the same person. (b) Example of clustering-based method
wrongly merging two people with similar appearance (black clothing)
and standing close to each other (red bounding box at the bottom), thus
generating a bounding box with two incomplete bodies; (c) Example of
clustering-based method unable to merge two bounding boxes due to
large difference in grayscale value (person and table).
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Table 5.5: Computing time (in seconds) comparison of the activity-
blind and activity-aware method with either NMS-based or clustering-
based merging of multiple detections.

Method ROI Detection in Merging of PDV Full

extrac. focus windows detections algorithm

µ σ µ σ µ σ µ σ µ σ

AA+NMS 0.74 0.31 3.50 2.18 1.17 0.50 1.52 0.37 6.95 2.55

AA+clust. 0.74 0.32 3.46 2.10 1.47 0.75 1.52 0.37 7.19 2.71

AB+NMS - - 14.20 0.32 1.53 0.57 1.67 0.50 17.41 1.08

AB+clust. - - 14.17 0.21 2.92 2.51 1.72 0.55 18.82 2.74

is in window’s center, he/she may not be upright and detection by YOLO v3 may fail.

In contrast, in the activity-blind method a person will appear in several neighboring

focus windows, in each at a slightly different angle and in some with fully-visible body,

so that there are more chances for detection. Therefore, the activity-blind method

outperforms the activity-aware method in terms of TP and FN and, consequently,

has higher Recall. Two sample results are shown in Figure 5·6.

While the activity-blind method is more reliable in finding a person (higher TP,

lower FN, and thus higher Recall), the activity-aware method performs better in

terms of FP (spurious detections) and Precision. In consequence, both methods have

similar F-score, but the activity-aware method is much faster, and therefore it is

difficult to choose between them. If the detection speed is critical and some misses

can be tolerated, then the activity-aware method would be more appropriate. If

the number of true detections and as few misses as possible are the most important

factors, then the activity-blind method is more suitable at the cost of some spurious

detections.
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(a) (b)

Figure 5·6: (a) The activity-blind method correctly detects a person in
right-center in two neighboring focus windows; (b) The activity-aware
method misses the same person.

5.3 Comparison with a benchmark method

As a benchmark method, I selected an approach in which YOLO v3 is well-matched to

the appearance of most occupants. The main idea is to transform a fisheye image into

an almost side-view image by means of dewarping (Courbon et al., 2012). Dewarping

transforms a round FOV of a fisheye image into a rectangular FOV of a panoramic

image in which people standing away from the fisheye camera look undistorted and

upright (Figure 5·7). With people standing upright (except those under the camera,

who will be severely distorted), YOLO v3 should perform very well.

I apply YOLO v3 to the whole image without any cropping, decimation or inter-

polation. However, I zero-pad the dewarped image to produce a 2,176×2,176-pixel

image for processing by YOLO v3. In post processing, I apply confidence threshold-

ing and NMS with the same threshold values (γ = 0.3, ρ = 0.4) as in both methods I

had proposed.
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Figure 5·7: Dewarped fisheye image (2,160×720 pixels) and sample
detection results produced by the benchmark method.

Table 5.6 shows performance metrics of the benchmark algorithm in comparison

to the activity-aware and activity-blind methods both implemented with NMS-based

merging of multiple detections. In FOV periphery, the benchmark method performs

well as can be seen at the top of Figure 5·7. Across all three test videos there are

few misses (FNs) in this area. As already mentioned, human bodies are upright and

look undistorted after dewarping, thus contributing to good YOLO v3 performance.

Benchmark method’s relatively high score in terms of Recall supports this statement.

Most false negatives for the benchmark method concentrate at the bottom of the

panoramic image (center of fisheye FOV), where a strong distortion occurs due to

dewrapping. Furthermore, there is a huge number of false positives in this area (see,

for example, the bottom of Figure 5·7) resulting in very low Precision. In addition to

dewarping distortion, the lack of person-detection verification (making the method a

one-shot try) is a contributor to its weak performance.

Table 5.6: People-counting performance of NMS-based activity-blind
and activity-aware methods versus the benchmark method.

Method TP FP FN Recall Precision F-score MAE

µ σ µ σ µ σ fr. pe.

AA with NMS 504 14 43 0.92 0.16 0.98 0.07 0.94 0.11 0.37 0.12

AB with NMS 519 71 28 0.95 0.12 0.91 0.14 0.92 0.10 0.37 0.12

Benchmark 473 916 74 0.87 0.19 0.36 0.11 0.50 0.12 4.90 1.54
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In addition to performance metrics used earlier, I calculated the Mean-Absolute

Error (MAE) per frame and also per person using equations (5.4) and (5.5), respec-

tively. N is the total number of frames in the three test videos, GTi is the ground-truth

number of people in frame number i, while FPi and TPi are the numbers of False

Positives and True Positives in frame number i, respectively.

MAEframe =
1

N

N−1∑
i=0

|TPi + FPi −GTi| (5.4)

MAEperson =

∑N−1
i=0 |TPi + FPi −GTi|∑N−1

i=0 GTi
(5.5)

The MAE values shown in the last two columns of Table 5.6 confirm a superior

performance of the proposed algorithms compared to the benchmark (an order of

magnitude lower MAE).

Finally, a normalized histogram of people-counting error TPi+FPi−GTi is shown

in Figure 5·8 for each method. Clearly, the spread of histograms for the proposed

methods is much smaller than that for the benchmark method. The activity-aware

method undercounts by 1 fairly often, but overcounts by 1 much less often. This is

due to the fact that, occasionally, only one focus window is selected to cover a changed

area (obtained from background subtraction) so the chance of a miss is not negligible.

The miss chance is reduced when multiple focus windows overlap the changed area.

The method’s absolute error rarely exceeds one. In case of the activity-blind method,

undercounts and overcounts by 1 are equally likely since every person is captured by

at least 2 focus windows (often more), thus reducing the chance of a miss. Again a

larger departure from the true count is rare. It is a different story for the benchmark

method as it heavily overcounts as is also obvious from Table 5.6 (916 false positives).

Clearly, the proposed activity-blind and activity-aware methods handily outper-

form the benchmark and suggest that this is a good strategy for applying CNN-based



51

Figure 5·8: Normalized histogram of the people-counting error per
frame (TPi + FPi − GTi) for the benchmark, AA with NMS, and AB
with NMS methods.

people detection trained on standard images (from side-view, pinhole-lens cameras)

to overhead, fisheye images. A remaining weakness of the proposed methods is the

fact that for people close to the center of FOV, whose head and shoulders are the only

visible parts of the body, misses easily occur, as shown in Figure 5·9. To address this

weakness, one possible approach is to train another CNN on images with this scenario

and apply it only to FOV center, or to train only one CNN model on a diverse set of

training data captured by overhead fisheye cameras.

Figure 5·9: Example of a missed detection by the activity-blind
method when a person stands directly under a fisheye camera.
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Chapter 6

Conclusions

In order to supply HVAC system with a room’s occupancy estimate, and thus facili-

tate energy savings, I developed an approach to people counting using an overhead,

fisheye camera that leverages YOLO v3, a top-performing CNN-based object de-

tection method. Rather than re-training YOLO v3 with overhead, fisheye images,

I proposed two approaches, activity-blind and activity-aware, that use the original

YOLO v3 model trained on side-mounted, standard-lens cameras. The basis for this

approach is the following similarity between overhead, fisheye images and side-view,

standard-lens images: people standing upright away from the camera are always ver-

tical to the ground in side-view images and always aligned with the radial direction

in fisheye images.

The activity-blind method rotates a fisheye image by 15◦ at a time, and applies

people detector to a focus window extracted from the central upper part of the image,

where a person appears upright (or approximately upright). This results in 24 focus

windows to which a people detector is applied. In contrast, the activity-aware method

begins by extracting a region of interest by means of background subtraction followed

by selecting only some focus windows (out of the 24 windows) where people are likely

to appear. This leads to a reduced computational complexity of the activity-aware

method compared to the activity-blind method.

To deal with multiple detections produced by YOLO v3 in rotated, and largely

overlapping, focus windows, I proposed spatial outlier rejection and merging of mul-
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tiple detections (NMS-based and clustering-based) as a post-processing step. The

final step I proposed is the verification of merged detections by applying YOLO v3

second time but only around the detected bounding boxes. This reduces false positive

detections since the area considered is much smaller than in the first application of

YOLO v3.

I verified the usefulness of spatial outlier rejection and person-detection verification

experimentally. Spatial outlier rejection helped significantly reduce false positives

with only a small reduction in true positives. As for person-detection verification, it

also reduced false positives thus helping improve the F-score, although occasionally it

would reject a true positive by mistake and too often retain a false positive. Although

this seems to indicate that the idea of verification is useful, a better verification

strategy is needed to maximize the number of true positive detections.

I compared experimentally the NMS-based and clustering-based merging of mul-

tiple detections. It turns out that clustering-based merging does not offer expected

advantages: it is more complex computationally than the NMS-based merging, and

tends to merge multiple detections into fewer clusters. Clustering-based merging has

difficulty with merging different-size bounding boxes containing the same person, pri-

marily because of the histogram-based feature vector that may capture appearance

of a person in a smaller bounding box and that of the person and the background in

a larger bounding box. Clearly, clustering-based merging needs to be further investi-

gated. First, a better feature vector than grayscale histogram needs to be considered.

Secondly, a better strategy to find the optimal number of clusters is needed.

An experimental comparison of the computational complexity showed that the

activity-aware method significantly reduces detection time for the three test videos

used, while producing fewer false positives than the activity-blind method. However,

the activity-blind method produces more true positives and fewer false negatives



54

(misses), which may be important for maintaining air quality – in the case of many

misses, HVAC system may provide too little air.

In the final set of experiments, I compared both proposed methods with a bench-

mark method. Both the activity-blind and activity-aware method significantly out-

performed the benchmark method in terms of Recall, Precision, and F-score values.

The proposed methods proved to be capable of at least as many true-positive de-

tections as the benchmark method, while generating only a fraction of false-positive

detections.

In conclusion, I proposed a methodology for people counting from overhead, fisheye

images using a CNN object detector trained on side-view, standard-lens images. I

developed two methods using this methodology, and both of them proved reliable

with up to 0.95 recall, 0.98 precision and 0.94 F-score on three test videos. With

this performance, both methods are viable candidates for practical indoor occupancy

estimation.

In the future, several improvements to the proposed methodology can be envis-

aged. First, person-detection verification needs further investigation since the cur-

rent approach too often accepts false person detections. Second, a better clustering-

based method is needed for merging multiple detections. The current use of a 10-

bin grayscale histogram and bounding-box location as the feature vector has proved

lacking in terms of performance. One possible solution is to include more features.

Another one is to find a better distance metric to compare grayscale patterns in

bounding boxes so that interference from spurious part of a bounding box, such as

the background, has less of an impact.
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