
'

&

$

%

SPACE-TIME IMAGE SEQUENCE ANALYSIS:

OBJECT TUNNELS AND OCCLUSION

VOLUMES

MIRKO RISTIVOJEVIĆ

Dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

BOSTON

UNIVERSITY

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

SPACE-TIME IMAGE SEQUENCE ANALYSIS: OBJECT

TUNNELS AND OCCLUSION VOLUMES

by

MIRKO RISTIVOJEVIĆ

B.S., University of Belgrade, 1999
M.S., Boston University, 2002

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2006

ii

c© Copyright by
MIRKO RISTIVOJEVIĆ
2006

iv

Approved by

First Reader

Janusz Konrad, Ph.D.
Associate Professor of Electrical and Computer Engineering

Second Reader

W. Clem Karl, Ph.D.
Professor of Electrical and Computer Engineering and
Professor of Biomedical Engineering

Third Reader

Stan Sclaroff, Ph.D.
Associate Professor of Computer Science

Fourth Reader

Maja Bystrom, Ph.D.
Associate Professor of Electrical and Computer Engineering

vi

To my wife Nataša,

without whose love and support

this work would not be possible.

vii

viii

Acknowledgments

When I started my graduate studies at the Boston University, I did not have an idea what

my research topic would be. I was preoccupied with adjusting to the new environment,

living in a foreign country, as well as my GTF responsibilities, some pretty difficult

courses I was taking and the prospect of the upcoming Ph.D. qualifier exams looming

ahead. I had serious doubts in the success of my studies, but somehow I carried on. One

of the people that helped me tremendously in these early stages of my graduate studies

was Tommaso Toffoli, for whom I was a teaching assistant. He is a great professor and

a wonderful human being, and our discussions on science, engineering and life in general

lifted my spirits many times.

One of the courses I took in my first semester at the Boston University was the

image processing course with Janusz Konrad. Immediately, I was attracted to it, not

only because of a very interesting subject matter, but also the engaging way Janusz

was teaching. By the end of the semester I decided to pursue my research under his

supervision, and he accepted, for which I am deeply grateful. His brilliant ideas and

broad knowledge made my research possible. However, more than anything else, I would

like to thank Janusz for his patience and for believing in me even when I did not believe

in myself. His guidance and support helped me make all the necessary steps in the

development of this dissertation. Finally, I would like to thank him for being such

a wonderful person, passionate about our research, but also understanding of all the

difficulties of graduate student life.

I would like to thank Clem Karl for the courses on stochastic processing and image

reconstruction he teaches so wonderfully. What I learned there made a foundation for

my research. I would also like to thank him for serving on my dissertation committee.

I would like to thank Stan Sclaroff and Maja Bystrom for serving on my dissertation

committee, and for many important comments and insights they provided, which greatly

ix

improved the final dissertation document. I would also like to thank all the faculty at

Boston University from whom I have taken classes.

Throughout my studies, my colleagues at the ISS lab contributed my research in

various ways. Nikola Božinović, with whom I shared the office for the last five and

a half years (and also an apartment for a year), helped me in more ways than I can

try to describe. Our discussions on the problem of video processing helped me solve

many issues in my research. His encyclopedic knowledge of all things PC helped me

with many technical and computer problems. Our discussions on sports, politics, music,

movies and life in general made my days in the office so much nicer. I want to thank

Nikola and his wife Mina for our friendship outside of the office, which made me feel so

much more at home in Boston. I would like to thank Julia Pavlovich for the help with

classes we took together, and also for our friendship inside and outside of the office. I

thank Andrew Litvin for many insightful discussions we had on our research problems,

and for a wonderful month we spent together at the University of Nice. Yonggang Shi

helped me numerous times with the motion segmentation and level-set method issues I

had, for which I am deeply grateful. Also, I want to thank him for sharing his fast level-

set implementation method with me, which helped tremendously with my experiments.

I would like to thank Robert Weisenseel for helping the whole ISS group by maintaining

the computer system of our lab. His extensive knowledge of Linux, Emacs, and Latex

helped me on many occasions. I want to thank Peter McNerney for helping me with

3-D visualization of my results and shooting the Car sequence used in my experiments.

I would also like to thank other ISS members, Serdar Ince, Philippe Agniel, Shuchin

Aeron, Erhan Ermis, Onur Savas, George Atia, Karen Jenkins, and Andrej Cvetkovski

for valuable insights and discussions, as well as for making PHO 401/446 a fun place to

be.

I would like to thank my friends, Zoran Hadžibabić and Zoran Dimitrijević, for en-

x

couraging me to come to do my Ph.D. studies in United States. Zoran Hadžibabić is

one of the main reasons I chose to come to Boston to study, and the wonderful years we

spent living together in the Henry Street apartment will always remain unforgettable.

Together with my other roommate from that apartment, Walter Rantner, he made that

place a home away from home. I would like to thank my friends Bosiljka Tasić, Go-

jko Lalić, Selena Hadžibabić, and Jelena Veljković, with whom I spent many beautiful

moments. Although he was studying across the continent in California, Zoran Dimitri-

jević’s friendship and support helped me throughout my studies. Moreover, we grew up

together and I feel that everything I accomplished I owe in part to him. I would also like

to thank my roommate from the Union Street, Tiago Ribeiro, whose friendship made

the two years I spent while my wife was studying in Syracuse less lonely.

I would like to thank my parents, Lazar and Danica, for their everlasting love and

support for my education. I am grateful for my happy childhood, for their moral support

and for directing me towards knowledge and education. I also want to thank my sister

Mira, for her love and for being somebody I looked up to while growing up. She helped

me tremendously by directing me towards mathematics and physics from the early age,

introduced computers and electrical engineering to my life and always supported me

with advice and example.

Finally, I want to mention a person without none of this would be possible. My wife

Nataša, with whom I share my life for the past thirteen years, helped me complete not

only this dissertation, but also my undergraduate studies. Her love and support got me

through all the rough times, and I dedicate this dissertation to her.

xi

xii

SPACE-TIME IMAGE SEQUENCE ANALYSIS: OBJECT TUNNELS

AND OCCLUSION VOLUMES

(Order No.)

MIRKO RISTIVOJEVIĆ

Boston University, College of Engineering, 2006

Major Professor: Janusz Konrad, Ph.D., Department of Electrical and
Computer Engineering

ABSTRACT

We present a novel approach to joint space-time, motion-based video segmentation and

occlusion detection. The segmentation of an image sequence into moving objects and

estimation of object motion belong to the most important tasks in image sequence anal-

ysis. Image sequence segmentation is a very difficult problem, with numerous applica-

tions, including content-dependent video compression (e.g., MPEG-4), video processing

(e.g., object-based frame-rate conversion and deinterlacing), surveillance, video database

queries (event detection, tracking), and computer vision (scene analysis, structure from

motion). In most studies to date, image sequences have been primarily analyzed and

processed in groups of two frames; by differentiating one frame from the other, one is

able to infer the dynamics occurring in an image sequence. These short-term dynamics

(such as displacement between two frames, or occlusion/exposure areas) can be linked

together or temporally constrained in order to reason about longer term dynamics. Al-

though the two-frame approach has been very successful in some applications (e.g.,

MPEG compression standards), it is often inadequate for the analysis of non-constant

velocity motion, detection of long-term innovation areas (occlusion and exposure), or

xiii

video segmentation.

In this dissertation, we propose to perform image sequence analysis jointly over multi-

ple frames. We concentrate on spatio-temporal segmentation of image sequences and on

the analysis of occlusion effects therein. The segmentation process is three-dimensional

(3-D); we search for a volume carved out by each moving object in the image sequence

domain, or “object tunnel”, a new space-time concept. We pose the problem in varia-

tional framework by using only motion information (no intensity edges). The resulting

problem can be viewed as volume competition, a 3-D generalization of region competi-

tion. We parameterize the unknown surface to be estimated, but rather than solving

for it using an active-surface approach, we embed it into a higher-dimensional function

and apply level-set methodology. We first develop simple models for the detection of

moving objects over static background; no motion models are needed. Then, in order to

improve segmentation accuracy, we incorporate parametric motion models (affine) for

objects and background. We further extend the method by including explicit models for

occluded and newly-exposed areas that lead to “occlusion volumes”, another new space-

time concept. Since in this case multiple volumes are sought, we apply a multiphase

version of the level-set method. We extend our motion detection to account for camera

motion and zoom-in (background is no longer static). In order to reduce computational

complexity of our methods, we apply a recently-proposed fast level-set implementation

and investigate its performance. We present various experimental results for synthetic

and natural image sequences, including those from the VIVID Tracking Evaluation Web

Site at Carnegie Mellon University.

xiv

Contents

1 Introduction 1

1.1 What is video analysis? . 1

1.2 Applications . 3

1.3 Proposed approach to video analysis . 4

2 Prior work 9

2.1 Two-frame methods . 9

2.1.1 Two-frame motion detection – a reference approach 13

2.1.2 Two-frame motion-based segmentation – a reference approach . . 15

2.2 Multiple-frame methods . 16

2.3 Optimization and implementation tools 21

2.3.1 Level-set method . 21

2.3.2 Level-set methodology for active surfaces 25

2.3.3 Computationally-efficient level-set implementations 28

2.3.4 Multiphase level-set methodology 31

3 Multi-frame motion detection using active surfaces 33

3.1 General MAP formulation . 34

3.1.1 General energy formulation . 36

3.2 Motion detection formulation . 39

3.3 Experimental results . 43

4 Multiframe motion-based video segmentation with background occlu-

sion detection 51

xv

4.1 Energy formulation . 52

4.2 Solution method . 55

4.2.1 Estimation of segmentation surfaces 56

4.2.2 Estimation of motion parameters 57

4.2.3 Long-term temporal modeling of motion trajectories 60

4.2.4 Steps of the overall segmentation algorithm 62

4.3 Experimental results . 63

5 Multiframe motion-based video segmentation with object and back-

ground occlusion detection 73

5.1 Energy formulation . 73

5.2 Solution method . 77

5.3 Experimental results . 80

6 Generalization to multiple moving objects 87

6.1 Energy formulation . 87

6.2 Solution method . 89

6.3 Experimental results . 92

7 Motion detection for active cameras 99

7.1 Method of Feghali and Mitiche . 100

7.2 Extension of the method of Feghali and Mitiche 101

7.3 Solution method . 103

7.3.1 Estimation of motion parameters 103

7.3.2 Segmentation surface estimation 105

7.4 Experimental results . 105

7.4.1 Results for synthetic sequences 106

7.4.2 Results for natural sequences . 110

7.4.3 Results for segmentation with background occlusion detection . . 112

xvi

8 Fast level-set implementation 121

8.1 Background . 121

8.2 Implementation . 122

8.3 Experimental comparison with the standard level-set method 126

8.4 Experimental results for the VIVID dataset 129

9 Conclusions and future work 133

9.1 Future work . 136

9.1.1 Better modeling of occluded and newly-exposed areas 136

9.1.2 Spline modeling of motion trajectories 137

9.1.3 Real-time implementation of our video segmentation algorithms . 144

References 149

Curriculum Vitae 157

xvii

xviii

List of Tables

3.1 Object segmentation error εs (pixels per frame) for synthetic test se-

quences, for motion detection algorithms. 49

4.1 Segmentation volumes and associated energy terms for 2-surface example 52

4.2 Motion error, εm, for different synthetic sequences, for motion estimates

calculated with and without smoothness constraint. 62

4.3 Object segmentation error εs (pixels per frame) for synthetic test se-

quences, for motion detection and motion compensated segmentation al-

gorithms. 71

5.1 Segmentation volumes and associated energy terms for 3-surface example 75

5.2 Object segmentation error εs (pixels per frame) for synthetic test sequences. 84

6.1 Segmentation volumes and associated energy terms for the multi-frame

motion-compensated segmentation method in case of two objects and

background occlusion modeling. 93

7.1 Object segmentation error εs (pixels per frame) for synthetic test se-

quences, for motion detection and motion compensated segmentation al-

gorithms. 117

8.1 Object segmentation error εs (pixels per frame) for synthetic test se-

quences, for different detection and segmentation algorithms implemented

using the standard and fast level-set methods. 129

xix

xx

List of Figures

1·1 Example of segmentation of an image sequence: (a) original frames of the

sequence, (b) object contours resulting from the processing of two frame

at a time, and (c) object tunnel resulting from joint processing of multiple

frames. 2

2·1 Curve propagating with speed F in the normal direction. 22

2·2 Transformation of front motion into the initial value problem. 23

3·1 Example of image sequence and its spatio-temporal (x−y−t) domain. . . 34

3·2 Block diagram of the level-set implementation of our motion detection

algorithm. In the diagram, iter reinit is the number of iterations after

which the level-set surface is reinitialized and max iter is the maximum

number of iterations for which the algorithm is run. 44

3·3 Results for the 2-frame MD algorithm: frames (a) #5, (b) #15, and (c)

#25 from the synthetic image sequence Bean, and (d) #5, (e) #15 and

(f) #25, from the synthetic image sequence Bean occl, overlaid with final

boundaries. 45

3·4 Results for M-frame MD algorithm, applied to synthetic image sequence

Bean: frames (a) #5, (b) #15, and (c) #25 from the sequence overlaid

with final boundaries, and (d) the corresponding object tunnel. 46

xxi

3·5 Results for M-frame MD algorithm, applied to synthetic image sequence

Bean occl with occluded object: frames (a) #5, (b) #15, and (c) #25 from

the sequence overlaid with final boundaries, and (d) the corresponding

object tunnel. 47

3·6 Results for M-frame MD algorithm, applied to natural image sequence

Car: frames (a) #24, (b) #54, and (c) #64 from the sequence overlaid

with final boundaries, and (d) corresponding object tunnel. 48

3·7 Estimated segmentation label fields corresponding to frames (a) #24, (b)

#54, and (c) #64 from the Car image sequence. 49

4·1 Frames (a) #1; and (b) #30 from a simple binary image sequence, and

(c) segmentation regions in frame #15. 53

4·2 Example of intensity variation along motion trajectories in (a) occluded

and (b) newly-exposed background areas taken from the Bean occl sequence. 56

4·3 Results for the 2-frame MCS algorithm: frames (a) #5, (b) #15, and (c)

#25 from the synthetic image sequence Bean, and (d) #5, (e) #15 and

(f) #25, from the synthetic image sequence Bean occl, overlaid with final

boundaries. 64

4·4 Results for the M-frame MCS-B algorithm, applied to synthetic image

sequence Bean: frames (a) #10 and (b) #20 from the sequence overlaid

with final boundaries (intersections define four regions), and (c–d) corre-

sponding label fields (white – background, light gray – object, dark gray

– occluded background, and black – exposed background). 65

4·5 Volumes corresponding to results from Fig. 4·4: (a) object tunnel, (b)

background tunnel, (c) background occlusion volume , and (d) back-

ground exposed volume. 66

xxii

4·6 Results for the M-frame MCS-B algorithm, applied to synthetic image

sequence Bean occl: frames (a) #15 and (b) #25 from the sequence over-

laid with final boundaries (intersections define four regions), and (c–d)

corresponding label fields (white – background, light gray – object, dark

gray – occluded background, and black – exposed background). 67

4·7 Volumes corresponding to results from Fig. 4·6: (a) object tunnel, (b)

background tunnel, (c) background occlusion volume , and (d) back-

ground exposed volume. 68

4·8 Results for the M-frame MCS-B algorithm, applied to Car image se-

quence: frames (a) #54 and (b) #64 from the sequence overlaid with

final boundaries (intersections define four regions), and (c–d) correspond-

ing label fields (white – background, light gray – object, dark gray –

occluded background, and black – exposed background). 69

4·9 Volumes corresponding to results from Fig. 4·8: (a) object tunnel, (b)

background tunnel, (c) background occlusion volume , and (d) back-

ground exposed volume. 70

5·1 Frames (a) #1; and (b) #30 from a simple binary image sequence, and

(c) segmentation regions for frame #15 (white – part of object visible

throughout the sequence, light gray – part of object that is going to be

occluded, medium gray – background visible throughout the sequence,

dark gray – part of background that is going to be occluded, and black –

part of background exposed in preceding frames). 74

5·2 Example of intensity variations along motion trajectories in (a) occluded

and (b) newly-exposed object areas. 77

xxiii

5·3 Results for the M-frame MCS-BO algorithm, applied to synthetic image

sequence Bean occl: frames (a) #15 and (b) #25 from the sequence over-

laid with final boundaries, and (c-d) corresponding label fields (white –

object, light gray to dark gray: object occlusion, background, background

occlusion, and background exposed). 80

5·4 Volumes corresponding to results from Fig. 5·3: (a) object tunnel, (b)

object occlusion volume, (c) background occlusion volume , and (d) back-

ground exposed volume. 81

5·5 Results for the M-frame MCS-BO algorithm, applied to Car image se-

quence: frames (a) #54 and (b) #64 from the sequence overlaid with

final boundaries, and (c–d) corresponding label fields (white – object,

light gray to dark gray: object occlusion, object exposed, background,

background occlusion, and background exposed). 82

5·6 Volumes corresponding to results from Fig. 5·5: (a) object tunnel, (b)

object occlusion volume, (c) background occlusion volume , and (d) back-

ground exposed volume. 83

6·1 Results for the M-frame MD algorithm, applied to Traffic image sequence:

frames (a) #15 and (b) #25 from the sequence overlaid with final bound-

aries, and (c–d) corresponding label fields (white – background and black

– object). 94

6·2 Volumes corresponding to results from Fig. 6·1: (a) object tunnels and

(b) background tunnel. 95

xxiv

6·3 Results for the M-frame MCS-B algorithm, applied to Traffic image se-

quence: frames (a) #15 and (b) #25 from the sequence overlaid with final

boundaries, and (c–d) corresponding label fields (white – left object, light

gray to dark gray: right object, background, to-be-occluded background,

and exposed background). 96

6·4 Volumes corresponding to results in Fig. 5·3: (a) left-car tunnel, (b) right-

car tunnel, (c) background tunnel, and (d) background occlusion volume. 97

7·1 Block diagram of (a) Feghali and Mitiche method and (b) proposed new

method. 102

7·2 Results for the M-frame MD method, applied to two sequences with mov-

ing background: final contours for frames (a) #5, (b) #15, and (c) #25

from the synthetic image sequence Bean Small, and frames (d) #5, (e)

#15 and (f) #25, from the synthetic image sequence Bean Normal. . . . 107

7·3 Segmentation error εm for experiments with different values of parameter

α, on sequence Bean Big, with translational or affine motion model used

for background motion. 108

7·4 Results for the M-frame MD-BMC algorithm, applied to synthetic image

sequence Bean Small: frames (a) #5, (b) #15, and (c) #25 from the

sequence overlaid with final boundaries, and (d) the corresponding object

tunnel. 109

7·5 Results for the M-frame MD-BMC algorithm, applied to synthetic image

sequence Bean Normal: frames (a) #5, (b) #15, and (c) #25 from the

sequence overlaid with final boundaries, and (d) the corresponding object

tunnel. 110

xxv

7·6 Results for the M-frame MD-BMC algorithm, applied to the Foreman

image sequence: frames (a) #5, (b) #15, and (c) #25 from the sequence

overlaid with final boundaries, and (d) the corresponding object tunnel. . 111

7·7 Results for the M-frame MD-BMC algorithm, applied to the Stefan image

sequence: frames (a) #5, (b) #15, and (c) #25 from the sequence overlaid

with final boundaries, and (d) the corresponding object tunnel. 112

7·8 Results for the M-frame MCS-B algorithm initialized with the M-frame

MD result (Fig. 7·2 (a–c)), applied to the synthetic image sequence Bean

Small: frames (a) #10 and (b) #20 from the sequence overlaid with final

boundaries (intersections define four regions), and (c–d) corresponding

label fields (white – background, light gray – object, dark gray – occluded

background, and black – exposed background). 113

7·9 Volumes corresponding to results from Fig. 7·8: (a) object tunnel, (b)

background tunnel, (c) background occlusion volume , and (d) back-

ground exposed volume. 114

7·10 Results for the M-frame MCS-B algorithm initialized with the M-frame

MD result (Fig. 7·2 (d–f)), applied to the synthetic image sequence Bean

Normal: frames (a) #10 and (b) #20 from the sequence overlaid with final

boundaries (intersections define four regions), and (c–d) corresponding

label fields (white – background, light gray – object, dark gray – occluded

background, and black – exposed background). 115

7·11 Volumes corresponding to results from Fig. 7·10: (a) object tunnel, (b)

background tunnel, (c) background occlusion volume , and (d) back-

ground exposed volume. 116

xxvi

7·12 Results for the M-frame MCS-B algorithm initialized with the M-frame

MD-BMC result (Fig. 7·4), applied to the synthetic image sequence Bean

Small: frames (a) #10 and (b) #20 from the sequence overlaid with final

boundaries (intersections define four regions), and (c–d) corresponding

label fields (white – background, light gray – object, dark gray – occluded

background, and black – exposed background). 117

7·13 Volumes corresponding to results from Fig. 7·12: (a) object tunnel, (b)

background tunnel, (c) background occlusion volume , and (d) back-

ground exposed volume. 118

7·14 Results for the M-frame MCS-B algorithm initialized with the M-frame

MD-BMC result (Fig. 7·5), applied to the synthetic image sequence Bean

Normal: frames (a) #10 and (b) #20 from the sequence overlaid with final

boundaries (intersections define four regions), and (c–d) corresponding

label fields (white – background, light gray – object, dark gray – occluded

background, and black – exposed background). 119

7·15 Volumes corresponding to results from Fig. 7·14: (a) object tunnel, (b)

background tunnel, (c) background occlusion volume , and (d) back-

ground exposed volume. 120

8·1 Results for the M-frame MD algorithm, applied to the synthetic image

sequence Bean: frame #15 from the sequence overlaid with final boundary

calculated using the (a) standard level-set implementation and (b) fast

level-set implementation. 126

8·2 Results for the M-frame MD-BMC algorithm, applied to the synthetic

image sequence Bean Small: frame #15 from the sequence overlaid with

final boundary calculated using the (a) standard level-set implementation

and (b) fast level-set implementation. 127

xxvii

8·3 Results for the M-frame MD-BMC algorithm, applied to the Foreman im-

age sequence: frame #15 from the sequence overlaid with final boundary

calculated using the (a) standard level-set implementation, (b) fast level-

set implementation, and (c) fast level-set implementation with adjusted

set of parameters. 128

8·4 Results for the M-frame MCS-B algorithm, applied to the synthetic image

sequence Bean: frame #20 from the sequence overlaid with final bound-

aries calculated using the (a) standard level-set implementation and (b)

fast level-set implementation. 128

8·5 Results for the M-frame MD-BMC algorithm, applied to the Egtest02

image sequence: frames (a) #10, (b) #30, and (c) #50 from the sequence

overlaid with ground-truth tracking rectangle and final boundaries, and

(d) the corresponding object tunnel. 130

8·6 Results for the M-frame MD-BMC algorithm, applied to the Hollywood

image sequence: frames (a) #25, (b) #75, and (c) #125 from the sequence

overlaid with ground-truth tracking rectangle and final boundaries, and

(d) the corresponding object tunnel. 132

9·1 Results for M-frame MD algorithm, applied to a natural image sequence

with two cars occluding one another: frames (a) #1, and (b) #15 from

the sequence overlaid with final boundaries, and (c) the corresponding

object tunnel. 135

9·2 Example of motion trajectories in 2-D case: the known motion trajectories

passing through grid points in frame at t1 are represented with solid lines;

the unknown trajectories passing through grid points in frame at t are

dashed. 140

xxviii

9·3 Results for 1-D example: (a) displacement d(x), (b) x+d(x), (c) estimated

values of x such that x + d(x) = x0, and (d) estimation error, err(x0) =

x0 − (x + d(x)). 142

9·4 Results for 3-D example: displacements (a) dx(x, y, τ) and (b) dy(x, y, τ),

(c) x + dx(x, y, τ), (d) y + dy(x, y, τ), (e),(f) estimated values of x and y

such that x + dx(x, y, τ) = x0 and y + dy(x, y, τ) = y0, and (g) estimation

error, err(x0, y0) =
√

(x0 − (x + dx(x, y, τ)))2 + (y0 − (y + dy(x, y, τ)))2. . 147

xxix

xxx

List of Abbreviations

2-D Two-Dimensional

2-frame MCS Two-frame Motion-Compensated Segmentation

2-frame MD Two-frame Motion Detection

3-D Three-Dimensional

4-D Four-Dimensional

BFGS Broyden, Fletcher, Goldfarb, and Shanno

DWT Discrete Wavelet Transform

EM Expectation-Maximization

HCF Highest Confidence First

ICM Iterated Conditional Modes

ITU International Telecommunication Union

M-frame MCS-B Multi-frame MC Segmentation with Background

occlusion modeling

M-frame MCS-BO Multi-frame MC Segmentation with Background

and Object occlusion modeling

M-frame MD Multi-frame Motion Detection

M-frame MD-BMC Multi-frame Motion Detection with Background

Motion Compensation

MAP Maximum A posteriori Probability

MC Motion-Compensated

xxxi

MDL Minimum Description Length

MLE Maximum-Likelihood Estimation

MPEG Moving Picture Experts Group

MRF Markov Random Field

PDE Partial Differential Equation

PSNR Peak Signal-to-Noise Ratio

QCIF Quarter Common Intermediate Format

VIVID Video Verification of Identity

xxxii

1

Chapter 1

Introduction

In this chapter we introduce the problem of video analysis and describe its main appli-

cations. We proceed with a brief discussion of our work on video analysis, followed by

our main contributions. Finally, we give the layout of the rest of this dissertation.

1.1 What is video analysis?

Analysis of image sequences consists of sequence segmentation into moving objects and

static or moving background and estimation of the objects and background motion,

as well as content analysis, understanding, recognition, and event detection in video

sequences. In this dissertation, we will concentrate on several important areas of video

analysis, including video segmentation, motion estimation and modeling, and detection

of occlusion events.

Segmentation of an image sequence is a very important but difficult problem. Some

methods use intensity information as the primary cue for segmentation while using

motion only as an accessory. Other methods concentrate on motion information by

segmenting dense motion fields calculated using some of the standard motion estimation

methods. No matter which approach is used, video segmentation is closely related to

the estimation of motion for each object in the sequence. Solving both problems jointly

leads to joint motion estimation and segmentation, which is the road we will take in this

dissertation.

In most studies to date, image sequences have been primarily analyzed and processed

2

in groups of two frames, which leads to separate segmentation of each frame of image

sequence into 2-D regions (an example of resulting object contours is shown in Fig. 1·1

(b)). By differentiating one frame from the other, one is able to infer the dynamics

occurring in an image sequence. These short-term dynamics (such as displacement be-

tween two frames, or occlusion/exposure areas) can be linked together or temporally

constrained in order to reason about longer term dynamics. However, we believe that

approach to be somewhat inadequate. Although the two-frame approach to video anal-

ysis has been very successful in some applications (e.g., MPEG and ITU compression

standards), it is often inadequate for the analysis of non-constant velocity motion, de-

tection of long-term innovation areas (occlusion and exposure), or video segmentation.

In this dissertation, we propose to perform segmentation jointly over multiple frames

which leads to partition of the three-dimensional image sequence domain into object

and background volumes (example of the object tunnel is shown in Fig. 1·1 (c)).

(a) (b) (c)

Figure 1·1: Example of segmentation of an image sequence: (a) original
frames of the sequence, (b) object contours resulting from the processing of
two frame at a time, and (c) object tunnel resulting from joint processing
of multiple frames.

Another important aspect of video analysis is modeling of motion fields for moving

3

objects and background. This is pretty straightforward in the case of two-frame process-

ing where motion field has to be modeled only spatially, with models varying from dense

(optical flow) to parametric (affine, perspective, etc.). However, if multiple frames are

processed jointly, motion vectors become motion trajectories which need to be modeled

both spatially and temporally. The simplest temporal model is piecewise linear where

separate motion vectors between consecutive frames are pieced together to form motion

trajectories. Parametric models, like constant velocity or constant acceleration models,

were also investigated. We propose to use more flexible spline representation for both

spatial and temporal motion trajectory modeling.

1.2 Applications

Segmentation of an image sequence has numerous applications, including content-dependent

video compression (e.g., MPEG-4 (Brady, 1999)), object-based transcoding (Vetro et al.,

2001), video processing (e.g., object-based frame-rate conversion (Han and Woods, 1997)

and deinterlacing (Haan and Bellers, 1998), digital compositing (Chuang et al., 2001)),

surveillance (Collins et al., 1999), video database queries (Chang et al., 1998) (event

detection, tracking), semantic video analysis (used for adaptive video content delivery

(A. Cavallaro, 2005)), and computer vision (scene analysis (Koch, 1993), structure from

motion (Chiuso et al., 2002)).

An example of application which would benefit from the joint analysis and process-

ing of multiple frames is video compression based on 3-D discrete wavelet transforms

(DWTs), a research area with significant activity in the last decade. The most success-

ful 3-D DWT video coders perform motion-compensated (MC) temporal DWT imple-

mented through lifting and followed by a 2-D spatial DWT (Taubman and Zakhor, 1994;

Ohm, 1994; Pesquet-Popescu and Bottreau, 2001; Bottreau et al., 2001). Depending

on the order of the underlying temporal wavelet, the MC temporal DWT may require

4

motion representation over 2 frames (Haar wavelet), 3 frames (5/3 wavelet), 7 frames

(9/7 wavelet) or even more. The temporal support of motion representation becomes

even longer with the growing number of temporal decomposition levels used (temporal

scalability). The current approaches use a simple frame-to-frame block matching motion

estimation, and subsequent ”stitching”. In addition to the long-term motion representa-

tion, such coders face the problem of ”innovations”, such as occluded and newly-exposed

areas, since they have no correspondence in the neighboring frames. Known as the “un-

connected” pixels, such areas are currently handled in an ad-hoc fashion. We believe

such coders could benefit from a reliable detection of occluded and newly-exposed image

areas.

1.3 Proposed approach to video analysis

In our work on video segmentation we will use an iterative approach called surface evo-

lution, which is an extension of curve evolution method to three-dimensional domain.

Standard approach to curve evolution is through energy-minimizing active contours.

Both parametric (B-splines, etc.) and non-parametric (level-set method) contour (or

surface) representations have been used in the literature. Although active contours have

been around for many years (Kass et al., 1988), only recently have they been applied

to motion-based video segmentation. This is due to the development of effective imple-

mentation framework for active contours called level-set methods (Sethian, 1996b). The

main idea is to represent a closed 2-D curve by a zero-level set of a 3-D dimensional func-

tion with two benefits over active-contour implementations: no need to re-parameterize

the curve during evolution, and automatic handling of variable topology (objects can

appear and disappear). Additionally, problems with curve self-intersections no longer

exist and numerical schemes for the level-set method are general for arbitrary dimen-

sions. The only drawback of the level-set implementation is its high computational

5

cost.

In this dissertation, we present a novel approach to joint space-time, motion-based

video segmentation. We pose the problem in variational framework with respect to a

3-D surface that partitions the image sequence domain into inside and outside. The

inside corresponds to a 3-D volume “carved out” by a moving object, that we shall

call object tunnel, while the outside corresponds to background (possibly static). The

problem is formulated as volume competition, i.e., the surface is adjusted in response

to the competition between voxels inside and outside of it, a 3-D generalization of

the region competition (Zhu and Yuille, 1996). The resulting active surface evolution

equation is discretized and solved using standard level-set approach (Sethian, 1996b) on

a 3-D domain (4-dimensional level-set function). In its simplest version, our algorithm

performs motion detection based on models proposed earlier in the literature (Jehan-

Besson et al., 2000).

This multi-frame motion detection algorithm results in fairly accurate object seg-

mentations. However, it commits consistent errors due to the nature of the observation

model used: segmented objects in each frame represent a union of object positions in

consecutive frames. To address this issue, we extend the method by explicitly model-

ing the evolution of object and background using motion trajectories (Ristivojević and

Konrad, 2004b). However, occluded and newly-exposed background areas (due to ob-

ject motion) cannot be explained by these motion trajectories. To account for these

regions, we include explicit models for the occluded and newly-exposed background ar-

eas. This leads to new space-time concepts of occlusion volume and exposed volume.

As for motion trajectories, we use a parametric model associated either with object or

background. Since we need to partition the image sequence domain into 4 volumes,

we use the multiphase level-set framework (Vese and Chan, 2002) (to be explained in

Section 2.3.4).

6

Although this approach significantly improves segmentation accuracy, it still does

not handle well image sequences in which a moving object enters or leaves the scene, or

is occluded by a static feature in the background. To solve that problem, we extend our

formulation to include explicit models of the occluded and newly-exposed areas of the

object (Ristivojević and Konrad, 2004a) (for a single moving object, resulting in parti-

tion of the image sequence domain into 6 volumes). Finally, we generalize our motion

segmentation formulation to allow for multiple moving objects. General variational for-

mulation is proposed, which can handle any number of objects and occlusion/exposure

volumes. A solution method based on multiphase level-set algorithm is described and

results for a natural sequence with two moving objects are presented.

Our simple multi-frame motion detection algorithm performs well only for image

sequences with static backgrounds. Since we use that method to initialize our more

advanced segmentation methods, it is very important to lift that constraint. We expand

our motion detection formulation to account for camera motion and zoom. We use

affine model to describe camera motion between frames, and calculate initial motion

parameters using global motion estimation. Afterwards, evolution of the level-set surface

that encloses moving objects and motion estimation in the background region only

are performed simultaneously. For each of the methods described above, we present

experimental results for synthetic and natural image sequences, and numerically compare

results for the synthetic sequences (for which ground truth segmentation is known).

A major drawback of the level-set method is its computational complexity, which

limits its usefulness for time-critical applications. Recently, a novel level-set implemen-

tation was developed by Shi (Shi, 2005) which dramatically reduces computational cost

of the algorithm. We apply it to all of our motion detection and segmentation methods

and investigate its performance by running experiments on different image sequences

and comparing results to the ones obtained using standard level-set implementation.

7

Reduction of computation time by up to 200 times is achieved, while the segmentation

accuracy of the standard level-set implementation is preserved. We also use this method

to run experiments on larger image sequences from VIVID Tracking Evaluation Web Site

at Carnegie Mellon University (Collins et al., 2005).

In our segmentation methods, we model evolution of moving objects and background

using motion trajectories which are piece-wise linear, i.e., they consist of motion vectors

calculated for each frame pair separately. These linear segments of the motion trajectory

are not constrained temporally in any way. However, the underlying motion of mov-

ing objects is smooth in temporal direction and to model that we expand our motion

estimation formulation with a term which penalizes the difference between consecutive

motion vectors along trajectory.

In an effort to model motion of objects and background with parametric models

over the whole span of the image sequence we investigate spatio-temporal modeling

of motion trajectories using splines as a part of the future work. An important issue

we address is how to calculate motion trajectories referenced around any frame of the

sequence given spline representation of motion trajectories estimated with respect to

one reference frame. We investigate motion trajectory modeling in detail, while only

describing issues concerning its application to video segmentation.

To summarize, the contributions of this dissertation are:

• Development of a novel approach to joint spatio-temporal motion-based video

detection and video segmentation based on volume competition and surface evo-

lution.

• Development of new, space-time models for occluded and newly-exposed areas in

a video sequence.

• Introduction of new space-time concepts of occlusion and newly-exposed volumes.

8

The rest of this dissertation is organized as follows. In Chapter 2, we give an overview

of motion-based segmentation methods proposed in the literature, with an emphasis

on multiple-frame methods. In Chapter 3, we formulate the problem of joint spatio-

temporal image sequence segmentation, describe a solution, and show results for the

simpler case of motion detection. We proceed to formulate motion-based segmentation

method with background occlusion detection in Chapter 4, solve it using the multiphase

level-set method and show results for synthetic and natural sequences. We extend the

formulation to include object occlusions in Chapter 5, and to the general case of multiple

moving objects in Chapter 6. In Chapter 7 we expand our motion detection method

to include compensation for moving background. A novel fast level-set implementation

developed by Shi is presented in Chapter 8, together with its application to our seg-

mentation methods. Finally, in Chapter 9 we summarize the work presented in this

dissertation and give some directions for future research.

9

Chapter 2

Prior work

Among numerous video segmentation methods proposed to date, we concentrate on the

ones which use motion as a primary segmentation cue. First, we discuss methods in

which segmentation of an image sequence is performed separately for each frame pair.

In some cases, an additional temporal constraint is applied, as a post-processing step, to

the resulting segmentation maps. Then, we present methods that jointly process groups

of frames, where a group consists of minimum 3 frames. Finally, we discuss mathematical

tools needed to implement segmentation algorithms proposed in this thesis.

2.1 Two-frame methods

The segmentation of an image sequence into moving objects is closely related to the

estimation of motion for each object. A good estimate of an object’s motion trajectories

makes segmentation of this object much easier. However, in order to find good estimates

for the object motion trajectories, one needs to localize the object in each frame of

the sequence as closely as possible. This kind of ”chicken and egg” problem can be

solved adequately only by considering both problems jointly, which leads to joint motion

estimation and segmentation. However, this joint segmentation/estimation problem is

very difficult and ill-posed.

The early attempts to solve this problem involved simple thresholding over the inter-

frame difference, where pixel-wise differences or block differences (to increase robustness)

have been considered. Later, robust optical flow motion estimation with a discontinuity-

10

preserving smoothness constraint (implemented using discontinuity weights in the smooth-

ness energy term) was proposed in (Konrad and Dubois, 1992; Mémin and Pérez, 1998).

This model was extended to couple the motion estimation process with an object-based

motion segmentation. The segmentation process interacts with motion estimation only

through discontinuity weights. A combined motion estimation and segmentation method

within a Bayesian framework was proposed in (Chang et al., 1997). Motion fields were

modeled as the sum of a parametric field and a non-parametric residual field. Markov

random field (MRF) models were applied to both motion and segmentation fields. The

resulting energy function is minimized iteratively, with interleaved updates of motion

and segmentation field performed using highest confidence first (HCF) optimization

scheme.

Having multiple moving objects in an image sequence makes its segmentation even

more difficult. We would like to avoid semiautomatic algorithms in which human inter-

vention is needed to define the number of objects in an image sequence. In (Wang and

Adelson, 1994) image sequences are represented with sets of overlapping layers, each

layer corresponding to a moving object in the sequence and containing a set of maps

specifying its intensity, opacity, and motion. Local motion estimates are obtained using

multi-scale optical flow algorithm. An image is initially divided into small square regions

and parameters of an affine motion model for each region are calculated. Similar motion

models are grouped in the affine motion parameters space with a K-means clustering al-

gorithm. Regions within the image are assigned to derived motion models in a way that

minimizes motion distortion between estimated local motion field and the affine motion

field corresponding to that model. The procedure is repeated iteratively together with

additional processing which enforces local spatial connectivity of motion regions. Tech-

niques for automatic decomposition of a video sequence into multiple motion models

and their layers of support are presented in (Sawhney and Ayer, 1996). The authors

11

present a method for the simultaneous estimation of multiple 2D parametric models and

their layers of support. The multiple model estimation problem is formulated as robust

maximum-likelihood estimation (MLE) of mixture model parameters and of the layers

of support represented as ownership probabilities. The adequate number of models is

automatically decided using the minimum description length (MDL) principle that min-

imizes the encoding length of the model parameters and of the MLE residuals. The

estimation uses a modified Expectation-Maximization (EM) algorithm.

Curve evolution methods and their implementation through level-set methods have

recently become a modeling/solution tool of choice for image segmentation as well as

spatial video segmentation, e.g., based on motion. Video segmentation methods based

on that framework can be divided into two broad groups. In the first group, curve evo-

lution stops at large gradients in the motion field (or both motion and intensity fields

for ”mixed” models). These approaches can be considered edge-based. In (Paragios and

Deriche, 2000), the probability density function of inter-frame differences is statistically

modeled using a mixture model, which is a combination of two components (background

model and object model). Using the Bayes rule, the conditional object boundary prob-

ability given the observed data is estimated. The detection and the tracking problem

are dealt with simultaneously using a geodesic active contour model with two terms:

the detection term which forces the curve to converge towards the moving area, and the

tracking term used for evolving the curve additionally until it coincides with the exact

location of the moving object edge.

If the consecutive frames are stacked on top of each other, a video sequence can be

represented as a 3-D volume (x − y − t). Motion in the sequence can be estimated by

analyzing orientations of local gray-value structures n this volume (gray values remain

constant in the direction of motion). Moving and static parts on the image plane can

be determined from the direction of minimal gray value change in the spatio-temporal

12

volume. This direction can be calculated using a 3-D structure tensor. At each point,

structure tensor is defined based on the spatio-temporal image sequence derivatives

measured in a region around that pixel (Wright and Pless, 2005). Eigenvalues of the

three-dimensional structure tensor were used to create motion maps in (Zhang et al.,

2001; Kühne et al., 2001). Tensor-based motion detection is incorporated into classi-

cal active-contour model (Caselles et al., 1997a). In (Kühne et al., 2001) results are

improved by contour refinement using image gradient information, while global motion

estimation is performed before tensor-based motion detection in (Zhang et al., 2001).

One of the limitations of the edge-based models is that they are easily attracted

to local minima and the capture range of object’s boundary contour is relatively small

(requiring careful initialization). To alleviate these problems, the second group of ap-

proaches, which consider all intensities in a region (region-based approaches), have been

proposed. In (Zhu and Yuille, 1996), a novel region competition formulation is derived

by minimizing a generalized Bayes/MDL criterion. Intuitively, adjacent regions com-

pete for ownership of pixels along their boundaries, subject to a smoothness constraint.

This approach combines the most attractive aspects of active contours and region grow-

ing to minimize a global cost function. Region competition is applied to the problem

of motion-based video segmentation in (Mansouri and Konrad, 1999; Mansouri and

Konrad, 2003). A parametric motion model is assigned to each moving region and the

problem is formulated in MAP framework using only motion information, with a prior on

curve length. The resulting energy functional is minimized using the level-set method.

This formulation is extended to account for the coincidence of motion and intensity

boundaries in (Mansouri and Konrad, 2003). Furthermore, the approach is generalized

to multiple-motion segmentation, using a system of coupled level-set partial differential

equations. To initialize the segmentation algorithm, the number of motion classes and

motion parameters (assumed to be affine) for each class are computed independently of

13

any motion segmentation using correspondence estimation and motion classification. A

general framework for region-based active contours for moving object segmentation is

proposed in (Jehan-Besson et al., 2003). That framework is applied to the detection of

moving objects in a video sequence acquired by static camera. A variational method

for the space-time segmentation of a moving object against still background over a se-

quence of two-dimensional or three-dimensional image frames is proposed in (Debreuve

et al., 2001). This segmentation process is geometrically-constrained to be region-based,

with information inside object/background region being integrated over the entire se-

quence. However, the evolution of object contour is performed separately for each frame,

with a minimum-length regularization term. The method is implemented using level-set

framework and applied to 3-D medical data.

2.1.1 Two-frame motion detection – a reference approach

In Chapter 3 we will present our spatio-temporal motion detection method. In order

to evaluate performance of the new approach, we will use a two-frame motion detection

method proposed by Jehan-Besson and Barlaud (Jehan-Besson et al., 2000). Our de-

tection method (Chapter 3) can be viewed as a simple extension of this algorithm to

space-time; the underlying models are the same in both approaches, but the reference

algorithm is performed in spatial domain while the proposed approach is carried out in

spatio-temporal domain. The reference algorithm partitions the spatial domain Ω by

means of the following minimization:

min
~γ,p,p̄

α

∫∫

R

ξ(x, t; p)dx +

∫∫

R̄

ξ(x, t; p̄)dx + λ

∫

L

d~γ, (2.1)

where ~γ = ∂R is a parameterized curve, region R is inside of ~γ, its complement R̄

is outside of ~γ (Ω = R ∪ R̄), and L is the length of the boundary curve ~γ. In the

formula above, x denotes spatial position and t denotes time, while p and p̄ are motion

14

parameters for the regions R and R̄, respectively.

Assuming stationary background, we propose, after Jehan-Besson and Barlaud (Jehan-

Besson et al., 2000), absolute frame difference as the measure of background intensity

variation:

ξ(x, t; p̄) = |I(x, t) − I(x, t − 1)|, (2.2)

and a fixed penalty within the object:

ξ(x, t; p) = 1. (2.3)

In order to attain the global minimum in (2.1), the contour ~γ must partition the domain

so that points (x, t) with small frame difference (small ξ(x, t; p̄)) are assigned to the

outside (R̄), and those with large difference – to the inside (R). The balance between

such assignments is controlled by α. If an image sequence has a stationary background,

frame difference in the background region will correspond to the noise level in the se-

quence. The parameter α serves as a threshold – points (x, t) with frame differences

smaller than α will be assigned to the background (R̄), and those with differences larger

than α to the object region (R).

We can write active contour evolution equation for (2.1) as follows:

∂~γ

∂τ
= [α − |I(x, t) − I(x, t − 1)| + λκ]~n. (2.4)

Ignoring the curvature and remembering that ~n is the inward unit normal, α > |I(x, t)−

I(x, t − 1)| will result in the contour shrinking and thus relinquishing the point (x, t),

while α < |I(x, t)−I(x, t−1) will cause the contour to expand thus enclosing this point.

As for the curvature κ, it plays the role of a smoothing filter with respect to curve point

coordinates. By embedding active contour ~γ as the zero-level set of the surface φ, we

15

obtain the following level-set evolution equation:

∂φ

∂τ
= [α − |I(x, t) − I(x, t − 1)| + λκ]‖∇φ‖,

where τ is the evolution time and κ is a 2-D curvature of φ:

κm = ∇
∇φ

|∇φ|
=

φxxφ
2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3/2

.

Evolution is executed separately for each frame pair (i.e., each t and t − 1).

2.1.2 Two-frame motion-based segmentation – a reference approach

Similarly to the motion detection algorithm, we need to validate the new video seg-

mentation approach (to be presented in Chapter 4) against a method using motion

compensation but only over two frames. We selected a recent method proposed by

Mansouri and Konrad (Mansouri and Konrad, 2003). The basic formulation of their

approach uses minimization (2.1) but with error measures ξ(x, t; p) redefined as follows:

ξ(x, t; pi) = (I(pix, t) − I(x, t − 1))2, i = 1, 2,

where the motion parameters for the object and background are p1 = p and p2 = p̄.

We use motion detection results calculated using previous, motion detection two-frame

method to obtain estimates of motion parameters pi. We again minimize the energy

functional (2.1), with α = 1, and as a result obtain the following level-set evolution

equation:

∂φ

∂t
= [ξ2(x, t; p) − ξ2(x, t; p̄) + λκ]‖∇φ‖.

16

2.2 Multiple-frame methods

In order to speed up the convergence and improve precision (by avoiding local minima),

approaches based on two frames usually use previous-frame segmentation maps to ini-

tialize subsequent segmentations. Another approach is to perform tracking of segments

between frames, either by including a tracking term into active contour model or by

performing additional tracking step after the segmentation step is completed. However,

an approach more interesting to us is to perform the segmentation jointly over several

frames. Some early work using multiple frames includes motion detection using 3-D

MRF models (Luthon et al., 1999). The authors propose two algorithms: a 3-D sep-

arable MRF model which uses motion information from three consecutive frames but

only the current frame is processed at each time, and a 3-D non-separable model where

observation and label fields are spatio-temporal 3-D random fields. Observations are

still differences between consecutive frames and the neighborhood structure is a com-

plete spatio-temporal cube. However, the resulting energy function is jointly optimized

in spatio-temporal domain using a spatio-temporal version of the ICM algorithm. A

multiresolution version of the 3-D non-separable algorithm has been also proposed to

deal with uniform intensity moving areas and sub-pixel motion.

A video segmentation approach based on volume growing is proposed in (Porikli

and Wang, 2001). Image frames between two scene cuts are organized in a 3-D “video-

cube”, marker points are selected as minimum gradient magnitude points and the vol-

umes are enlarged iteratively from the markers using color/texture distance criteria.

Self-descriptors for each volume and mutual descriptors for each pair of volumes are

computed, capturing motion and spatial information of volumes. In the clustering stage,

volumes are classified into objects in a fine-to-coarse clustering hierarchy. In each iter-

ation, the pair of volumes with maximum descriptor-based similarity score is merged.

Parker and Magarey (Parker and Magarey, 2001) proposed a 3-D extension of the

17

2-D Mumford-Shah region-merging segmentation algorithm. In the 2-D merging al-

gorithm, segmented image is represented as a simple, undirected, weighted graph, with

vertices representing regions and the edges representing the boundaries between regions.

Initially, each pixel is added to the graph as a separate region. In each iteration, two

neighboring regions with minimum merging cost are merged and the graph is updated.

This algorithm is easily generalized to 3-D segmentation by replacing pixels with voxels

and four direct 2-D neighbors with six direct neighbors in 3-D. This 3-D segmentation

algorithm is applied to a fixed-size spatio-temporal window sliding through time – new

unsegmented frames are added to the graph while fully-segmented frames are removed

from the back of the sliding window.

More recently, a novel concept of object tracking as spatio-temporal motion boundary

detection has been investigated (Feghali et al., 2001; Mitiche et al., 2002). In (Feghali

et al., 2001), a variational formulation for motion boundary detection in spatio-temporal

space is proposed and implemented using the level-set method. The authors use the

absolute value of normal component of the optical velocity as a measure of motion

activity and the minimization of their energy criterion yields a level-set surface enfolding

the volumes of motion activity. A similar method is proposed by the same authors in

(Mitiche et al., 2002), where the estimation of the motion boundary surface is posed

as MAP sequence partitioning problem. The same motion activity measure is used

as in (Feghali et al., 2001), but with an explicit modeling of both static and moving

regions. In addition to the standard minimum-surface assumption, the prior model

encourages surfaces which are motion boundaries. Minimization of the resulting energy

functional yields a spatio-temporal surface biased toward smooth closed surfaces which

partition the image sequence into volumes of contrasting motion activity, coincide with

motion boundaries, and have a small area. Both methods can handle moving cameras

if the image motion field is locally approximately constant everywhere except at motion

18

boundaries.

Multiple-image framework has led to interesting space-time image sequence segmen-

tation methods developed by Mansouri et al. (Mansouri et al., 2002; Mansouri and

Mitiche, 2002) and, independently, by us (Konrad and Ristivojević, 2002). In (Man-

souri et al., 2002), motion segmentation in spatio-temporal domain is formulated as a

MAP estimation and solved using the level-set method. For the observation model,

variation of intensities over object and background motion trajectories is represented

using standard Brownian motion. Minimum boundary surface area is used as the prior

model. The authors simplify the problem by considering only motion trajectories as-

sociated with constant-velocity translational motion, and estimate this motion prior

to segmentation. This MAP formulation leads to a volume competition energy mini-

mization problem, with two motion models competing for each boundary point through

motion-compensated residuals. They proposed extension of the method to the estima-

tion of multiple moving regions using a separate level-set function for each region. In

(Mansouri and Mitiche, 2002), motion segmentation problem is formulated as a pursuit

in the space of image segmentations. They propose an algorithm for spatial motion

segmentation, but claim that it can be easily extended to the joint spatio-temporal case

similarly to (Mansouri et al., 2002). Given a set of sparse correspondence points, a

parametric transformation (e.g. translational, Euclidean, affine, ...) is estimated based

on a projection of a square block around each correspondence point. Estimation of

multiple object regions and the corresponding motion transformations is posed as a

MAP problem, with standard minimum-length boundary prior. However, instead of

solving the problem for all regions simultaneously, a transformation with the minimal

estimation error is chosen and region corresponding to that transformation is estimated

through level-set evolution. At the next step of the pursuit, only the residual of motion

regions obtained in the previous step is segmented. The previously-estimated regions

19

can change since at each iteration a system of level-set equations is evolved, one for

each region estimated thus far. The main difference of our approach is that we propose

to estimate motion of the object simultaneously with its segmentation. Most recently,

spatio-temporal motion detection method with background (camera) motion compensa-

tion has been developed by Feghali and Mitiche (Feghali and Mitiche, 2004). They pose

the problem as joint estimation of motion boundary surface and background motion

parameters through MAP framework. Similarly to (Mitiche et al., 2002) they use the

normal component of optical velocity as motion measurement. The difference between

that measurement and the normal component due to camera motion is used in the obser-

vation model for object and background region. With the standard minimal-boundary

surface prior, this formulation leads to volume-competition energy functional, which is

simultaneously minimized with respect to motion parameters and segmentation surface.

Camera motion is assumed to be constant-velocity translational motion. This method

is described in more detail in Section 7.1.

An extension of the active contour/level-set framework to multiple-object segmen-

tation is very easy if the multiphase level-set methodology is used. This is in contrast

to previous variational approaches to multiple-motion segmentation, where additional

constraints are needed (Mansouri and Konrad, 2003). Since separate level-set function

is used to describe each moving object, solutions obtained may not form a partition

of the image domain – points belonging to two or more regions or not belonging to

any region may exist. This problem cannot be completely removed even with additional

constraints in level-set evolution equations, but it is handled naturally in the multiphase

level-set method. Motion segmentation methods based on a multiphase level-set solu-

tion proposed in the literature consider only two frames of an image sequence at a time

(Cremers, 2003; Shi et al., 2004; Mansouri et al., 2004). In (Cremers, 2003), the problem

is formulated as extension of the Mumford-Shah functional from the case of gray-level

20

segmentation to the case of motion segmentation. Minimizing a functional with respect

to the segmentation boundary and the set of motion vectors jointly solves the problem

of segmentation and motion estimation. The authors assume constant-velocity field in

each region. A variational framework for simultaneous segmentation of multiple motions

and occlusions is proposed in (Shi et al., 2004). The proposed energy functional consists

of a term that penalizes matching error for each motion transformation, a constant-cost

occlusion term, and a minimum-length boundary term. In the first stage of algorithm,

motion classification and estimation is performed using feature-based method, with mo-

tion transformation in each region assumed to be affine mappings. In the second stage,

motion and occlusion segmentation is performed using the multiphase level-set method.

A new representation of partition of an image domain into a fixed but arbitrary num-

ber of regions by explicit correspondence between the regions of segmentation and the

regions defined by simple closed planar curves and their intersections is investigated in

(Mansouri et al., 2004). This representation is used in the context of region competition

for intensity, motion, and disparity based segmentation.

In terms of the detection of occlusions, methods proposed to date are primarily based

on the analysis of 2-3 frames (Thoma and Bierling, 1989; Driessen and Biemond, 1991;

Depommier and Dubois, 1992; Heitz and Bouthemy, 1993; Irani and Peleg, 1993; Lim

et al., 2002). A method using more frames was proposed in (Chahine and Konrad,

1995). The authors propose to estimate motion trajectories over several frames using

MAP estimation framework and MRF models. Each motion trajectory is modeled us-

ing quadratic parametric model (velocity and acceleration), and the parametric field is

assumed to be spatially smooth. For structural model, sample variance is used as a mea-

sure of intensity variation over motion trajectories. The resulting energy minimization

problem is solved using Gauss-Seidel relaxation. To improve motion estimation results,

occlusion and motion discontinuity fields are introduced and estimated simultaneously

21

with the motion field. The structural model is changed to account for occlusion informa-

tion, while the prior model is modified to incorporate motion discontinuities. Occlusion

fields are estimated from five frames, and their model includes penalty for states differ-

ent from visible, while it favors the creation of continuous occlusion regions only near

motion discontinuities. It is very difficult to estimate temporal discontinuity based on

just a few samples; using more frames improves the reliability of occlusion detection.

2.3 Optimization and implementation tools

Different optimization methods, both deterministic and stochastic, were successfully

used in the literature. Algorithms like Highest Confidence First (HCF) (Chou and

Brown, 1990), Iterated Conditional Modes (ICM) (Besag, 1986), or multiresolution it-

erative deterministic optimization belong to the former group. Simulated annealing

(Geman and Geman, 1984) and other stochastic relaxation methods represent the lat-

ter group. However, we will concentrate on methods that use active-contour/level-set

optimization framework.

2.3.1 Level-set method

Developed originally for the modeling of flame propagation, the level-set approach has

found numerous applications in computer vision and image processing: object shape re-

covery (Malladi et al., 1995), 3-D object segmentation (Caselles et al., 1997b), Mumford-

Shah problem of simultaneous image smoothing and segmentation (Tsai et al., 2000),

and segmentation of a moving object against still background over a sequence of 2-D or

3-D image frames (Debreuve et al., 2001). In this section we will describe basic ideas

behind the level-set method (detailed description can be found in (Sethian, 1996b)).

Consider a boundary, either a curve in two dimensions or a surface in three dimen-

sions, separating one region from another, as shown on Fig. 2·1. This curve/surface

22

Fn

Inside

OutsideC

Figure 2·1: Curve propagating with speed F in the normal direction.

moves in a direction normal to itself with a known speed function F according to the

following equation:

dC

dt
= F~n,

where ~n is the outward normal to the curve C. The goal is to track the motion of this

interface as it evolves. In the level-set method, this evolution problem is formulated in

an Eulerian framework, that is, one in which the underlying coordinate system remains

fixed.

We will assume for the moment that F > 0 (the front always moves “outward”).

One way to characterize the position of this expanding front is to compute the arrival

time T (x, y) of the front as it crosses each point (x, y). The equation for this arrival

function T (x, y) is easily derived. Using the fact that distance = rate ∗ time, in one

dimensional case we have that

1 = F
dT

dx
.

In the multi-dimensional case, ∇T is orthogonal to the level sets of T and its magnitude

23

is inversely proportional to the speed:

|∇T |F = 1, T = 0 on Γ, (2.5)

where Γ is the initial location of the interface. The front motion is characterized as

the solution to a boundary value problem. If the speed F depends only on position,

equation (2.5) reduces to what is known as the “Eikonal” equation.

X

Y

X

Y

X

Y

F=0

F=0

F(x,y,t=1)

F(x,y,t=2)

Figure 2·2: Transformation of front motion into the initial value problem.

Let’s assume now that the front moves with speed F that is neither strictly positive

nor negative. The front can move forward and backward, crossing a point (x, y) several

times, so the crossing time T (x, y) is not a single-valued function. One way to solve this

problem is to embed the initial position of the front as the zero level-set of a higher-

dimensional function φ. The evolution of this function φ can then be linked to the

propagation of the front itself through a time-dependent initial value problem. At any

time, the front is given by the zero-level set of the time-dependent level-set function φ

24

(see Fig. 2·2).

In order to derive an equation of the motion for this level-set function φ and match

the zero-level set of φ with the evolving front, we first require that the level-set value of

a particle on the front with path x(t) must be always zero:

φ(x(t), t) = 0.

Using the chain rule, we obtain:

φt + ∇φ(x(t), t) · x′(t) = 0.

The force F is the speed in the outward normal direction, so x′(t) · ~n = F , where

~n = ∇φ/|∇φ|. This yields an evolution equation for φ:

φt + F |∇φ| = 0, given φ(x, t = 0). (2.6)

This is the level-set equation given by Osher and Sethian (Osher and Sethian, 1988).

For certain forms of the speed function F , (2.6) becomes standard Hamilton-Jacobi

equation.

Both of these level-set formulations, the initial-value and boundary-value perspective,

have important advantages when compared to active-contour formulations.Topological

changes in the evolving front are handled automatically. Both formulations are un-

changed in higher dimensions, for hypersurfaces propagating in three dimensions or

higher, and can be accurately approximated by computational schemes which exploit

techniques borrowed from the numerical solutions of hyperbolic conservation laws. Both

methods are made more efficient through the use of adaptive computational strategies,

which will be described in Section 2.3.3. Finally, geometric properties of the front are

easily determined in both formulations. For example, at any point of the front, the

25

outward normal vector is given by

~n =
∇φ

|∇φ|
or ~n =

∇T

|∇T |
, (2.7)

and the curvature of the front at any point is easily obtained from the divergence of the

normal vector, i.e.,

κ = ∇ ·
∇φ

|∇φ|
or κ = ∇ ·

∇T

|∇T |
, (2.8)

2.3.2 Level-set methodology for active surfaces

Although the level-set approach implements curve evolution and has been known for a

number of years, only recently has it been related to snakes. Caselles et al. (Caselles

et al., 1997a) showed that energy-minimizing active contours (snakes) are related to

the level set formalism by means of geodesic active contours (i.e., minimal distance

paths) in a Riemannian space. In particular, if ~γ(p) = [x(p) y(p)]T : [0, 1] → R2 is a

parameterized planar curve and I : Ω → R+ is an image intensity, it is shown that the

snakes formulation, void of the (second-order) rigidity term, is equivalent to geodesic

computation:

min
~γ

1∫

0

|~̇γ(p)|2dp − λ

1∫

0

|∇I(~γ(p))|dp min
~γ

1∫

0

g(|∇I(~γ(p))|)|~̇γ(p)|dp (2.9)

where ~̇γ = ∂~γ/∂p, and g(.) is a strictly decreasing function (g(x) → 0 as x → 0).

Note, that in the geodesic formulation, the Euclidean length |~̇γ(p)|dp is weighted by

g(|∇I(~γ(p))|), and, therefore, instead of finding a classical minimal-length path (as

achieved by minimizing
∫
|~̇γ(p)|dp), one looks for a minimal-length path obeying image

characteristics expressed through g(|∇I(~γ(p))|).

Minimization of (2.9) is performed using the steepest-descent method. It is shown

that initial curve ~γ(0, p) (t is evolution time) deforms towards (local) minimum of (2.9)

26

based on the following curve evolution equation:

∂~γ(t, p)

∂t
= g(|∇I(~γ(t, p))|)κ~ni − (∇g(|∇I(~γ(t, p))|) · ~ni)~ni, (2.10)

where κ is the Euclidean curvature and ~ni is the unit inward normal of ~γ. Caselles

et al. (Caselles et al., 1997a) proceeded to represent equation 2.10 using the level-set

approach. We will follow their derivation. Starting from the following curve evolution

equation (for a given function β)

∂γ

∂t
= ~γt = β~ni, (2.11)

they want to represent ~γ as the level-set of a function φ : R2 → R and to derive how φ

should evolve. They give a very simple geometrical derivation of this embedding process.

Assume that φ is negative in the interior of the zero-level set (usually, the signed distance

function is used for φ) and consider a level-set, defined by

{Γ ∈ R2 : φ(Γ, t) = 0}. (2.12)

They want to find the evolution of φ(t) such that the evolving curve ~γ(t) is represented

by the evolving zero-level set Γ(t) (i.e., ~γ(t) ≡ Γ(t)). By differentiating (2.12) with

respect to t they obtain

∇φ · Γt + φt = 0. (2.13)

Based on (2.7), for any level-set, the following relationship holds:

∇φ

|∇φ|
= −~ni. (2.14)

Since ~γ(t) ≡ Γ(t), by combining relationships (2.11), (2.13), and (2.14) they obtain the

level-set evolution equation:

φt = β|∇φ|. (2.15)

27

Based on (2.9) and embedding (2.10) in φ for β = g(|∇I|)κ− (∇g(|∇I|) ·~n), Caselles

et al. (Caselles et al., 1997a) obtained that solving the geodesic problem is equivalent

to searching for the steady-state solution (∂φ
∂t

= 0) of the following evolution equation

(with initial conditions φ(0, ~γ) = φ0(~γ)):

∂φ

∂t
= g(|∇I|)κ|∇φ| − ∇g(|∇I| · ∇φ, (2.16)

where the curvature κ is computed on the level-sets of φ using (2.8).

In order to formulate image sequence segmentation jointly over several frames, it is

natural to consider an extension of active contours (2-D) to active surfaces (3-D). This

leads to minimal-surface formulations that have been applied to 3-D shape recovery

(Malladi et al., 1995; Caselles et al., 1997b). A path particularly pertinent to this thesis

has been undertaken by Caselles et al. (Caselles et al., 1997b). Let I : Ω × T → R+

be intensity and let ~ς be a surface in 3-D space with area S. By parameterizing the

surface, ~ς(p, q) : [0, 1] × [0, 1] → R3 with p = (x, y, z) and q = q(x, y, z), Caselles et al.

have proposed to compute the minimal surface enclosing a 3-D object as follows:

min
~ς

∫∫

S

g(δI)d~ς
∂~ς

∂τ
= [g(δI)κm −∇g(δI) · ~ni]~ni,

where g(·) is a strictly decreasing function, δI is a measure of intensity variation, d~ς is a

Euclidean area element, κm is the mean curvature and ~ni is the inward unit normal to ~ς .

The term g(δI)κm~ni smoothes out the surface by reducing its curvature, unless g(δI) is

zero which means a large intensity change (e.g., perfect edge). The term (∇g(δI) ·~ni)~ni

“pushes” the contour toward an intensity edge as long as the orthogonal component of

∇g is non-zero. This term allows locking to edges with intensity variations or even gaps

along the edge. This approach has been further extended by the same authors (Caselles

28

et al., 1997b):

min
~ς

∫∫∫

V

f(δI)d$+λ

∫∫

S

g(δI)d~ς
∂~ς

∂τ
= [f(δI)+g(δI)κm−∇g(δI) ·~ni]~ni, (2.17)

where the new term is a measure of the Euclidean volume element d$ weighted by

f(δI), and f(·) is another strictly decreasing function. The new term adds a constant

“balloon” force f(δI)~ni to the surface evolution equation helping avoid local minima

and speeding up convergence. Note that in the above formulation, the evolution force

vanishes at δI → ∞, i.e., at a perfect edge; objects with smooth intensity transitions

cannot be detected.

Similarly to active contours, active-surface solutions (2.17) suffer from stability prob-

lems and fixed topology, which both can be overcome using level-set methodology. By

embedding the active surface ~ς into a hyper-surface φ (in 4-D space) leads to the fol-

lowing level-set evolution equation:

∂φ

∂τ
= F‖∇φ‖ = [f(δI) + g(δI)κm −∇g(δI) · ~ni]‖∇φ‖.

2.3.3 Computationally-efficient level-set implementations

Efficiency of the level-set method was improved over the years, by the introduction of

several algorithms. The straightforward approach to the level-set method is to solve

the initial value partial differential equation (PDE) (2.6) for the level-set function φ in

the entire computational domain. This is called a “full matrix approach” since one is

updating all level sets, not just the zero-level set corresponding to the front itself. When

only the zero-level set is of interest, the Narrow Band method has been proposed (Adal-

steinsson and Sethian, 1995) to accelerate the evolution process. A tube is constructed

around the zero-level set and the level-set function is initialized as a signed distance

function within this tube. Only the values of φ within this narrow band are updated.

29

When the front moves near the edge of the tube boundary, the calculation is stopped,

and a new tube is built with the zero-level set at the center. This rebuilding process

is known as “re-initialization”. One variant of the Narrow Band level-set method is to

characterize the narrow band by the values of the level-set function φ, rather than by

distance in the domain space, and dynamically add grid points to the narrow band as

it moves based on the values of the level-set function. Points whose |φ| values go above

a certain threshold level are removed, while neighbors are added around those that dip

below the threshold. As new grid points are added, the φ function in the entire narrow

band is reinitialized to the signed distance function, and the calculation is advanced one

time step. Advantages of the Narrow Band level-set method compared to the standard

“full matrix approach” are numerous. In addition to performing calculations only in

the neighborhood of the zero-level set, extension of the speed function F has to be done

only for the points lying near the front. Also, in the narrow band implementation, the

time step can be adaptively chosen in response to the maximum velocity field achieved

within the narrow band, not the entire domain.

The Fast Marching algorithm developed by Sethian (Sethian, 1996a) allows one to

efficiently solve the boundary value problem (Eikonal equation (2.5)) without iterations.

Using an upwind scheme, (2.5) can be discretized as follows:




max(D−x
ijkT,−D+x

ijkT, 0)2

max(D−y
ijkT,−D+y

ijkT, 0)2

max(D−z
ijkT,−D+z

ijkT, 0)2




1/2

=
1

Fijk

. (2.18)

The central idea behind the Fast Marching method is to systematically construct the

solution T using only upwind values. Upwind difference structure of (2.18), allows us

to propagate information from smaller values of T to larger values. Starting from the

boundary condition, we build the solution outward from the smallest T value. We sweep

30

the front along considering points in a thin zone around the existing front, marching

this zone forward, freezing the values of existing points and bringing new ones into the

narrow band structure. The grid point in this narrow band with the smallest value for

T is located using a min-heap data structure and its value is fixed, new values of T at

each of the four neighboring grid points are calculated using (2.18), and these points are

included into the narrow band. The procedure is repeated until the whole domain has

fixed values of T . There are few reasons Fast Marching method is usually even more

efficient than Narrow Band method. Since there is no notion of time step in the Fast

Marching method, the speed F of the front is irrelevant to the efficiency of the method.

Also, the number of the elements of the heap depends on the length of the front; in most

cases, this length is small enough that, for all practical purposes, the sort is very fast

and essentially O(1).

A combination of Fast Marching and Narrow Band methods was proposed by Para-

gios and Deriche (Paragios and Deriche, 2000), under the name Hermes Algorithm. It

employs the idea of selective propagation (Fast Marching) over a relatively small window

(Narrow Band). At each step, a pixel of the front with the highest absolute propaga-

tion velocity is chosen using heap sort, a centralized circular window is defined around

this pixel and the level-set function is updated locally within this window. When the

local level-set evolution is completed, the new front is extracted within the local window

and the level-set function is reinitialized locally. The procedure is repeated until cer-

tain number of iterations is reached or the front does not further move. The proposed

algorithm does not solve exactly the given PDE in terms of the intermediate levels of

the curve evolution but the final solution is obtained very fast and corresponds to the

solution of the original PDE.

More recently, even a more efficient algorithm for computing the numerical solu-

tion of Hamilton-Jacobi equations (example of which are Eikonal equations), the Fast

31

Sweeping method, was proposed by Tsai et al. (Tsai et al., 2003). It provides a way to

compute solutions to a class of Hamilton-Jacobi equations for which the conventional

fast marching method is not applicable. The basic idea of the “sweeping” approach is

to calculate solution by visiting each grid node in some predefined order. There is no

need for heap sort data structure to determine the grid point to be updated, and the

solution is obtained after just few sweeps. Using this approach, the complexity of the

algorithms drops from O(N log N) in fast marching to O(N).

We will give more detailed description of the implementation of the level-set method

we used in our detection and segmentation algorithms in Section 3.2. Recently, a novel

level-set implementation was developed by Shi (Shi, 2005) which dramatically reduces

computational cost of the algorithm and we will describe it in detail in Chapter 8.

2.3.4 Multiphase level-set methodology

For our multi-frame motion-compensated segmentation algorithms described in Chap-

ters 4–6, we use multiphase framework (Vese and Chan, 2002), which allows efficient

representation of up to 2M regions with only M level-set functions. By design, the mul-

tiphase level-set method enforces a domain partition with no gaps and overlaps, thus

simplifying energy formulation when compared to the ”one object – one level-set sur-

face” approach (Mansouri and Konrad, 2003). We will briefly describe the multiphase

level-set representation introduced by Vese and Chan (Vese and Chan, 2002) (that paper

also contains good overview of the development of multiphase level-set idea).

Using one level-set function, we can represent only two segments (phases) in an image

(or an image sequence). The multiphase level-set model allows us to represent more than

two segments, together with triple junctions and other complex topologies, in an efficient

way. We need only log2 N level-set functions to represent N segments (compared to N−1

level-set functions required when each segment is represented by a separate function).

32

In addition, this formulation automatically removes problems of vacuums and overlaps,

because this partition is a disjoint decomposition and covering of an image (sequence)

domain Ω by definition. We proceed to give more formal mathematical definition.

Let us consider M = log2 N level-set functions φi : Ω → R. The union of the zero-

level sets of φi will represent the edges in the segmented image (or image sequence). We

also introduce the “vector level-set function” Φ = (φ1, . . . , φM) and the “vector Heaviside

function” H(Φ) = (H(φ1), . . . , H(φM)) whose components are only 1 or 0. We can now

define segments in the domain Ω in the following way: two pixels (x1, y1) and (x2, y2) in

Ω will belong to the same phase (or class), if and only if H(Φ(x1, y1)) = H(Φ(x2, y2)).

In other words, the phases are given by the level sets of the function H(Φ), i.e., one

phase is formed by the set

{(x, y) ∈ Ω|H(Φ(x, y)) = constant vector ∈ H(Φ(Ω))}.

There are up to N = 2M possibilities for the vector-values H(Φ(Ω)) in the image

(image sequence). In this way, we can define up to N = 2M phases (classes) in the

domain Ω. The phases defined in this manner form a disjoint decomposition and covering

of Ω. Therefore, each pixel (x, y) ∈ Ω will belong to one, and only one class, by definition,

and there is no vacuum or overlapping among the phases. The set of boundary curves

(surfaces) is represented by the union of the zero-level sets of the functions φi.

33

Chapter 3

Multi-frame motion detection using active

surfaces

Motion detection methods based on the processing of image sequence in groups of two

frames at a time produce results with no temporal consistency. By differentiating one

frame from the other they produce separate segmentations of each frame of image se-

quence into 2-D regions of motion activity. In order to improve precision, previous-frame

detection maps are often used to initialize subsequent detections. Temporal constraining

of the results can be introduced through post-processing by performing an additional

tracking step after the detection is completed. Another approach is to causally constrain

the current detection process with a previous-frames detection result. However, in any

of these cases, future frames are not taken into account. Only by looking at multiple

frames jointly the temporal consistency of moving regions can be fully exploited and

lead to better detection results. In this chapter, we propose to perform segmentation

jointly over multiple frames, which leads to a 3-D segmentation, i.e., search for a volume

“carved out” by a moving object in the 3-D image sequence domain, which we call object

tunnel. After developing general segmentation formulation in Section 3.1, we simplify it

for the case of object moving against still background in Section 3.2, which leads to a

method which detects moving areas in a sequence.

34

y

t

x

Figure 3·1: Example of image sequence and its spatio-temporal (x−y−t)
domain.

3.1 General MAP formulation

We seek a parameterized surface ~ς that delineates moving objects in an image sequence

I(x, t). Let It, defined on Ω, be one frame of the image sequence captured at time

t, and let I t = {Iτ : τ ∈ T } be a subset of the sequence I(x, t) based on which ~ς is

estimated (Fig. 3·1 shows an example of such image sequence). Clearly, Ω × T is the

(spatio-temporal) domain of the sequence I(x, t) on which ~ς is computed (x ∈ Ω, t ∈ T).

Let p and p̄ be motion parameters (e.g., affine with constant or slowly-varying velocity

(Konrad and Stiller, 1997)) for the volume inside and outside of ~ς, respectively; we

assume that motion trajectory for each image sequence point can be computed either

from p or p̄.

We pose the problem of computing ~ς in the framework of maximum a posteriori

probability (MAP) estimation. Similarly to the two-frame formulation (Mansouri and

Konrad, 2003), the MAP multiple-frame segmentation can be expressed as follows:

max
~ς,p,p̄

p(~ς,p, p̄|It) = (3.1)

max
~ς,p,p̄

p(It|~ς,p, p̄, It\{It})p(~ς,p, p̄|It\{It})p(I t\{It})

p(It)
,

35

where p denotes probability density, and I t\{It} represents all frames of the sequence

It except for the frame It at time t. Given that p(I t\{It}) and p(I t) are independent

of ~ς , p, p̄, optimization (3.1) will lead to the same maximum as:

max
~ς,p,p̄

p(It|~ς,p, p̄, It\{It})p(~ς,p, p̄|It\{It}) = (3.2)

max
~ς,p,p̄

p(It|~ς,p, p̄, It\{It})p(~ς|p, p̄, It\{It})p(p, p̄|It\{It}).

The three terms in the above maximization are:

• p(It|~ς,p, p̄, It\{It}) – likelihood term: probability of the current frame It given

all other frames of the sequence I t\{It}, segmentation surface ~ς , and motion pa-

rameters p and p̄. For example, if intensity over motion trajectory is assumed to

be constant plus additive Gaussian noise, then the variation over motion trajec-

tory can be modeled using independent identically-distributed zero-mean Gaussian

random process.

• p(~ς|p, p̄, It\{It}) – prior term on segmentation surface ~ς: models prior knowledge

about the shape of the segmentation surface, as well as how it depends on the

motion parameters p and p̄. Assuming a smooth boundary surface leads to a

minimal boundary surface prior term, while an additional term could incorporate

consistency of motion trajectories and boundary surface shape.

• p(p, p̄|It\{It}) – prior term on motion parameters p and p̄: models prior knowl-

edge about motion trajectories. This term depends on whether dense or paramet-

ric motion model is used, and usually models spatial and temporal smoothness of

motion trajectories.

36

3.1.1 General energy formulation

Once the appropriate models are chosen for the likelihood and priors in MAP formulation

(3.2), maximization can be transformed into the following energy-based minimization:

min
~ς,p,p̄

E1(It;~ς,p, p̄, It\{It}) + E2(~ς; p, p̄, It\{It}) + E3(p, p̄; It\{It}). (3.3)

Terms in the above minimization correspond to terms in the MAP formulation (3.2):

• E1(It;~ς,p, p̄, It\{It}) – likelihood term. Different models are proposed for this like-

lihood term in the literature: standard assumption of constant intensity over mo-

tion trajectory, linear variation of intensity over motion trajectory (Negahdaripour

et al., 1989), or constant spatial gradient of intensity over motion trajectory as-

sumption (De Micheli et al., 1993).

• E2(~ς; p, p̄, It\{It}) – prior term on segmentation surface ~ς . The segmentation

surface is usually assumed to be smooth, yielding minimal boundary surface prior.

An interesting issue is whether the segmentation surface ~ς depends on motion

parameters p and p̄. That dependence can be expressed through some measure of

consistency between motion trajectories and segmentation surface.

• E3(p, p̄; It\{It}) – prior term on motion parameters p and p̄. This term depends

on the choice of spatial model for motion trajectories: sparse (calculated using

block matching or feature correspondence), parametric (homography, projective,

affine, bilinear, etc.), or dense (calculated using optical flow). Another issue is

the temporal modeling of motion trajectories – whether they consist of individ-

ual displacement vectors or some temporal parametric model (quadratic, spline,

etc.) is used. Usually, motion trajectories are modeled to be both spatially and

temporally smooth, which can be enforced through a parametric model and/or an

explicit smoothness constraint.

37

In order to formulate the segmentation problem, we make two standard assumptions:

that image intensity along motion trajectory remains constant, and that the surface ~ς

is smooth, e.g., area S of ~ς is small. We will decompose the minimization (3.3) into two

interleaved minimizations: estimation of motion trajectories p and p̄ with segmentation

surface ~ς fixed, and estimation of the segmentation surface with motion trajectories

fixed.

Estimation of motion parameters

If the segmentation surface ~ς is fixed (~ς = ~̂ς), minimization (3.3) becomes:

min
p,p̄

E1(It; ~̂ς,p, p̄, It\{It}) + E2(~̂ς; p, p̄, It\{It}) + E3(p, p̄; It\{It}). (3.4)

The first term in (3.4), E1, is a likelihood term, and it will be a measure of variability

of image intensity along motion trajectories defined by p and p̄. The second term, E2,

measures only consistency of object tunnel and motion trajectories since the smoothness

of segmentation surface term is constant for fixed ~ς . This consistency can be measured,

for example, through angular difference between tangent to segmentation surface and

instantaneous velocity on trajectory at each point on boundary surface. The term E3 is a

prior term on motion trajectories (for example, a measure of their spatial and temporal

smoothness).

Estimation of segmentation surfaces

When the motion trajectories are fixed (p = p̂ and p̄ = ̂̄p), optimization (3.3) reduces

to:

min
~ς

E1(It;~ς, p̂, ̂̄p, It\{It}) + E2(~ς; p̂, ̂̄p, It\{It}). (3.5)

The term E1 is a likelihood term described above, while the term E2 is a prior term de-

scribing our assumptions about the segmentation surface and its relationship to motion

38

trajectories. It measures smoothness of the segmentation surface ~ς and how well the

object tunnel defined by this surface corresponds to motion trajectories (for example,

through angular measure described above).

For the likelihood term, we define ξ(x, t; p), for each point (x, t) ∈ Ω × T , to be

a measure of variability of image intensity along motion trajectory defined by p and

passing through (x, t). We propose to estimate the surface ~ς (given motion trajecto-

ries p = p̂ and p̄ = ̂̄p) delineating object motion by minimizing the following energy

functional:

min
~ς

α

∫∫∫

V

ξ(x, t; p̂)dxdt +

∫∫∫

V̄

ξ(x, t; ̂̄p)dxdt + λ

∫∫

S

ζ(~ς, p̂, ̂̄p)d~ς, (3.6)

where ~ς = ∂V , V is inside of ~ς and V̄ is outside of ~ς, and λ associates a cost with the prior

term ζ(~ς, p̂, ̂̄p). This prior term measures the smoothness of the segmentation surface ~ς ,

and its consistency with motion trajectories p and p̄. The parameter α enables us to give

different weight to intensity variations over trajectories in the object and background.

We leave ξ(x, t; p) generic for now; we will define it in detail for each segmentation case

studied.

If we decide not to take into account the relationship between the shape of segmen-

tation surface ~ς and motion trajectories when estimating ~ς , the minimization (3.6) can

be simplified to the likelihood and surface smoothness terms only. Segmentation surface

~ς is estimated by minimizing a functional balancing intensity variability and surface

roughness terms as follows:

min
~ς

α

∫∫∫

V

ξ(x, t; p̂)dxdt +

∫∫∫

V̄

ξ(x, t; ̂̄p)dxdt + λ

∫∫

S

d~ς, (3.7)

where λ now associates a cost with the Euclidean area element d~ς. The minimization

(3.7) can be interpreted as volume competition: the first term measures the compatibility

39

of image sequence point at (x, t) with the overall intensity and motion inside of ~ς, whereas

the second term measures such compatibility outside of ~ς. The third term assures that

a minimal area (smooth) surface is sought. Thus, the minimization process seeks as

smooth a surface as possible that divides the domain into such V and V̄ that each is

best explained by its own motion parameters and intensity.

In order to solve (3.7), various approaches are possible. We pursue solutions based

on the level-set methodology that we reviewed in Section 2.3.2.

3.2 Motion detection formulation

The geodesic-surface formulation described in Section 2.3.2 has been used in the past

for video segmentation. In particular, Feghali et al. (Feghali et al., 2001) used δI =

|It|/(I
2
x + I2

y)1/2, i.e., the normal component of optical velocity (where Ix, Iy, It are hor-

izontal, vertical and temporal intensity derivatives, respectively), in (2.17) for motion

detection against static background with very encouraging results.

Since a geodesic-surface approach, such as the one in (2.17), requires strong inten-

sity edges, its usefulness is limited. We pursue motion detection based on the volume

competition approach that we outlined in Section 3.1. We assume stationary back-

ground, a common scenario in security or monitoring applications. This restriction will

be lifted in the motion segmentation algorithms in Chapters 4–6. Under the above

assumptions, we propose, after Jehan-Besson and Barlaud (Jehan-Besson et al., 2000)

(see Section 2.1.1 for more details of their method), absolute frame difference as the

measure of background intensity variation (equation (2.2)) and a fixed penalty within

the object (equation (2.3)). In order to attain the global minimum in (3.7), the surface

~ς must partition the domain so that points (x, t) with small frame difference (small

ξ(x, t; p̄)) are assigned to the outside (V̄), and those with large difference – to the inside

(V). The balance between such assignments is controlled by α. If an image sequence

40

has a stationary background, frame difference in the background region will correspond

to the noise level in the sequence. Parameter α serves as a threshold – points (x, t) with

frame differences smaller than α will be assigned to the background (V̄), and those with

differences larger than α to the object region (V). Therefore, parameter α should be

chosen based on the noise level in the sequence. The smoothness term with parameter

λ controls how compact should be the object regions, and how smooth should be their

boundaries. Larger values of λ ensure more compact objects, with smoother boundaries.

By replacing (2.2) and (2.3) into (3.7), that minimization reduces to:

min
~ς

∫∫∫

Ω×T

h(It)dxdt + λ

∫∫

S

d~ς, (3.8)

h(It) =





α if (x, t) ∈ V ,

|I(x, t) − I(x, t − 1)| if (x, t) ∈ V̄ .

Note that this form is related to minimization in (2.17): the Euclidean area element

weight is 1 (g(δI) = 1), whereas the weighted volume measure is a discontinuous function

h(·) that quantifies the competition between volumes. As we shall see, this will result

in an additional force helping avoid local minima and speeding up the convergence.

Although formulations (3.8) and (2.17) look very similar, they differ, in fact, signifi-

cantly. While the formulation (2.17) is edge-based and requires strong intensity edges δI

in the data, our new formulation is volume-based and works well even in the presence of

diffuse edges due to the inherent competition between volumes V and V̄ . This has been

nicely illustrated on still-image (2-D) segmentation by Chan and Vese (Chan and Vese,

2001). As already mentioned, similar spatio-temporal motion detection formulation is

proposed by Feghali et al. (Feghali et al., 2001; Feghali and Mitiche, 2004). However, in

their formulation segmentation surface is attracted towards high gradients (“edges”) in

the motion field, while in our formulation two volumes with different motion character-

41

istics compete for points in the image sequence domain. Furthermore, it cannot handle

volume segmentation, i.e., explicit division into sub-volumes with different motion. The

volume-competition formulation (3.7) can handle two different types of motion, and can

be extended to multiple motions as we will show in Chapter 6.

In order to solve for ~ς we simply note that (3.8) is basically identical to (2.17) except

for g(δI) = 1 and h(It) replacing f(δI), while Ω × T = V ∪ V̄ . With this observation

and following the path taken by Jehan-Besson et al. (Jehan-Besson et al., 2001; Jehan-

Besson et al., 2003), we can write the evolution equation for (3.8) as follows:

∂~ς

∂τ
= [α − |I(x, t) − I(x, t − 1)| + λκm]~n. (3.9)

Ignoring the curvature and remembering that ~n is the inward unit normal, α > |I(x, t)−

I(x, t − 1)| will result in the surface shrinking and thus relinquishing the point (x, t),

while α < |I(x, t)−I(x, t−1) will cause the surface to expand thus enclosing this point.

As for the curvature κm, it plays the role of a smoothing filter with respect to surface

point coordinates. For sufficiently large λ, the curvature term will assure simultaneously

smooth boundaries of individual-frame segmentations and temporal continuity of such

boundaries (no large changes in segment shapes between consecutive frames). This

can be viewed as a generalization of tracking of individual-frame segmentations; our

approach is based on a sound mathematical model rather than a sequence of ad hoc

steps. The inherent space-time continuity of the volume V is what distinguishes this

approach from methods supported on two frames only.

We solve the active-surface evolution equation (3.9) using the level-set methodology.

By embedding the active surface ~ς as the zero-level set of the hyper-surface φ (in 4-D

space):

~ς(τ) = {(x, y, t)|φ(x, y, t, τ) = 0},

42

where τ is the evolution time, we obtain the following level-set evolution equation:

∂φ

∂τ
= [α − |I(x, t) − I(x, t − 1)| + λκm]‖∇φ‖. (3.10)

This equation is implemented using standard discretization as described by Sethian

(Sethian, 1996b). We can rewrite equation (3.10) in terms of force (speed) function as

follows:

∂φ

∂τ
= [Fprop + Fcurv]‖∇φ‖,

where Fprop = α − |I(x, t) − I(x, t − 1)| is the propagation expansion/contraction force

(image-based force term) and Fcurv = λκm is the smoothing force dependent on the cur-

vature (curvature force term). Following (Sethian, 1996b), we propose a discretization

scheme to approximate equation (3.10):

φn+1
ijk = φn

ijk + ∆t


 −[max(Fpropijk

, 0)]∇+ + min(Fpropijk
, 0)∇−

+[λKn
i,j,k((D

0x
ijk)

2 + (D0y
ijk)

2 + (D0t
ijk)

2)1/2]


 , (3.11)

where

∇+ = [max(D−x
ijk , 0)

2 + min(D+x
ijk , 0)

2 +

max(D−y
ijk, 0)

2 + min(D+y
ijk, 0)

2 +

max(D−t
ijk, 0)

2 + min(D+t
ijk, 0)

2]1/2,

∇− = [max(D−x
ijk , 0)

2 + min(D+x
ijk , 0)

2 +

max(D−y
ijk, 0)

2 + min(D+y
ijk, 0)

2 +

max(D−t
ijk, 0)

2 + min(D+t
ijk, 0)

2]1/2,

43

and Kn
i,j,k is the central difference approximation to the mean curvature, κm:

κm = ∇
∇φ

|∇φ|
=





(φyy + φtt)φ
2
x + (φxx + φtt)φ

2
y + (φxx + φyy)φ

2
t

−2φxφyφxy − 2φxφtφxt − 2φyφtφyt





(φ2
x + φ2

y + φ2
t)

3/2
. (3.12)

The spatio-temporal derivatives are discretized using forward, backward, and centered

difference operators:

D+xu ≡ u(x+h,y,t)−u(x,y,t)
h

,

D−xu ≡ u(x,y,t)−u(x−h,y,t)
h

,

D0xu ≡ u(x+h,y,t)−u(x−h,y,t)
2h

,

which we used in (3.11) in a shorthand notation in which D+xφn
ijk is written as D+x

ijk ,

etc.

In our implementation, we first initialize the level-set surface to a signed distance

surface using the fast marching algorithm described in Section 2.3.3 by solving ‖∇φ‖=1.

Once the level-set surfaces have been initialized, in each iteration we calculate the force F

at zero-level set points and extend this force using the algorithm for fast construction of

extension velocities described in (Adalsteinsson and Sethian, 1999), by solving ∇φ·∇F =

0 for F . We update the surface φ using equation (3.11), and find new location of zero-

level set surface. Every 10− 100 iterations we re-initialize the surface to signed distance

function using the fast marching algorithm. Fig. 3·2 shows the block diagram of the

algorithm.

3.3 Experimental results

We will test our multi-frame motion detection (M-frame MD) method on two synthetic

test sequences: natural-texture, synthetic-motion, sequence Bean (176×144 pixels) in

44

Initialize by solving

|| || = 1

f

Ñf

Calculate F at zero
level-set points

Extend force by solving

F = 0Ñf×Ñ

Update and find new zero
level-set position

f

iter modulo iter_reinit = 0

iter = iter_max

Re-initialize by solving

|| || = 1

f

Ñf

no

yes

yes

no

Figure 3·2: Block diagram of the level-set implementation of our motion
detection algorithm. In the diagram, iter reinit is the number of itera-
tions after which the level-set surface is reinitialized and max iter is the
maximum number of iterations for which the algorithm is run.

which a bean-shaped object undergoes accelerated zoom and rotation, and the sequence

Bean occl where bean-shaped object undergoes the same motion as before, but is oc-

cluded by a static feature in the background in the second part of the sequence.

We first present results for the two-frame motion detection (2-frame MD) algorithm

described in Section 2.1.1, i.e., our reference algorithm, for comparison. Results of the

experiments on our two synthetic test sequences, Bean and Bean occl are shown on

Fig. 3·3. Table 3.1 presents a numerical comparison of this method with our algorithms.

45

(a) (b) (c)

(d) (e) (f)

Figure 3·3: Results for the 2-frame MD algorithm: frames (a) #5, (b)
#15, and (c) #25 from the synthetic image sequence Bean, and (d) #5, (e)
#15 and (f) #25, from the synthetic image sequence Bean occl, overlaid
with final boundaries.

For both sequences we used the same set of parameters: α = 1 and λ = 0.1. Given

that both object trajectories and the object shape are smooth, we used small value

for the curvature term parameter λ (i.e., there is no need to force smoothness with a

large prior term). Also, given that the background is static and noise free, and we are

trying to detect the moving areas, parameter α, which serves as a threshold, can be

set to one. This 2-frame MD algorithm is semi-supervised: user is required to choose

values for parameters α and λ. We run a batch of experiments with different values of

parameters, and the results shown are the best we obtained (based on the segmentation

error calculated using ground-truth data).

Fig. 3·4 shows results for our motion detection method, for the Bean image se-

quence. The segmentation was computed jointly over 30 frames, with α=1 and λ=0.1.

46

(a) (b)

(c) (d)

Figure 3·4: Results for M-frame MD algorithm, applied to synthetic im-
age sequence Bean: frames (a) #5, (b) #15, and (c) #25 from the se-
quence overlaid with final boundaries, and (d) the corresponding object
tunnel.

Parameters are chosen for the same reasons as in two-frame motion detection case.

Our multi-frame motion detection method is also semi-supervised, and the results we

show are the best obtained from a batch of experiments with different parameter values.

Fig. 3·4(a-c) shows three original frames with estimated boundaries superposed. These

boundaries are cross-sections of the resulting object tunnel shown in Fig. 3·4(d) that

partitions the sequence domain (30 frames) into voxels through which the object passes

and those through which it does not. The results show very good recovery of the object

shape as well as tracking between frames. The shape evolves consistently over time

despite no explicit tracking, and in presence of significant motion (over 70 pixels, plus

zoom-in). Note that this is achieved without explicit use of intensity edges. However,

noticeable segmentation errors are present in areas lagging behind the moving object;

47

(a) (b)

(c) (d)

Figure 3·5: Results for M-frame MD algorithm, applied to synthetic im-
age sequence Bean occl with occluded object: frames (a) #5, (b) #15,
and (c) #25 from the sequence overlaid with final boundaries, and (d) the
corresponding object tunnel.

since our method uses frame difference as the observation model, the resulting object

shape is a union of object positions in consecutive frames. Similar results are obtained

for the synthetic test sequence with occluded object, Bean occl (Fig. 3·5). We used the

same values for parameters α and λ as in the previous case. This example shows that

our method handles object occlusions very well.

Fig. 3·6 presents results for a natural video sequence Car acquired with a static

video camera (progressive, 180×120 pixels, 30 frames/s). Fig. 3·6(a–c) shows three

frames of the 76-frame sequence used (frames #11 through #86 of the original sequence)

overlaid with the estimated boundaries: a car enters the scene from the right, moves

to the left with almost constant velocity and disappears behind a wall on the left.

The segmentation was computed jointly over 76 frames, with α=2.5 and λ=1. In this

48

(a) (b)

(c) (d)

Figure 3·6: Results for M-frame MD algorithm, applied to natural image
sequence Car: frames (a) #24, (b) #54, and (c) #64 from the sequence
overlaid with final boundaries, and (d) corresponding object tunnel.

sequence, background is not perfectly still (there is a change in intensity and some

small object motion in the background), so we need to use higher value for threshold

α. Basically, the threshold is chosen so that the absolute frame difference is higher

than the threshold only for pixels belonging to the object. However, a higher threshold

leads to objects with some parts missing, so we use higher prior term to force smooth

boundaries of the object. Fig. 3·6(d) shows the computed object tunnel; for visualization

reasons it is shown from frame #30 to frame #76. Fig. 3·7 shows three frames from the

sequence of estimated segmentation labels. The results demonstrate good object-shape

recovery and tracking between frames, however in addition to segmentation errors noted

in the synthetic sequence, here we have errors due to change of intensity throughout the

sequence (real-life shooting), occlusion of the car by the wall, and moving shadows of

the car. All this contributes to a less precise segmentation compared to the synthetic

sequence. Still, the result is quite good for such simple models.

49

(a) (b) (c)

Figure 3·7: Estimated segmentation label fields corresponding to frames
(a) #24, (b) #54, and (c) #64 from the Car image sequence.

Table 3.1: Object segmentation error εs (pixels per frame) for synthetic
test sequences, for motion detection algorithms.

Two-frame method Multi-frame method

Sequence 2-frame MD M-frame MD

Bean 166.0 (14%) 128.1 (10.8%)

Bean occl 159.5 (17.1%) 133.9 (14.3%)

Using the ground-truth segmentation which is available to us for the two synthetic

sequences, we compare numerically performance of our motion detection method to

the two-frame motion detection method. For the segmentation error metric, we use

symmetric difference between the ground-truth and computed segmentation:

εs =
1

K

K∑

i=1

∑

x∈Ω

|Og(x, ti) − Oe(x, ti)|, (3.13)

where K = card(T) is the number of frames under segmentation, and Og(x, t) and

Oe(x, t) are ground-truth and estimated binary segmentation maps at time t, respec-

tively, defined as follows:

O(x, t) =





1 , x ∈ Rt,

0 , x /∈ Rt.
(3.14)

50

Rt is the object region in frame at time t, easily extracted from a cross-section of the

object tunnel V at time t for the M-frame MD method, or directly obtained in the case

of 2-frame MD method.

As Table 3.1 shows, our method clearly outperforms the two-frame method on both

test sequences, with average improvement of the segmentation precision by 20%. Al-

though it is hard to visually confirm these results, by comparing the results in Fig. 3·3

with the results in Fig. 3·4 and Fig. 3·5, we can see that for the same value of parameter

λ, which controls smoothness of the solution, our method yields smoother object bound-

ary, which is also closer to the true object boundary. However, due to limitations of our

simple motion detection model (lack of motion modeling), each estimated object tunnel

is a union of object positions in consecutive frames. This problem is inherent to the

method, and will result in the segmentation error even for perfect, noiseless sequences.

To alleviate this problem, we propose more advanced, motion segmentation methods in

the following chapters.

51

Chapter 4

Multiframe motion-based video

segmentation with background occlusion

detection

In the previous chapter, we restricted video sequence analysis to the detection and

tracking of moving objects against a stationary background. Although the method

worked quite well, since motion was not accounted for significant segmentation errors

occurred. By incorporating motion into the formulation, we can lift the stationary

background restriction and also distinguish individual objects based on their dynamics.

To this end, we propose to explicitly model the dynamics of objects and background

using motion trajectories. Additionally, we explicitly model occluded and newly-exposed

areas in the background (Ristivojević and Konrad, 2004b).

In particular, our goal is to partition the domain of an image sequence into four

regions (volumes) as follows: moving object, moving or static background, background

areas that were exposed in the past (background exposed volume) or that will be oc-

cluded in the future (background occlusion volume). For the first two volumes, we mea-

sure object and background intensity variations, respectively, along motion trajectories

spanning the whole temporal support of the image sequence. Parts of the background

that will be occluded or have been exposed within this support cannot be accurately

modeled either by object or background motion trajectories. If not explicitly modeled,

they will be randomly included in either object or background segmentation volumes,

52

thus creating errors. The more frames of the sequence are processed, the more of these

errors are present. To address this, here we explicitly model these regions by a new

space-time concepts of occlusion volume and exposed volume. Furthermore, we want,

jointly with the segmentation, to estimate motion parameters of the objects and back-

ground. Since we need to partition the image sequence domain into four volumes, we

use variational framework for the formulation and multiphase level-set method (Vese

and Chan, 2002) for the solution.

4.1 Energy formulation

We would like to partition the domain of an image sequence into four volumes: mov-

ing object tunnel V4, static or moving background tunnel V1, occlusion volume V2, i.e.,

background pixels that are occluded by the object at any time within the sequence, and

exposed volume V3, i.e., background pixels exposed by the object at some time in the

sequence. The spatio-temporal domain of the image sequence can be divided into four

volumes using two parameterized surfaces, ~ς1 and ~ς2, as described in Table 4.1.

Table 4.1: Segmentation volumes and associated energy terms for 2-
surface example

Volume Vn jn (x, t) Level-set func. at (x, t) Energy terms

V1 = background (00) outside ~ς1, ~ς2 φ1 < 0, φ2 < 0 ω1ξobj(x, t; p̄)

V2 = occluded backgr. (01) inside ~ς1, outside ~ς2 φ1 > 0, φ2 < 0 ω2ξocc(x, t; p̄)

V3 = exposed backgr. (10) outside ~ς1, inside ~ς2 φ1 < 0, φ2 > 0 ω3ξexp(x, t; p̄)

V4 = object (11) inside ~ς1, ~ς2 φ1 > 0, φ2 > 0 ω4ξobj(x, t; p)

An example of cross-section through such volumes for a simple binary image se-

quence is shown in Fig. 4·1(c). The portion of the background visible throughout the

53

sequence is represented in white, the moving object is in light gray, the portion of the

background which is going to be occluded in the following frames is in dark gray, while

the background region exposed in preceding frames is in black.

(a) (b) (c)

Figure 4·1: Frames (a) #1; and (b) #30 from a simple binary image
sequence, and (c) segmentation regions in frame #15.

As described in Section 3.1 we decompose the problem of joint segmentation and es-

timation of motion parameters into two interleaved minimizations: estimation of motion

parameters given segmentation surfaces, and estimation of segmentation surfaces with

fixed motion parameters (p = p̂ and p̄ = ̂̄p). For the estimation of segmentation sur-

faces, we extend the volume competition formulation (3.7) to take into account occluded

and exposed background volumes, which leads to the following energy minimization:

min
~ς1,~ς2

ω4

∫∫∫

V4

ξobj(x, t; p̂)dxdt + ω1

∫∫∫

V1

ξobj(x, t; ̂̄p)dxdt+

ω2

∫∫∫

V2

ξocc(x, t; ̂̄p)dxdt + ω3

∫∫∫

V3

ξexp(x, t; ̂̄p)dxdt+

λ1

∫∫

S1

d~ς1, +λ2

∫∫

S2

d~ς2,

(4.1)

where ~ς1 = ∂(V2 ∪ V4), ~ς2 = ∂(V3 ∪ V4), V1 ∪ V2 ∪ V3 ∪ V4 = Ω × T . The constants

ω1, ω2, ω3, and ω4 are weights assigned to the volume energies and reflect the degree

of uncertainty in measurements ξobj, ξocc, and ξocc. λ1 and λ2 associate a cost with the

54

Euclidean area elements d~ς1 and d~ς2, respectively.

Central to the segmentation performance are terms ξobj, ξocc, and ξexp in (4.1). Each

of these terms must be designed to measure the consistency of image sequence voxels

with one of the scenarios: visible, to-be-occluded or newly-exposed. Let cp(ti; x, t) be a

motion trajectory described by motion parameters p, i.e., let cp be a spatial position at

time ti of a feature that moved from position x at time t due to motion parameterized

by p (Dubois, 1992). We define two measures of intensity along a motion trajectory

between frames number k and l:

µk,l(x, t; p) =
1

∆

l∑

i=k

Ĩ(cp(ti; x, t), ti),

σ2
k,l(x, t; p) =

1

∆

l∑

i=k

(Ĩ(cp(ti; x, t), ti) − µk,l(x, t; p))2,

where ∆ = k − l + 1 and Ĩ denotes interpolated intensity (e.g., bi-cubic interpolator

(Keys, 1981)) because (cp(ti; x, t), ti) need not be on the sampling grid of the sequence.

Clearly, µk,l(x, t; p) is the sample mean and σ2
k,l(x, t; p) is the sample variance of intensity

along trajectory cp between frames number k and l.

In order that a point be declared as visible in object or background throughout the

sequence, intensity variation along motion trajectory passing through this point must

be small (motion accurately explains the data). Thus, we define the object/background

volume term as a sample variance along the whole trajectory:

ξobj(x, t; p) = σ2
1,K(x, t; p), (4.2)

where K = card(T) is the number of frames under segmentation. This term will be

small only for voxels for which a set of motion parameters exists that induces small

intensity variations along the whole motion trajectory.

In order that a point be declared as background point to-be-occluded at a later time,

55

intensity variation along background motion trajectory passing through this point must

be small up to this point and is expected to become large at some time in the future (as

illustrated in Fig. 4·2 (a)). We propose the following occluded background volume term:

ξocc(x, t = tj; p̄) = σ2
1,j(x, t; p̄) +

α1

σ2
j,K(x, t; p̄) + 1

, (4.3)

where j is such that |t− tj| ≤ |t− tl|, 1 ≤ l ≤ K, i.e., tj is the time instant of the nearest

frame from the continuous time1 t. In order that ξocc be small, motion p̄ must exist that

induces small intensity variations up to tj, while inducing large variations after tj; the

compromise between the two terms is adjusted by weight α1.

Finally, for a point to be declared as background point exposed in the past, intensity

variations along background motion trajectory are expected to be large prior to this

point and small afterwards (example in Fig. 4·2 (b)). We propose the following exposed

background volume term:

ξexp(x, t = tj; p̄) =
α2

σ2
1,j(x, t; p̄) + 1

+ σ2
j,K(x, t; p̄), (4.4)

with j defined as above. Again, ξexp will be small if motion p̄ induces large intensity

variations up to tj and small variations afterwards; α2 balances the impact of the two

terms.

4.2 Solution method

We will first present implementation of the surface estimation formulation (4.1) using

the multiphase level-set method, and then proceed to formulate and solve the motion

parameters estimation problem.

1When the evolution equations are discretized, a discretization of time t is possible such that tj = t.

56

0 5 10 15 20 25 30
0

50

100

150

200

250

frames

in
te

ns
ity

moment of occlusion

(a)

0 5 10 15 20 25 30
0

50

100

150

200

250

frames

in
te

ns
ity

moment of exposure

(b)

Figure 4·2: Example of intensity variation along motion trajectories in
(a) occluded and (b) newly-exposed background areas taken from the
Bean occl sequence.

4.2.1 Estimation of segmentation surfaces

Following the multiphase level-set formalism described in Section 2.3.4, we represent the

energy minimization (4.1) using two level-set functions, φ1(x, t) and φ2(x, t):

min
φ1,φ2

E , E = ω4

∫∫∫

Ω×T

ξobj(x, t; p̂)H(φ1(x, t))H(φ2(x, t))dxdt

+ ω2

∫∫∫

Ω×T

ξocc(x, t; ̂̄p)H(φ1(x, t))(1 − H(φ2(x, t)))dxdt

+ ω3

∫∫∫

Ω×T

ξexp(x, t; ̂̄p)(1 − H(φ1(x, t)))H(φ2(x, t))dxdt

+ ω1

∫∫∫

Ω×T

ξobj(x, t; ̂̄p)(1 − H(φ1(x, t)))(1 − H(φ2(x, t)))dxdt

+ λ1

∫∫∫

Ω×T

|∇H(φ1(x, t))|dxdt + λ2

∫∫∫

Ω×T

|∇H(φ2(x, t))|dxdt,

(4.5)

where H(φ) is the Heaviside function. The volumes that we seek are now defined through

intersections of zero-level sets of surfaces φ1 and φ2, as described in Table 4.1, fourth

column.

57

In order to carry out minimization (4.5), the level-set surfaces should evolve according

to the direction of steepest descent, which is the direction of the negative gradient of

energy E with respect to φ1 and φ2. As the result, we obtain the following level-set

evolution equations (valid for all points (x, t), omitted for brevity of notation):

∂φ1(τ)

∂τ
=

{
λ1κm1

− [(ω4ξobj(p̂) − ω3ξexp(̂̄p))H(φ2(τ))+

(ω2ξocc(̂̄p) − ω1ξobj(̂̄p))(1 − H(φ2(τ)))]
}
‖∇φ1(τ)‖,

∂φ2(τ)

∂τ
=

{
λ2κm2

− [(ω4ξobj(p̂) − ω2ξocc(̂̄p))H(φ1(τ))+

(ω3ξexp(̂̄p) − ω1ξobj(̂̄p))(1 − H(φ1(τ)))]
}
‖∇φ2(τ)‖,

(4.6)

where τ is the algorithmic evolution time, and κm1
and κm2

are mean curvatures (defined

in (3.12)) of the level-set surfaces φ1 and φ2, respectively. We implement these equations

iteratively using standard discretization as described in Section 3.2. In each iteration we

calculate the forces F1 and F2 at zero level-set points of both surfaces, extend these forces

using the fast marching algorithm by solving φi ·∇Fi = 0 for Fi, i = 1, 2, and update the

surfaces φ1 and φ2. Re-initialization of the surfaces using the fast marching algorithm

by solving ‖∇φi‖=1 (signed distance) is performed every 100 iterations to keep surfaces

as close as possible to signed distance functions. The algorithm is identical to the one

shown in Fig. 3·2, except that two level-set surfaces are evolved simultaneously.

4.2.2 Estimation of motion parameters

In order to estimate motion given segmentation surfaces, first we have to define motion

model we are going to use. Although ideally we would like to model motion trajectories

over multiple frames with one set of parameters, we use here a simpler two-frame motion

model, that describes displacement of each point in the image between two consecutive

frames. In this case motion trajectory cp(ti; x, t) simplifies to displacement vectors

between each two consecutive frames of the sequence, i.e., it is piecewise-linear. To

58

model spatial variation of motion vectors inside each object (or background), we choose

the affine spatial model, with six parameters p = [p1, . . . , p6]:

x′ = x +


 p1

p2


 +


 p3 p4

p5 p6


 (x − x0). (4.7)

In Section 3.1 we formulated the estimation of motion parameters for a fixed segmen-

tation surface through minimization (3.4). Extending that formulation to the case of two

(fixed) segmentation surfaces (~ς1 = ~̂ς1 and ~ς2 = ~̂ς2) leads to the following minimization:

min
p,p̄

E1(It, ~̂ς1, ~̂ς2,p, p̄, It\{It})+

E2(~̂ς1, ~̂ς2,p, p̄, It\{It}) + E3(p, p̄, It\{It}).

(4.8)

We will assume that motion parameters of the object (p) and background (p̄) are inde-

pendent, and can be estimated through separate minimization processes. We proceed

to describe the estimation procedure for the object motion parameters; background pa-

rameters are estimated exactly the same way (with object region/volume being replaced

by background region/volume). Since we assumed a two-frame motion model, the first

term of our energy functional, E1, simplifies to intensity mismatch between frame pairs

but only within regions that belong to the moving object. Moreover, since the motion

parameters are independent between different frame pairs, there is little that constrains

motion trajectory to stay within object volume. In order to counteract this, we need to

penalize shape mismatch between regions in the two frames; for the second energy term,

E2, we use symmetric difference between projected object region from one frame and

actual object region in the other frame. Energy term E3 is a prior term on motion tra-

jectories and could measure their spatio-temporal smoothness. Given that we use affine

motion model to represent trajectories, spatial smoothness is guaranteed, and there is

no reason to enforce it with an additional energy term. For now, we will not impose any

59

temporal smoothness constraint on the motion trajectories – we will investigate that

in the following section. Given all these assumptions and considering the discrete na-

ture of images and computed volumes, in order to estimate motion parameters between

each two consecutive frames of the image sequence we effectively minimize the following

energy functional:

E =
∑

xi∈Rt1

ρ
[
Ĩ(x′

i, t2) − I(xi, t1)
]

+ λ
∑

xi∈Ω

[
Õ(x′

i, t2) − O(xi, t1)
]2

, (4.9)

where Rt is the object region in frame at time t, ρ(·) is a robust estimator function, and

O(x, t) is a binary segmentation map at time t defined as follows:

O(x, t) =





1 , x ∈ Rt,

0 , x /∈ Rt.
(4.10)

Since (x, t) does not have to belong to the sampling grid of the sequence, Ĩ and Õ denote

interpolated values of intensity and segmentation map, respectively. Clearly, Rt, and

therefore O(·, t), is easily extracted from a cross-section of the object tunnel V at time

t.

Since the segmentation surfaces ~ςi may be far from the underlying, true object bound-

aries, some points inside Rt may not belong to the object, and, therefore, their motion

cannot be described by the object motion parameters. To deal with these outliers, we

use a robust M-estimator (Black, 1992) ρ (e.g., Lorentzian, Geman-McClure, etc.) in the

first term. The second term is a shape-matching penalty whose influence is controlled by

parameter λ. In order to find solution to (4.9), we use MATLAB Optimization Toolbox’s

function fminunc, which uses BFGS quasi-Newton method with a mixed quadratic and

cubic line search procedure.

60

4.2.3 Long-term temporal modeling of motion trajectories

As we described in previous section, we perform estimation of motion parameters sep-

arately for each frame pair in the sequence. Although each motion field is spatially

constrained through an affine motion model, there is no explicit relationship between

motion vectors at different time instants. We model motion trajectories c(ti; x, t) (de-

fined in Section 4.1) as piecewise linear between images in each frame pair, but we do

not constrain these linear segments temporally in any way; neighboring linear segments

are computed independently of one another. However, the underlying motion of moving

objects is smooth in the temporal direction, and a consistent spatio-temporal motion

model is needed to match the spatio-temporal tunnel model we proposed.

The simplest way to ensure temporal smoothness in the estimated motion trajectories

is to introduce an additional term into the motion estimation cost function, which will

penalize the difference between motion field vectors at time t and corresponding motion

vectors at time t − 1. Starting with the energy functional (4.9), we add an additional

term measuring the temporal smoothness of motion trajectories and corresponding to

energy term E3 in the general motion estimation energy minimization (4.8). As the

result, we obtain the following energy formulation:

E =
∑

xi∈Rt1
ρ

[
Ĩ(x′

i, t2) − I(xi, t1)
]

+ (4.11)

λ1

∑
xi∈Ω

[
Õ(x′

i, t2) − O(xi, t1)
]2

+

λ2

∑
xi∈Rt1

‖d(xi, t1) − d(x′
i, t0)‖

2 ,

where x′
i s related to xi through affine projection (as defined in (4.7)) and points xi are

on a lattice at time t1, while points x′
i may be off lattice at t2 or t0. We are estimating

parameters of the motion field d(x, t1), between frames at time t1, and t2, while forcing

it to be similar to the motion field d(x, t0), which was previously estimated between

61

frames t0 and t1. The similarity measure is applied only to points xi ∈ Rt1 for which

the corresponding points x′
i belong to the moving object region at time t0 (Rt0). For

the first frame pair in the sequence, we should use the energy formulation (4.9), since

there is no previous-frame motion field.

In order to test whether an introduction of additional smoothness constraint im-

proves motion estimation results, we performed experiments on synthetic sequences

Bean and Bean occl, as well as on Bean sequence with added Gaussian white noise

(PSNR = 26dB). We used the M-frame MD results from Chapter 3 (Figs. 3·4 and 3·5)

as initial object segmentations. Based on that segmentation, we calculated motion pa-

rameters using the energy formulation (4.9) (without smoothness constraint) and energy

formulation (4.11) (with smoothness constraint). Since we know the true object motion

parameters used to generate the sequences, we were able to compare results numerically.

As a motion error measure, we use the difference between estimated and true motion

fields, averaged over all pixels in object regions in all frames of the sequence:

εm =
1

K

K∑

i=1

1

Ni

∑

xi∈Rti

‖d(xi, ti) − dt(xi, ti)‖ , (4.12)

where K = card(T) is the number of frames under segmentation, Ni is the number of

pixels inside the moving object region Rti at time ti, d(x, ti) is the estimated motion

field for the frame at time ti, and dt(x, ti) is the true motion field for the same frame.

Table 4.2 compares motion estimation errors obtained when estimation is performed

with and without the temporal smoothness constraint on three synthetic sequences. It

is obvious that the observed improvement in motion estimates, although exists, is not

substantial. The reason for this lays in the second term of energy formulation (4.9).

This shape mismatch penalty encourages motion trajectories to stay within the object

tunnel, thus implicitly enforcing a smoothness constraint on the trajectories, given that

the object tunnel is forced to be smooth in the segmentation process. This is especially

62

Table 4.2: Motion error, εm, for different synthetic sequences, for motion
estimates calculated with and without smoothness constraint.

Method

Sequence without smooth. prior with smooth. prior improvement

Bean 0.0129 0.0124 3.9%

Bean occl 0.0308 0.0283 8.1 %

Bean with noise 0.3729 0.3396 8.9 %

true in the case of Bean sequence, where there is no object occlusion or noise, and the

object tunnel is very smooth. Occlusion events and noise in the sequence make object

tunnels less smooth, which explains a larger improvement in motion estimates due to

temporal smoothness constraint in those cases. The computational complexity of the

motion estimation algorithm does not increase much with the addition of the temporal

smoothness constraint. Furthermore, even a small improvement in the accuracy of

motion estimates can lead to substantially better segmentation results, which makes

this method preferable to the simpler one introduced in Section 4.2.2.

4.2.4 Steps of the overall segmentation algorithm

The first step of the overall segmentation algorithm is to find motion parameters based

on an initial segmentation of the moving object. In order to compute the initial segmen-

tation, we use the motion detection algorithm proposed in Chapter 3. Using the resulting

segmentation (single surface), we calculate motion parameters and initialize 2 surfaces

needed by the segmentation step. Every voxel inside the object tunnel, estimated using

the motion detection algorithm, is labeled as an object voxel for the motion-based seg-

mentation algorithm. However, for every voxel outside the object tunnel (background),

we verify whether its motion trajectory continues to stay outside (in which case it is

63

labeled as a background voxel) or is partially within the volume and partially outside

(labeled as an occluded or exposed background voxel). Based on this sequence of labels,

we initialize level-set functions φ1 and φ2, using rules defined in Table 4.1. After the

segmentation step reaches convergence, we perform motion parameter estimation again,

and start new segmentation step with the new motion parameters. This procedure is

repeated until surfaces and motion parameters converge to a stable solution.

4.3 Experimental results

Results for the two-frame motion-compensated (MC) segmentation method (2-frame

MCS method), serving as a reference algorithm and described in Section 2.1.2, for the

two synthetic test sequences, are shown in Fig. 4·3. Numerical values of the segmen-

tation errors are presented in Table 4.3. We will discuss these results further when we

compare them to our multi-frame motion segmentation method. For the Bean sequence

experiment we used λ = 0.1, given the smoothness of the object and its trajectory.

However, for Bean occl sequence we increased λ to 1, since object occlusion, which is

not compensated for in the model, introduces some errors in trajectory estimation which

can be somewhat alleviated by giving more emphasis to the smoothing term.

Our multi-frame MC segmentation algorithm is semi-supervised, and, as in the case

of M-frame MD algorithm in the previous chapter, we run a batch of experiments with

different parameter values and show the best obtained results: for synthetic sequences

best results are chosen based on ground truth data, while in the case of natural sequences

they are chosen by visual inspection. However, compared to the M-frame MD method

where only two parameters need to be chosen, it is much more difficult to chose eight

parameters for the segmentation algorithm. On the other hand, parameters αi and ωi

are not very sensitive: they need to be changed by the order of magnitude to produce

substantial change in segmentation results.

64

(a) (b) (c)

(d) (e) (f)

Figure 4·3: Results for the 2-frame MCS algorithm: frames (a) #5, (b)
#15, and (c) #25 from the synthetic image sequence Bean, and (d) #5, (e)
#15 and (f) #25, from the synthetic image sequence Bean occl, overlaid
with final boundaries.

First, we verified our multi-frame MC segmentation with background occlusion mod-

eling (M-frame MCS-B) method on the Bean sequence. Fig. 4·4 shows two frames from

the original sequence together with the final level-set contours (whose intersections de-

fine four regions), and the corresponding frames from the sequence of estimated labels.

In this experiment we used α1 = α2 = 1, λ1 = λ2 = 0.1, ω1 = ω2 = 1000, ω3 = 500,

and ω4=1. Since the underlying segmentation is known in this ground-truth experi-

ment, the parameters have been chosen empirically (we are showing the best results out

of a batch of experiments). However, the set of weights ωi used in experiments was

chosen based on the following reasoning. Since the object is relatively small and un-

dergoes significant motion, our confidence in the estimated object motion is lower than

that in the background motion. This leads to higher values of ω1, ω2, ω3. Although

65

(a) (b)

(c) (d)

Figure 4·4: Results for the M-frame MCS-B algorithm, applied to syn-
thetic image sequence Bean: frames (a) #10 and (b) #20 from the se-
quence overlaid with final boundaries (intersections define four regions),
and (c–d) corresponding label fields (white – background, light gray – ob-
ject, dark gray – occluded background, and black – exposed background).

larger λ1 and λ2 would eliminate some of the spurious pixels at the object boundary, we

keep them low because, given low resolution of the images (”blockiness” of the object

boundary), it would also degrade segmentation accuracy. The algorithm converges after

250 iterations, and volumes corresponding to the four segmentation regions are shown

in Fig. 4·5. Clearly, the object and background tunnels are very accurate, while the

occlusion and exposed volumes, although contain some spurious, isolated voxels at the

periphery, are still excellent renditions of the occlusion and uncovering effects occurring

in the sequence. This result was obtained with a single segmentation step after the sur-

faces and motion had been initialized using multi-frame motion detection; no additional

motion estimation/segmentation steps were necessary.

66

(a) (b)

(c) (d)

Figure 4·5: Volumes corresponding to results from Fig. 4·4: (a) object
tunnel, (b) background tunnel, (c) background occlusion volume , and (d)
background exposed volume.

In order to evaluate the segmentation accuracy objectively, we computed the number

of misclassified pixels. First, we compare our M-frame MCS-B method with its two-

frame counterpart. As Table 4.3 shows, the number of misclassified pixels has dropped

from 11.3% for the two-frame segmentation to 0.5% for the multi-frame segmentation

that explicitly models background occlusion effects. Next, we compare our M-frame

MCS-B method with its simpler cousin, M-frame MD method. Our motion detection

partitioning (Fig. 3·4) resulted in 128 misclassified pixels per frame (or 10.8% of object

pixels). After one pass of the multiphase segmentation algorithm, this error dropped to

only 6 misclassified pixels per frame. This is due to motion compensation introduced

in the segmentation algorithm. That solves the largest problem inherent to our motion

detection method, i.e., object tunnel is no longer a convex hull of the union of object

positions in consecutive frames. Since the Bean sequence is noiseless and there is no

67

object occlusion, all the sources of segmentation errors are removed (except interpolation

errors inherent to our motion trajectory model) and solution is almost perfect.

(a) (b)

(c) (d)

Figure 4·6: Results for the M-frame MCS-B algorithm, applied to syn-
thetic image sequence Bean occl: frames (a) #15 and (b) #25 from the
sequence overlaid with final boundaries (intersections define four regions),
and (c–d) corresponding label fields (white – background, light gray – ob-
ject, dark gray – occluded background, and black – exposed background).

We also applied the new algorithm to the Bean occl sequence and results are shown

in Fig. 4·6 and Fig. 4·7. We used the following parameters for the experiment: α1 =

α2 = 10, λ1 = λ2 = 2.5, ω4 = 1, ω1 = ω2 = 100, ω3 = 50, and the algorithm

converges after 1000 iterations. This result was obtained with a single segmentation

step after motion estimation was performed and surfaces have been initialized using

the motion detection result. No additional motion estimation/segmentation steps were

necessary. Similarly to Bean sequence experiments, we assign higher values to weights

ωi corresponding to background terms because the object is being occluded by a static

68

(a) (b)

(c) (d)

Figure 4·7: Volumes corresponding to results from Fig. 4·6: (a) object
tunnel, (b) background tunnel, (c) background occlusion volume , and (d)
background exposed volume.

feature in the background and there is no provision for object occlusion in the model;

object trajectories are not estimated as precisely thus leading to higher values of ξobj

inside the object, and in order to avoid these voxels being classified as background, we

compensate by increasing ωi’s of the background terms. For the same reason, prior

terms get more weight through further increased values of λi. Similarly to the Bean

sequence experiment, results are very good. Numerical comparison (Table 4.3) with

the two-frame segmentation and multi-frame motion detection method confirms it: the

number of misclassified pixels dropped from 130.1 pixels per frame (or 13.9% of object

pixels) for the two-frame segmentation and 133.9 pixels per frame (or 14.3% of object

pixels) in the case of motion detection to 15.7 pixels per frame (or just 1.7% of object

pixels) for the new algorithm.

In another experiment, we applied this algorithm to the natural sequence Car over

69

(a) (b)

(c) (d)

Figure 4·8: Results for the M-frame MCS-B algorithm, applied to Car
image sequence: frames (a) #54 and (b) #64 from the sequence overlaid
with final boundaries (intersections define four regions), and (c–d) corre-
sponding label fields (white – background, light gray – object, dark gray
– occluded background, and black – exposed background).

40 frames (frames #35 through #74 of the original sequence). Fig. 4·8 shows two

frames from the subsequence we used overlaid with the final level-set contours and the

corresponding label fields. This time we used the following parameters: α1 = α2 = 500,

λ1 = λ2 = 2.5, ω1 = 3, ω2 = 40, ω3 = 10, ω4 = 1 in a single segmentation step (after

initialization of the volumes and motion using multi-frame detection result). We needed

to adjust these parameters in comparison with the Bean occl experiment, which also has

object occlusion, because of stronger noise and background intensity variations in this

camera-acquired sequence. Moreover, the background is not perfectly static anymore,

so αi’s are increased to compensate for intensity variation which exists over background

trajectories even if they are not occluded or exposed by the object. Fig. 4·9 shows

volumes corresponding to the four segmentation regions obtained upon convergence at

1000 iterations. For visualization reasons the shown tunnels span the range from frame

70

(a) (b)

(c) (d)

Figure 4·9: Volumes corresponding to results from Fig. 4·8: (a) object
tunnel, (b) background tunnel, (c) background occlusion volume , and (d)
background exposed volume.

#10 to frame #40 of the result.

The object tunnel clearly shows a forward horizontal motion and when viewed inter-

actively in 3-D (Ristivojevic, 2004), its walls show a clear imprint of the car body. The

occluded and exposed volumes quite accurately depict what will be occluded and what

has been exposed; the occlusion region is in front of the car, and the uncovered region

grows behind the car. Also, the static background visible throughout the sequence is

almost perfectly recovered (note the detection of the static hand-rails in front of the

car). Some errors at the car boundary, especially at sequence beginning and end, are

due to the fact that the object is fully visible only in a small subset of frames in the

sequence. In order to improve the segmentation, object occlusions should be explicitly

modeled as well.

Compared to the synthetic sequence experiment (Fig. 4·4 – Fig. 4·7), the natural-data

71

results are not as good, but that is not unexpected given the noise, intensity variations,

and complex motion, all present in the natural sequence. Although a numerical compar-

ison is impossible due to the lack of ground-truth segmentation, visual inspection shows

that object segmentation is improved compared to the motion-detection result (Fig. 3·6

and Fig. 3·6) used to initialize the algorithm. The boundary along the car roof-line is

tight and accurate in the multiphase result, while the car shadow is accurately delin-

eated below the car (even a tiny part of the shadow seen through the hand rail below the

car is accurately classified as part of the moving object). Only the elongated cut-out on

car’s front fender is erroneous which is not so surprising given the very uniform intensity

there.

Table 4.3: Object segmentation error εs (pixels per frame) for synthetic
test sequences, for motion detection and motion compensated segmenta-
tion algorithms.

Two-frame methods Multi-frame methods

Sequence 2-frame MD 2-frame MCS M-frame MD M-frame MCS-B

Bean 166.0 (14%) 134.0 (11.3%) 128.1 (10.8%) 6.0 (0.5%)

Bean occl 159.5 (17.1%) 130.1 (13.9%) 133.9 (14.3%) 15.7 (1.7%)

We compare the performance of our multiphase motion segmentation method with

the reference two-frame motion-compensated segmentation method presented in Sec-

tion 2.1.2 numerically (using the error metric defined in (3.13)). Moreover, we compare

these methods to the motion detection methods presented in Chapter 3. Table 4.3 shows

segmentation errors for these four methods for the two synthetic test sequences, Bean

and Bean occl. Although the motion compensated two-frame segmentation method out-

performs two-frame motion detection method by reducing the error for about 20%, it still

performs just about as good as our multi-frame motion detection method. However, our

72

multiphase, motion segmentation method presented in this chapter outperforms other

methods by far, reducing the error more than 20 times in the case of Bean sequence

(where the object is fully visible), and more than 8 times in the case of Bean occl se-

quence, where the object is occluded by a static feature in the background, which is not

supported by our model, and thus introduces some segmentation errors.

We can conclude that in the case of sequences with only one moving object, fully

visible throughout the sequence, our multiphase motion segmentation method is close

to optimal, and better than all the other methods we presented so far. However, object

occlusions and multiple moving objects are not supported in this model. We will try to

solve these two issues with more advanced models in the next two chapters.

73

Chapter 5

Multiframe motion-based video

segmentation with object and background

occlusion detection

In this chapter, we extend our video segmentation algorithm presented in the previous

chapter by including explicit models of the occluded and newly-exposed areas for both

the object and the background (Ristivojević and Konrad, 2004a). We measure object

and background intensity variations along motion trajectories spanning the whole tem-

poral support of the image sequence. Clearly, if parts of the object are occluded or

exposed within this support, they cannot be accurately modeled either by object or

background motion trajectories. As the result, they will be randomly included in either

object or background segmentation volumes, thus creating errors. To solve that prob-

lem, we explicitly model these regions as occluded and newly-exposed object volumes.

We use variational framework for the formulation and multiphase level-set methodology

for the solution.

5.1 Energy formulation

We want to partition the domain of an image sequence into six regions (volumes). An

example of spatial cross-section through such volumes for a simple binary image sequence

with one moving object that is being occluded by a static feature is shown in Fig. 5·1.

Compared to the method presented in Chapter 4, we add two more volumes: object area

74

that is going to be occluded by a feature in the background (object occlusion volume),

and object area that was exposed in preceding frames (object exposed volume).

(a) (b) (c)

Figure 5·1: Frames (a) #1; and (b) #30 from a simple binary image
sequence, and (c) segmentation regions for frame #15 (white – part of
object visible throughout the sequence, light gray – part of object that is
going to be occluded, medium gray – background visible throughout the
sequence, dark gray – part of background that is going to be occluded,
and black – part of background exposed in preceding frames).

Using the multiphase level-set method described in Section 2.3.4, we partition the

spatio-temporal volume of I(x, t) into six volumes using three parameterized surfaces,

~ς1, ~ς2, and ~ς3, as shown in Table 5.1, third column. Since three surfaces can partition

the image sequence domain into 8 volumes, additional volumes, V4 and V5, are defined

as “don’t care” volumes that will be eliminated during optimization. For the estima-

tion of segmentation surfaces, we extend volume competition formulation (4.1) to take

into account occluded and exposed object volumes, which leads to the following energy

75

Table 5.1: Segmentation volumes and associated energy terms for 3-
surface example

Volume Vn jn (x, t) Level-set func. at (x, t) Energy terms

V1 = background (000) outside ~ς1, ~ς2, ~ς3 φ1 < 0, φ2 < 0, φ3 < 0 ω1ξobj(x, t; p̄)

V2 = occluded backgr. (001) inside ~ς1, outside ~ς2, ~ς3 φ1 > 0, φ2 < 0, φ3 < 0 ω2ξocc(x, t; p̄)

V3 = exposed backgr. (010) inside ~ς2, outside ~ς1, ~ς3 φ1 < 0, φ2 > 0, φ3 < 0 ω3ξexp(x, t; p̄)

V4 = unused (011) inside ~ς1, ~ς2, outside ~ς3 φ1 > 0, φ2 > 0, φ3 < 0 Kpen

V5 = unused (100) inside ~ς3, outside ~ς1, ~ς2 φ1 < 0, φ2 < 0, φ3 > 0 Kpen

V6 = exposed object (101) inside ~ς1, ~ς3, outside ~ς2 φ1 > 0, φ2 < 0, φ3 > 0 ω6ξexp(x, t;p)

V7 = occluded object (110) inside ~ς2, ~ς3, outside ~ς1 φ1 < 0, φ2 > 0, φ3 > 0 ω7ξocc(x, t;p)

V8 = object (111) inside ~ς1, ~ς2, ~ς3 φ1 > 0, φ2 > 0, φ3 > 0 ω8ξobj(x, t;p)

minimization:

min
~ς1,~ς2,~ς3

ω1

∫∫∫

V1

ξobj(x, t; ̂̄p)dxdt + ω2

∫∫∫

V2

ξocc(x, t; ̂̄p)dxdt+

ω3

∫∫∫

V3

ξexp(x, t; ̂̄p)dxdt + ω6

∫∫∫

V6

ξexp(x, t; p̂)dxdt+

ω7

∫∫∫

V7

ξocc(x, t; p̂)dxdt + ω8

∫∫∫

V8

ξobj(x, t; p̂)dxdt+

∫∫∫

V4

Kpendxdt +

∫∫∫

V5

Kpendxdt+

λ1

∫∫

S1

d~ς1, +λ2

∫∫

S2

d~ς2, +λ3

∫∫

S3

d~ς3,

(5.1)

where ~ς1 = ∂(V1 ∪ V3 ∪ V6 ∪ V7), ~ς2 = ∂(V1 ∪ V4 ∪ V5 ∪ V7), ~ς3 = ∂(V1 ∪ V5 ∪ V6 ∪ V8),

and ∪8
i=1Vi = Ω × T , while S1, S2, S3 are areas of the three surfaces. The weights ωi

reflect the uncertainty as to how accurately motion parameters can explain the dynamics

occurring in individual volumes, while constants λ1, λ2, and λ3 associate a cost with

76

the Euclidean area elements d~ς1, d~ς2, and d~ς3, respectively. Penalty terms, Kpen, are

introduced to discourage assigning a point to the two unused volumes (V4 and V5). The

individual terms of the above energy formulation measure cumulative consistency of

image sequence voxels with models corresponding to different volumes we are estimating.

Apart from the four terms we described in Section 4.1, there are two more additional

terms: occluded object volume term and exposed object volume term.

In order that a point be declared as object point to-be-occluded at a later time,

intensity variation along object motion trajectory passing through this point must be

small up to this point and is expected to become large at some time in the future (as

illustrated in Fig. 5·2 (a)). Similarly to (4.3), we propose the following occluded object

volume term:

ξocc(x, t = tj; p) = σ2
1,j(x, t; p) +

α3

σ2
j,K(x, t; p) + 1

, (5.2)

where j is defined as in (4.3) In order that ξocc be small, motion p must exist that

induces small intensity variations up to tj, while inducing large variations after tj; the

compromise between the two terms is adjusted by weight α3.

For a point to be declared as object point exposed in the past, intensity variations

along object motion trajectory are expected to be large prior to this point and small

afterwards (example in Fig. 5·2 (b)). Similarly to (4.4), we propose the following exposed

object volume term:

ξexp(x, t = tj; p) =
α4

σ2
1,j(x, t; p) + 1

+ σ2
j,K(x, t; p), (5.3)

with j defined as above. Again, ξexp will be small if motion p induces large intensity

variations up to tj and small variations afterwards; α4 balances the impact of the two

terms.

77

0 5 10 15 20 25 30
80

100

120

140

160

180

200

220

240

frames

in
te

ns
ity

moment of occlusion

(a)

0 5 10 15 20 25 30
0

50

100

150

200

250

frames

in
te

ns
ity

moment of exposure

(b)

Figure 5·2: Example of intensity variations along motion trajectories in
(a) occluded and (b) newly-exposed object areas.

5.2 Solution method

As in Chapter 4, the problem of joint segmentation and estimation of motion parameters

is decomposed into two interleaved minimizations: estimation of motion parameters

given segmentation surfaces, and estimation of segmentation surfaces with fixed motion

parameters. We describe the latter minimization; details of motion parameter estimation

can be found in Section 4.2.2. Following the multiphase level-set method formalism, we

represent energy minimization in (5.1) using three level-set functions, φ1(x, t), φ2(x, t),

78

and φ3(x, t), as follows (φi(x, t), i = 1, 2, 3, is replaced by φi for brevity):

min
φ1,φ2,φ3

E , E = ω1

∫∫∫

Ω×T

ξobj(x, t; ̂̄p)(1 − H(φ1))(1 − H(φ2))(1 − H(φ3))dxdt

+ ω2

∫∫∫

Ω×T

ξocc(x, t; ̂̄p)H(φ1)(1 − H(φ2))(1 − H(φ3))dxdt

+ ω3

∫∫∫

Ω×T

ξexp(x, t; ̂̄p)(1 − H(φ1))H(φ2)(1 − H(φ3))dxdt

+

∫∫∫

Ω×T

KpenH(φ1)H(φ2)(1 − H(φ3))dxdt

+

∫∫∫

Ω×T

Kpen(1 − H(φ1))(1 − H(φ2))H(φ3)dxdt

+ ω6

∫∫∫

Ω×T

ξexp(x, t; p̂)H(φ1)(1 − H(φ2))H(φ3)dxdt

+ ω7

∫∫∫

Ω×T

ξocc(x, t; p̂)(1 − H(φ1))H(φ2)H(φ3)dxdt

+ ω8

∫∫∫

Ω×T

ξobj(x, t; p̂)H(φ1)H(φ2)H(φ3)dxdt

+ λ1

∫∫∫

Ω×T

|∇H(φ1)|dxdt + λ2

∫∫∫

Ω×T

|∇H(φ2)|dxdt+

+ λ3

∫∫∫

Ω×T

|∇H(φ3)|dxdt.

(5.4)

Volumes we are estimating are now defined through intersections of zero-level sets of

surfaces φ1(x, t), φ2(x, t), and φ3(x, t), as shown in Table 5.1, fourth column.

In order to carry out minimization (5.4), level-set surfaces should be evolved along

the direction of steepest descent, which is the direction of the negative gradient of energy

E with respect to φ1, φ2, and φ3. As a result of minimization, we obtain the following

79

level-set evolution equations (valid for all (x, t) that are omitted for brevity):

∂φ1(τ)

∂τ
= F1‖∇φ1(τ)‖ = ‖∇φ1(τ)‖

{λ1κm1
− [(ω8ξobj(p̂) − ω7ξocc(p̂))H(φ2(τ))H(φ3(τ))+

(ω6ξexp(p̂) − Kpen)(1 − H(φ2(τ)))H(φ3(τ))+

(Kpen − ω3ξexp(̂̄p))H(φ2(τ))(1 − H(φ3(τ)))+

(ω2ξocc(̂̄p) − ω1ξobj(̂̄p))(1 − H(φ2(τ)))(1 − H(φ3(τ)))]
}

∂φ2(τ)

∂τ
= F2‖∇φ2(τ)‖ = ‖∇φ2(τ)‖

{λ2κm2
− [(ω8ξobj(p̂) − ω6ξexp(p̂))H(φ1(τ))H(φ3(τ))+

(ω7ξocc(p̂) − Kpen)(1 − H(φ1(τ)))H(φ3(τ))+

(Kpen − ω2ξocc(̂̄p))H(φ1(τ))(1 − H(φ3(τ)))+

(ω3ξexp(̂̄p) − ω1ξobj(̂̄p))(1 − H(φ1(τ)))(1 − H(φ3(τ)))]
}

∂φ3(τ)

∂τ
= F3‖∇φ3(τ)‖ = ‖∇φ3(τ)‖

{λ3κm3
− [(ω8ξ(p̂) − Kpen)H(φ1(τ))H(φ2(τ))+

(ω7ξocc(p̂) − ω3ξexp(̂̄p))(1 − H(φ1(τ)))H(φ2(τ))+

(ω6ξexp(p̂) − ω2ξocc(̂̄p))H(φ1(τ))(1 − H(φ2(τ)))+

(Kpen − ω1ξobj(̂̄p))(1 − H(φ1(τ)))(1 − H(φ2(τ)))]
}

,

where τ is the algorithmic evolution time, and κm1
, κm2

, and κm3
are mean curvatures

(defined in (3.12)) of level-set surfaces φ1, φ2, and φ3, respectively. We implement these

equations iteratively using standard discretization as described in Section 3.2. In each

iteration we calculate the forces F1, F2, and F3 at zero level-set points of all surfaces,

extend these forces using the fast marching algorithm by solving φi · ∇Fi = 0 for Fi,

i = 1, 2, 3, and update the surfaces φ1, φ2, and φ3. Re-initialization of the surfaces using

the fast marching algorithm by solving ‖∇φi‖=1 is performed every 100 iterations to

80

keep surfaces as close as possible to the signed distance function.

5.3 Experimental results

We again initialize the algorithm with volumes and motion parameters resulting from

the multi-frame motion detection, as described in Section 4.2.2. First, we applied our

multi-frame MC segmentation with background and object occlusion modeling (M-frame

MCS-BO) algorithm to the synthetic test sequence Bean occl. Fig. 5·3(a–b) shows two

frames of the original sequence overlaid with the estimated boundaries. We used the

following parameters: α1 = α2 = 1, α3 = α4 = 100, λ1 = λ2 = λ3 = 2.5, ω1 = ω2 =

ω3 = ω6 = 10, ω7 = ω8 = 1, Kpen = 100. Since there are six forces competing in this

(a) (b)

(c) (d)

Figure 5·3: Results for the M-frame MCS-BO algorithm, applied to syn-
thetic image sequence Bean occl: frames (a) #15 and (b) #25 from the se-
quence overlaid with final boundaries, and (c-d) corresponding label fields
(white – object, light gray to dark gray: object occlusion, background,
background occlusion, and background exposed).

81

(a) (b)

(c) (d)

Figure 5·4: Volumes corresponding to results from Fig. 5·3: (a) object
tunnel, (b) object occlusion volume, (c) background occlusion volume ,
and (d) background exposed volume.

case, we further increased values of λi’s compared to previous experiments on the same

sequence. Also, α3 and α4 are larger than α1 and α2 because of much higher variation

of intensity over object trajectories compared to background trajectories (background

is perfectly still). These parameters have to be large enough to make object’s occlusion

(exposed) terms small only if intensity variation over trajectory is larger after (before)

the current voxel due to object occlusion (exposure), and not due to a variation of

intensity over fully-visible object trajectory. Similarly, since the intensity variations

over object trajectories are larger than over background trajectories, ω8 is smaller than

ω1. Finally, weights are increased for background occlusion and exposed terms to obtain

the best possible results. We used two steps of motion estimation and segmentation (in

the first step algorithm converges after 3000 iterations, with the following parameters:

α1 = α2 = 5, α3 = α4 = 500, λ1 = λ2 = λ3 = 2.5, ω1 = ω2 = ω3 = 10, ω6 = ω7 = 5,

82

ω8 = 1, Kpen = 100). The algorithm converges after 1900 iterations of the second

step. Fig. 5·3(c–d) shows two frames of the resulting segmentation labels. Clearly, the

object and background as well as to-be-occluded and exposed parts of the background

are accurately estimated. Also, to-be-occluded and exposed parts of the object are very

well recovered, although they contain some spurious, isolated voxels at the boundary of

the object. Four of the final six tunnels are shown in Fig. 5·4. The segmentation error

is further reduced as is shown in the Table 5.2, although only slightly.

(a) (b)

(c) (d)

Figure 5·5: Results for the M-frame MCS-BO algorithm, applied to Car
image sequence: frames (a) #54 and (b) #64 from the sequence overlaid
with final boundaries, and (c–d) corresponding label fields (white – object,
light gray to dark gray: object occlusion, object exposed, background,
background occlusion, and background exposed).

We also applied the algorithm to the Car sequence, again over 40 frames (frames #35

through #74 of the original sequence). Fig. 5·5(a–b) shows two frames of the original

sequence overlaid with the final boundaries. This time we used the following parameters:

α1 = α2 = 500, α3 = α4 = 2 ∗ 104, λ1 = λ2 = λ3 = 2.5, ω1 = 2, ω2 = ω3 = 10,

ω6 = ω7 = 4, ω8 = 1, Kpen = 100. Here, we used the same values for parameters α1, α2,

83

(a) (b)

(c) (d)

Figure 5·6: Volumes corresponding to results from Fig. 5·5: (a) object
tunnel, (b) object occlusion volume, (c) background occlusion volume ,
and (d) background exposed volume.

λ1 and λ2 as in the case of the algorithm modeling occlusions in the background only.

However, due to much larger variations of intensity over object trajectories in comparison

with background trajectories, we needed to increase α3 and α4. The weights ωi have

similar values as in the experiment with synthetic Bean occl sequence. Fig. 5·5(c–d)

shows two frames of the resulting segmentation labels upon algorithm convergence after

1000 iterations. Clearly, all background regions are well estimated: the background

area to be occluded is in front of the car while the exposed one grows behind the car.

Object occlusion and uncovered regions are in the right place (front and rear of the

car, respectively) but they are not precise. This is, we believe, due to inaccuracies

in the estimated motion and variations of object intensity over time. Fig. 5·6 shows

the object tunnel, object occlusion volume and background occlusion/exposed volumes

corresponding to the four segmentation regions . Again, for visualization reasons the

84

shown tunnels are from frame #10 to frame #40.

Despite imprecise occluded and exposed object regions, errors in object boundary,

clear in Fig. 4·8(c–d), have now been corrected. Overall, the car is segmented more

accurately (considering the union of fully-visible, to-be-occluded and exposed areas of

the car), and even the static hand rails are very precisely recovered. However, in order

to improve the accuracy of occluded and exposed object areas, more advanced models

are needed.

Table 5.2: Object segmentation error εs (pixels per frame) for synthetic
test sequences.

Two-frame methods Multi-frame methods

Sequence 2-frame MD 2-frame MCS M-frame MD M-frame MCS-B M-frame MCS-BO

Bean 166.0 (14%) 134.0 (11.3%) 128.1 (10.8%) 6.0 (0.5%) -1

Bean occl 159.5 (17.1%) 130.1 (13.9%) 133.9 (14.3%) 15.7 (1.7%) 12.9 (1.4%)

We now compare all the methods presented so far, starting with the two-frame mo-

tion detection and finishing with the multi-frame MC segmentation with background and

object occlusion modeling. We show segmentation errors for each of these methods, for

two synthetic test sequences, in Table 5.2. Comparing results in Fig. 3·3 and Fig. 4·3,

we can see that both two-frame methods perform reasonably well, with the motion-

compensated result being somewhat better. However, even the simplest multi-frame

method, based on motion detection (Fig. 3·4 and Fig. 3·5) outperforms the two-frame

methods. A huge improvement is obtained by the introduction of motion models and

background occlusion modeling in the M-frame MCS-B method (Fig. 4·4 and Fig. 4·6).

Error drops from 10-15% to less than 2%. In the case of Bean occl sequence, a fur-

1This experiment is not performed since there are no occlusions in Bean sequence.

85

ther improvement is obtained by explicit modeling of object occlusions in the M-frame

MCS-BO method (Fig. 5·3). We can conclude that performing segmentation jointly

over a group of frames, in the spatio-temporal domain, indeed improves segmentation

results, while the introduction of motion models and handling of background and object

occlusions reduces errors to almost negligible levels (in the case of synthetic sequences).

86

87

Chapter 6

Generalization to multiple moving objects

In the previous two chapters, we presented motion-based segmentation methods which

explicitly model occlusion and newly-exposed regions in the object and the background.

However, these formulations allowed for only one moving object and possibly moving

background. We would like to extend these models to include any number of moving ob-

jects with their occluded and newly-exposed areas. Using the multiphase methodology,

we develop general variational formulation which allows for multiple moving objects,

some of which can be occluded or exposed, moving background, and occluded and ex-

posed regions in the background. In order to achieve that, we use several level-set

surfaces whose intersections define all these regions. We minimize that formulation

using optimization methods described in previous chapters, and present results for a

natural video sequence with two moving objects.

6.1 Energy formulation

Using the multiphase level-set framework described in Section 2.3.4, we partition the

domain of the image sequence into N volumes using M parameterized surfaces, ~ςi,

i = 1, 2, ...,M , where N ≤ 2M . An example of spatial cross-section through such volumes

for a simple binary image sequence with one moving object that is being occluded by a

static feature is shown in Fig. 5·1. Since M surfaces partition the image sequence domain

into 2M volumes, whenever N < 2M we define unused 2M − N volumes as “don’t care”

volumes that will be eliminated during optimization.

88

Let p, ...,pL, p̄ be motion parameters (e.g., affine) associated with L objects and

background, respectively. These L+1 sets are associated with up to 3(L+1) different

areas (visible, exposed and to be occluded). Clearly, N ≥ 3(L + 1) must hold. For the

estimation of segmentation surfaces with fixed motion parameters (pi = p̂i), we extend

volume competition formulation (5.1) to take into account multiple moving objects and

associated occluded and exposed object volumes, which leads to the following energy

minimization:

min
~ς1,...,~ςM

N∑

i=1

ωi

∫∫∫

Vi

ξi(x, t; p̂i)dxdt +
2M∑

i=N+1

∫∫∫

Vi

Kpendxdt +
M∑

i=1

λi

∫∫

Si

d~ςi, (6.1)

where Si is the area of surface ~ςi. The weights ωi reflect uncertainty as to how accurately

motion parameters can explain the dynamics occurring in individual volumes, while con-

stants λi associate a cost with the Euclidean areas d~ςi. The penalty Kpen discourages

assigning a point to unused volumes. As we mentioned before, our M-frame MC seg-

mentation method is semi-supervised: user is required to choose values for parameters

λi and ωi (Kpen is also a parameter, but the same large value can be used in all exper-

iments). The more volumes we are estimating, the more parameters have to be chosen

and the more difficult it gets. Based on the experiments we performed, segmentation

results are not very sensitive to the change in the weights ωi: they need to be changed

by the order of magnitude before any substantial change in the segmentation results

can be observed. Still, finding an automatic way to estimate good parameter values is

an important issue for future work. Individual terms ξi(x, t; pi) of the first sum in the

above energy minimization are designed to measure the consistency of image sequence

voxels with one of the scenarios: visible (ξvis(x, t; pi)), to-be-occluded (ξocc(x, t; pi)) or

newly-exposed(ξexp(x, t; pi)). These terms are introduced in Section 4.1, for the case of

background occluded and exposed volumes (equations (4.2)–(4.4)). By replacing p̄ with

89

pi we define the object/background volume term:

ξvis(x, t; pi) = σ2
1,K(x, t; pi),

occluded volume term:

ξocc(x, t; pi) = σ2
1,j(x, t; pi) +

α1

σ2
j,K(x, t; pi) + 1

,

and exposed volume term:

ξexp(x, t; pi) =
α2

σ2
1,j(x, t; pi) + 1

+ σ2
j,K(x, t; pi)

6.2 Solution method

As in Chapter 4 and Chapter 5, we decouple estimation of motion parameters and

estimation of segmentation surfaces into two interleaved minimizations. We describe

the latter minimization; details of motion parameter estimation can be found in Sec-

tion 4.2.2.

Following the multiphase level-set method formalism (Vese and Chan, 2002), we ac-

complish energy minimization in (6.1) using M level-set functions, φi(x, t), i = 1, ...,M .

Volumes that we seek are now defined through intersections of zero-level sets of surfaces

φi. In order to carry out minimization (6.1), level-set functions should evolve along the

direction of steepest descent, which is the direction of negative gradient of the total

energy with respect to φi. As the result of minimization, we obtain a set of level-set

evolution equations. We identify each volume sought by the following binary label:

jn = (a1
n, ..., a

M
n) for 1 ≤ n ≤ 2M , with each am

n (m = 1, ...,M) being either 0 or 1. With

this notation, volume #1 is identified by the binary label j1 = (1, 0, ..., 0). Each voxel’s

90

membership in a volume can be established using the following indicator function:

χjn
(x, t) =

M∏

i=1

[(1 − ai
n) + (2ai

n − 1)H(φi(x, t))],

where H(·) is the Heaviside step function. Using this notation, evolution equation for

one surface valid at all (x, t), that are omitted for brevity, is:

∂φl(τ)

∂τ
= Fl‖∇φl(τ)‖ = ‖∇φl(τ)‖{λlκml

+

2M∑

n=1

[(1 − 2al
n)gn

M∏

i=1,i6=l

((1 − ai
n) + (2ai

n − 1)H(φi))]},
(6.2)

where τ is the algorithmic evolution time, κml
is the mean curvature of φl, and the

function gn(x, t) is defined as follows:

gn(x, t) =





ωnξn(x, t; p̂n) 1 ≤ n ≤ N,

Kpen N + 1 ≤ n ≤ 2M .

Although the second term in (6.2) looks complicated, it is simply a sum of terms ωnξn

and Kpen with suitable signs (depending whether (x, t) is inside or outside of φi’s). At

each (x, t) the evolution force thus combines a curvature term and a term whose sign

and amplitude depend on a comparison of error terms ξi among each other and also

against Kpen.

The first step of the overall algorithm is to find motion parameters based on an

initial segmentation, such as the one computed using the motion detection algorithm of

Chapter 3. Using the initial segmentation (single surface), we estimate the number of

separate moving objects in the sequence. We use MATLAB Image Processing Toolbox’s

function bwlabel to estimate the number of connected object regions in each frame

of the motion detection result. Then, we track these regions through time to create

separate tunnels for each object. Using the method described in Section 4.2.2, we

91

calculate motion parameters for each of the moving objects and background.

For L moving objects, we need up to 3(L+1) different volumes (visible, exposed and

to be occluded). We calculate the necessary number of level-set surfaces M = dlog2 Ne,

where N is the number of volumes we are going to estimate in the segmentation algorithm

(N ≤ 3(L + 1)). We proceed to create a sequence of labels, using the following rules:

• For every voxel inside one of the object tunnels, we verify whether the whole of

its motion trajectory is inside the tunnel (in which case it is labeled as one of the

object voxels) or is partially outside the tunnel (when it is labeled as an occluded

or exposed object voxel).

• For every voxel outside all of the object tunnels (background voxel), we verify

whether the whole of its motion trajectory is outside of all the object tunnels (in

which case it is labeled as a background voxel) or is partially within some of the

object tunnels (when it is labeled as an occluded or exposed background voxel).

Based on this sequence of labels, we initialize M level-set functions needed by the seg-

mentation step. After this initialization, segmentation steps are interleaved with motion

parameter estimation; the procedure is repeated until surfaces and motion parameters

converge to a stable solution.

In each iteration of the segmentation step we calculate the forces Fi at zero level-set

points of all surfaces, extend these forces using the fast marching algorithm by solving

φi · ∇Fi = 0 for Fi, i = 1, ...,M , and update the surfaces φi. The re-initialization of the

surfaces using the fast marching algorithm by solving ‖∇φi‖=1 is performed after every

10 to 100 iterations (depending on the value of smoothness parameter λ: for values

of λ < 1 we perform reinitialization every 100 iterations, otherwise we do it every 10

iteration) to keep surfaces as close as possible to a signed distance function.

92

6.3 Experimental results

We have tested the proposed algorithm on sequences with multiple moving objects

obtained from the Universität Karlsruhe web site (Karlsruhe, 1997). We extracted

a 176×256-pixel window from one of the sequences (Karl-Wilhelm-Straße), that we

shall call Traffic and that contains two cars moving down a street (Fig. 6·1), captured

by a static camera (no background motion). We first applied the multi-frame motion

detection algorithm, with α=5 and λ=10. The parameter α is chosen based on the

noise level in the background (since it serves as a sort of threshold), while the high value

of parameter λ suppresses spurious, false noisy objects in the background and keeps

the objects boundaries smooth. The algorithm converges after 4000 iterations and, as

we can see from Fig. 6·1, both object shapes are very accurate. Fig. 6·2 shows object

and background tunnels obtained in the experiment. Noticeable segmentation errors

are present due to inherent problems with the motion detection method (the result is a

union of object positions in consecutive frames). The noise in the background creates

additional problems, while the high value of λ tends to straighten out the object tunnels,

which leads to inclusion of parts of the background behind and in front of the cars into

the object regions.

In order to alleviate some of the segmentation inaccuracies, we applied the multi-

frame segmentation algorithm with occlusion modeling of the background. Since there

are no object occlusions, we used 5 volumes: two objects, background, as well as oc-

cluded and uncovered background areas. In the motion estimation step we calculated

motion parameters for the left car (left object, p1), right car (right object, p2) and back-

ground (p̄ = 0, static background). We used three level-set functions, with assignments

shown in Table 6.1 (three volumes were left unused). We used the following parameters:

α1 = α2 = 100, λ1 = λ2 = λ3 = 5, ω1 = 1, ω2 = ω3 = 3, ω7 = 5, ω8 = 4, Kpen = 100, and

performed 400 iterations. Fig. 6·3 shows two frames from the sequence overlaid with the

93

Table 6.1: Segmentation volumes and associated energy terms for the
multi-frame motion-compensated segmentation method in case of two ob-
jects and background occlusion modeling.

Volume Vn jn (x, t) Level-set func. at (x, t) Energy terms

V1 = background (000) outside ~ς1, ~ς2, ~ς3 φ1 < 0, φ2 < 0, φ3 < 0 ω1ξobj(x, t; p̄)

V2 = occluded backgr. (001) inside ~ς1, outside ~ς2, ~ς3 φ1 > 0, φ2 < 0, φ3 < 0 ω2ξocc(x, t; p̄)

V3 = exposed backgr. (010) inside ~ς2, outside ~ς1, ~ς3 φ1 < 0, φ2 > 0, φ3 < 0 ω3ξexp(x, t; p̄)

V4 = unused (011) inside ~ς1, ~ς2, outside ~ς3 φ1 > 0, φ2 > 0, φ3 < 0 Kpen

V5 = unused (100) inside ~ς3, outside ~ς1, ~ς2 φ1 < 0, φ2 < 0, φ3 > 0 Kpen

V6 = unused (101) inside ~ς1, ~ς3, outside ~ς2 φ1 > 0, φ2 < 0, φ3 > 0 Kpen

V7 = right object (110) inside ~ς2, ~ς3, outside ~ς1 φ1 < 0, φ2 > 0, φ3 > 0 ω7ξobj(x, t;p
2
)

V8 = left object (111) inside ~ς1, ~ς2, ~ς3 φ1 > 0, φ2 > 0, φ3 > 0 ω8ξobj(x, t;p
1
)

final level-set contours, and the corresponding label fields. Four volumes corresponding

to four segmentation regions are shown in Fig. 6·4. All background regions (visible,

to-be-occluded, and exposed) are accurately estimated. The moving cars are estimated

somewhat better compared to the detection result (boundaries are tighter around the

objects), but some inaccuracies are still present. Apart from noise and brightness varia-

tion over time, another problem is the very similar gray level of the right car (especially

in the second part of the sequence) and of the pavement behind it. Also, there is little

texture in the moving objects and background. Still, results are very good given all

the difficulties this sequence presents. We clearly demonstrated how our method can

be used for segmentation of complex sequences with multiple moving objects, shot in

real-life conditions.

94

(a) (b)

(c) (d)

Figure 6·1: Results for the M-frame MD algorithm, applied to Traffic
image sequence: frames (a) #15 and (b) #25 from the sequence over-
laid with final boundaries, and (c–d) corresponding label fields (white –
background and black – object).

95

(c) (d)

Figure 6·2: Volumes corresponding to results from Fig. 6·1: (a) object
tunnels and (b) background tunnel.

96

(a) (b)

(c) (d)

Figure 6·3: Results for the M-frame MCS-B algorithm, applied to Traffic
image sequence: frames (a) #15 and (b) #25 from the sequence overlaid
with final boundaries, and (c–d) corresponding label fields (white – left
object, light gray to dark gray: right object, background, to-be-occluded
background, and exposed background).

97

(a) (b)

(c) (d)

Figure 6·4: Volumes corresponding to results in Fig. 5·3: (a) left-car
tunnel, (b) right-car tunnel, (c) background tunnel, and (d) background
occlusion volume.

98

99

Chapter 7

Motion detection for active cameras

In Chapter 3, we proposed a video segmentation method based on motion detection,

which has one serious limitation – the model we used requires static background through-

out the sequence (we are minimizing frame difference in the background volume). If the

background is not static, for example due to camera motion or zoom, our algorithm

cannot differentiate between the moving object and the background. Since we use that

method to initialize our more advanced methods (Chapters 4 – 6), it is very important

to lift that constraint. To that end, we propose to account for camera motion/zoom in

our motion detection formulation, and to estimate it simultaneously with the evolution

of the level-set surface that encloses moving objects. From now on, when we say camera

motion we will also mean zoom-in and zoom-out.

The simplest approach to camera motion estimation is to treat that motion as global

motion in a sequence and use any of the global motion estimation algorithms to calculate

it (an overview can be found, for example, in (Wang et al., 2002)). However, that

approach would work accurately only if moving objects in the sequence are very small.

Otherwise, apparent motion of the objects would corrupt the camera motion estimate.

In order to avoid this, we propose to perform motion estimation only on the current

background region, which is defined by the position of the level-set segmentation surface

that is evolved simultaneously with motion estimation.

The next issue is the choice of models for describing camera motion between frames

of a sequence. The simplest solution would be to assume a translational motion in

100

the background, but that is a very coarse approximation which would account only for

horizontal and vertical camera translation parallel to the scene, i.e., track and boom,

respectively. If we want to model pan, tilt, roll (i.e., turning around the vertical axis,

turning around the horizontal axis, and rotation around the optical axis, respectively),

and zoom (for definitions of these terms and examples of camera motion see (Wang et al.,

2002)) of the camera, we need to use the affine motion model. It describes apparent

motion in the background induced by any small camera motion, under orthographic

projection, quite accurately when the background scene is planar or very far away from

the camera.

7.1 Method of Feghali and Mitiche

An interesting approach to image sequence segmentation in the presence of camera

motion was recently proposed by Feghali and Mitiche (Feghali and Mitiche, 2004). They

proposed to use the normal component of optical flow velocity as a measure of motion

activity:

ω⊥ =





−It

||∇I||
, for ||∇I|| 6= 0

0, for ||∇I|| = 0
,

where ∇I and It are the spatial gradient and temporal derivative of image I, respectively.

They define ω∗
⊥ = ω⊥ − ωc⊥, where ωc⊥ is a component along ω⊥ of a local velocity

computed from the global motion estimate (camera motion) and is a function of ~θ, the

parameters of velocity due to camera motion. Subsequently, they seek such a partition

of the image sequence domain, PS = RS∪Rc
S, that points inside the object (x ∈ RS, S is

a closed segmentation surface) have significant normal motion (|ω∗
⊥| � 0), while points

in the background (x ∈ Rc
S) have negligible normal motion (ω∗

⊥ ≈ 0). Using a suitable

observation model and standard regularization term, they convert MAP estimation of

101

(S, ~θ) into minimization of the following energy functional:

E(S, ~θ) = α

∫

RS

e−(ω∗

⊥
(~θ))2dρ + β

∫

Rc
S

(ω∗
⊥(~θ))2dρ + λ

∫

S

dσ.

Since they use the translational motion model, and additionally assume that camera

motion is constant during the span of an image sequence, only two motion parameters

are needed, ~θ = (a, b). Interleaved minimization is performed using gradient descent for

motion parameters ~θ and level-set PDE descent for segmentation surface S. A block

diagram of the algorithm is presented in Fig. 7·1 (a).

7.2 Extension of the method of Feghali and Mitiche

Inspired by the approach described in the previous section, we propose to improve our

motion detection (Chapter 3) by incorporating background (camera) motion. We start

from the general volume-competition energy minimization:

min
~ς,p,p̄

α

∫∫∫

V

ξ(x, t; p)dxdt +

∫∫∫

V̄

ξ(x, t; p̄)dxdt + λ

∫∫

S

d~ς, (7.1)

Since our goal is only the detection of moving regions in an image sequence (not a

segmentation into separately-moving objects), we simplify this formulation, similarly to

Section 3.2, by assuming a fixed penalty α within the object (ξ(x, t; p) = 1). However,

we are leaving the background parametric motion p̄ as an unknown in our minimiza-

tion. We propose motion-compensated frame difference as the measure of background

intensity variation:

ξ(x, t; p̄) = |I(x, t) − I(x − d(x, t; p̄), t − 1)|,

where d(x, t; p̄) is a displacement vector, calculated from motion parameters p̄, that

describes background motion between frames at times t − 1 and t. In order to reach a

102

Initialize (S ,)0 0q

Perform one
iteration of gradient
descent for motion

parameters q

Evolve
segmentation

surface S using one
iteration of the
level-set PDE

descent

Convergence?

yes

no

Initialize motion
parameters p using

phase corr. or
block matching

0

Convergence?

Overall algorithm
convergence?

Refine motion
estimates p

Initialize
segmentation

surface z0

Evolve
segmentation

surface using one
iteration of the
level-set PDE

descent

z

yes

yes

no

no

(a) (b)

Figure 7·1: Block diagram of (a) Feghali and Mitiche method and (b)
proposed new method.

minimum in (7.1), the surface ~ς must partition the domain Ω × T so that points (x, t)

with small motion-compensated frame difference are assigned to the outside (V̄), and

those with large difference – to the inside (V). The balance between such assignments

is controlled by α. In order to increase robustness, we replace the absolute value as

the measure of background intensity variation in ξ(x, t; p̄) with a robust M-estimator

(Black, 1992) ρ (more on this in the next section). Then, the minimization (7.1) reduces

103

to:

min
~ς,p̄

∫∫∫

Ω×T

h(It)dxdt + λ

∫∫

S

d~ς, (7.2)

h(It) =





α if (x, t) ∈ V ,

ρ(I(x, t) − I(x − d(x, t; p̄), t − 1)) if (x, t) ∈ V̄ .

While Feghali and Mitiche (Feghali and Mitiche, 2004) use a constant translational

model for camera motion throughout the sequence, we will use an affine model, with

parameters of motion model changing from frame to frame, a closer approximation to

real-life scenarios.

7.3 Solution method

In order to carry out minimization (7.2), we decompose the problem into two inter-

leaved minimizations: estimation of motion parameters given segmentation surfaces,

and estimation of segmentation surfaces with fixed motion parameters.

7.3.1 Estimation of motion parameters

When the segmentation surface ~ς is fixed (~ς = ~̂ς), i.e., volume V̄ is defined (V̄ = ̂̄V),

minimization (7.2) reduces to:

min
p̄

∫∫∫

̂̄V

ρ(I(x, t) − I(x − d(x, t; p̄), t − 1))dxdt. (7.3)

Since the segmentation surface ~̂ς may be far away from the true, underlying object

boundary, some points inside ̂̄V may not belong to the background and cannot be ex-

plained by the background motion model. To deal with these outliers, we replaced the

absolute norm with a robust M-estimator (Black, 1992) ρ (e.g., Lorentzian, Geman-

McClure, etc.) in the energy formulation (7.2).

104

When a constant-translation motion model is used, like in (Feghali and Mitiche,

2004), there are only three variables to be estimated: two motion parameters and a

segmentation surface. In that case, it is easy to perform joint minimization (7.2) with

respect to all three variables, and to do simultaneous evolution of the segmentation

surface and estimation of the motion parameters by interleaving gradient descent for

motion parameters p̄ and level-set PDE descent for segmentation surface ~ς. However,

when more complex, affine motion model is used, with parameters changing from frame

to frame, another approach may be more suitable: estimate parameters p̄ for each frame

pair by minimizing the energy in equation (7.3), and then use estimated parameters to

perform several iterations of surface evolution. Since between PDE evolution iterations

little changes, it does not make sense to re-estimate motion parameters until changes in

the segmentation surface ~ς accumulate after a number of iterations.

Instead of minimizing (7.3) directly, we will decompose it into separate minimiza-

tions for each frame pair (It−1, It). After discretization, we are solving the following

minimization for each frame t:

min
p̄t

∑

xi∈R̄t

ρ(I(xi, t) − I(xi − d(xi, t; p̄t), t − 1)), (7.4)

where p̄t is the set of affine motion parameters at time t, while R̄t is the background

region in frame It (cross-section of volume V̄ at time t).

The first step of the overall, multi-frame motion detection with background motion

compensation (M-frame MD-BMC) algorithm (Fig. 7·1 (b) shows block diagram of the

algorithm) is to initially estimate global motion without any information about object

location. In other words, since we do not know what is the background region R̄t, the

minimization (7.4) is performed over the whole frame, It. To find a solution to (7.4),

we use MATLAB Optimization Toolbox’s function fminunc, which applies BFGS quasi-

Newton method with a mixed quadratic and cubic line search procedure. In order to

105

avoid local minima and to handle large background motions, we do not initialize the

optimization procedure with zero motion parameters. Instead, we apply simple phase

correlation (Kuglin and Hines, 1975) or block matching (Wang et al., 2002) algorithm

to the image sequence to obtain initial values for the translation parameters.

7.3.2 Segmentation surface estimation

For the surface evolution step of our M-frame MD-BMC algorithm we are solving (7.2)

with the background motion p̄ parameters fixed (p̄ = ̂̄p, estimated in the motion esti-

mation phase). That leads to the following minimization:

min
~ς

∫∫∫

Ω×T

h(It)dxdt + λ

∫∫

S

d~ς, (7.5)

h(It) =





α if (x, t) ∈ V ,

ρ(I(x, t) − I(x − d(x, t; ̂̄p), t − 1)) if (x, t) ∈ V̄ .

This minimization is very similar to the one in (3.8) in Section 3.2 and is solved using

the level-set methodology presented there.

Once the surface evolution step of the algorithm is performed and initial segmentation

surface is estimated, motion estimation in the second pass of the overall algorithm is

performed on the background region, with previous pass motion estimates used as initial

parameters for this pass. It is followed by another segmentation step in which newly-

calculated motion parameters are used. This procedure is repeated until no further

improvement in the estimated motion can be obtained.

7.4 Experimental results

As before, we will first test our M-frame MD-BMC method on synthetic sequences and

compare it to the M-frame MD method (described in Chapter 3) applied to the same

sequences. Additionally, we will compare the detection results when translational and

106

affine motion models are used to describe background motion. Next, we will apply

our method to camera-acquired test sequences. Finally, we will use both the M-frame

MD-BMC and M-frame MD methods’ results to initialize motion-compensated segmen-

tation with background occlusion modeling (M-frame MCS-B method, introduced in

Chapter 4) and compare the resulting segmentations.

7.4.1 Results for synthetic sequences

We will use two test sequences: natural-texture, synthetic-motion, sequence Bean Small

(176×144 pixels) in which both a bean-shaped object and background undergo accel-

erated zoom and rotation, and a similar sequence Bean Normal with the same object

motion but larger zoom and rotation in the background.

We first investigate what would happen should we apply our M-frame MD algorithm,

with no compensation of background motion, to these sequences. For both sequences

we used the same parameters: α = 20 and λ = 1; results after 800 iterations are shown

in Fig. 7·2. A large value of parameter α is chosen to avoid object estimate covering

the whole sequence domain (given that all the pixels in the sequence are moving). It

is obvious that the algorithm is nowhere close to estimating true object position, and

instead finds false object regions in the background wherever there is some texture (low-

texture regions are not affected by the background motion). This was to be expected and

is a motivation to introduce compensation of the background motion in the algorithm.

As we mentioned before, we decided to use affine instead of translational motion

model to describe the background motion. In order to test whether this more compli-

cated motion model brings any improvement to the detection results, we run a set of

experiments on another synthetic sequence, Bean Big. This sequence is similar to the

other two, but has much larger affine component of background motion (object motion

is the same). We run several M-frame MD-BMC experiments for various values of pa-

107

(a) (b) (c)

(d) (e) (f)

Figure 7·2: Results for the M-frame MD method, applied to two se-
quences with moving background: final contours for frames (a) #5, (b)
#15, and (c) #25 from the synthetic image sequence Bean Small, and
frames (d) #5, (e) #15 and (f) #25, from the synthetic image sequence
Bean Normal.

rameter α, using translational or affine motion models in the motion estimation phase.

Fig. 7·3 shows object segmentation error (in pixels per frame) for these experiments.

It is obvious that affine model outperforms translational model by a wide margin for

values of α < 0.9. For α ≥ 0.9 the object cannot be detected no matter which motion

model is used so the segmentation error is close to the size of the object. The object is

accurately detected only if affine model is used with α around 0.75–0.8. Overall, we can

conclude that the introduction of affine model is justified especially when background

motion is more complicated than simple pan and tilt.

Similarly to our other detection and segmentation algorithms, M-frame MD-BMC

method is semi-supervised: user is required to choose values of parameters α, σ, and

108

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

2000

4000

6000

8000

10000

12000

14000

α

se
gm

en
ta

tio
n

er
ro

r
[p

ix
/fr

]
translation

affine

Figure 7·3: Segmentation error εm for experiments with different values
of parameter α, on sequence Bean Big, with translational or affine motion
model used for background motion.

λ. We again run a batch of experiments with different parameter values for each of the

sequences tested. We show the best results obtained, either based on ground-truth data

(for synthetic sequences) or visual inspection (for natural sequences).

We apply the M-frame MD-BMC method to two synthetic sequences, Bean Small and

Bean Normal. Fig. 7·4 shows results for the Bean Small sequence after 500 iterations,

obtained using the following parameters: α = 0.25 and λ = 0.1 (we also used the

Geman-McClure robust estimator (Black, 1992), with σ = 15). Given that α serves as a

threshold to which we compare the output of the robust estimator, the range of values for

α is restricted to [0, 1]. The value of α also depends on the robust estimator parameter

σ (higher σ means lower α will be necessary). Fig. 7·4(a–c) shows three original frames

with estimated boundaries superposed, while Fig. 7·4(d) shows the corresponding object

tunnel. The results show a good recovery of object shape and tracking between frames.

109

(a) (b)

(c) (d)

Figure 7·4: Results for the M-frame MD-BMC algorithm, applied to syn-
thetic image sequence Bean Small: frames (a) #5, (b) #15, and (c) #25
from the sequence overlaid with final boundaries, and (d) the correspond-
ing object tunnel.

However, noticeable segmentation errors are present in areas lagging behind the moving

object. When compared to the results obtained for the sequence with the same object

motion but with static background (Bean) in Fig. 3·4, these erroneous areas are much

larger. That is due to the moving background and the fact that the object encompasses

all the points not well-explained by the background motion model. In addition to the

union of object positions in consecutive frames (result for the case of static background),

the object includes parts of background which were occluded (or will be exposed) in the

other frame. The larger the background motion, the larger these areas. Using the

ground-truth segmentation, we calculated object segmentation error to be 391.1 pixels

per frame (or 32.99%). Fig. 7·5 shows similar results obtained for Bean Normal sequence

after 200 iterations. We used the following parameters: α = 0.75, λ = 5, and σ = 5 (we

110

used the Geman-McClure robust estimator in all experiments). The object segmentation

error is 383.6 pixels per frame (32.36%). This example shows that our method works as

well for larger background motions, however to further reduce the segmentation error it

needs to explicitly account for occlusions.

(a) (b)

(c) (d)

Figure 7·5: Results for the M-frame MD-BMC algorithm, applied to syn-
thetic image sequence Bean Normal: frames (a) #5, (b) #15, and (c) #25
from the sequence overlaid with final boundaries, and (d) the correspond-
ing object tunnel.

7.4.2 Results for natural sequences

After verifying our method on the synthetic sequences, we proceed to test it on a couple

of natural sequences. Fig. 7·6 presents results for standard test video sequence Foreman.

We applied our method to 30 frames of the sequence, using α = 0.25, λ = 0.2, and σ = 5,

with the algorithm converging after 1000 iterations. Given that data in the natural

image sequence, like Foreman, adheres less to affine motion models for the object and

111

(a) (b)

(c) (d)

Figure 7·6: Results for the M-frame MD-BMC algorithm, applied to the
Foreman image sequence: frames (a) #5, (b) #15, and (c) #25 from the
sequence overlaid with final boundaries, and (d) the corresponding object
tunnel.

background, we increased the influence of the prior term by using a slightly larger λ.

As can be seen in Fig. 7·6, worker’s face is well estimated. However, his helmet, which

is a very uniform region and therefore satisfies any motion model, is included in the

background region, with only its edge being labeled as an object. Additionally, strong

edges in the background on the left side of the frames are falsely included in the object

region. A possible reason for this is that the affine motion model explains well the

motion of planar surfaces in the scene. However, we have two distinctive planes in

the background of this sequence, and only one can be explained with one set of affine

parameters. This leads to erroneous regions in the other plane.

Results for another standard test sequence, Stefan, are shown in Fig. 7·7. The

algorithm was applied to 30 frames of the sequence, and converged after 500 iterations.

112

(a) (b)

(c) (d)

Figure 7·7: Results for the M-frame MD-BMC algorithm, applied to the
Stefan image sequence: frames (a) #5, (b) #15, and (c) #25 from the
sequence overlaid with final boundaries, and (d) the corresponding object
tunnel.

The following parameters were used: α = 0.5, λ = 0.2, and σ = 10, and were chosen

following the same logic as for the previous sequences. The object shape is recovered

very well, although some of its parts (legs), with similar texture to the background, are

missing in some frames. The object is also tracked well across the sequence, especially

given the fast motion both of the object and the background. A product of that large

motion is an erroneous area lagging behind the object, but that is inherent to the model

we use.

7.4.3 Results for segmentation with background occlusion detection

We use motion detection methods (with or without background motion compensation)

to initialize our more advanced segmentation methods. In order to check how much

113

(a) (b)

(c) (d)

Figure 7·8: Results for the M-frame MCS-B algorithm initialized with
the M-frame MD result (Fig. 7·2 (a–c)), applied to the synthetic image
sequence Bean Small: frames (a) #10 and (b) #20 from the sequence
overlaid with final boundaries (intersections define four regions), and (c–
d) corresponding label fields (white – background, light gray – object,
dark gray – occluded background, and black – exposed background).

the final segmentation result depends on the proper initialization, we will first perform

segmentation based on the detection result without background motion compensation.

We will use the detection results from Fig. 7·2 to initialize our M-frame MCS-B method.

Segmentation results for two synthetic sequences, Bean Small and Bean Normal, are

shown in Figs. 7·8– 7·11. It is obvious that the results are very poor: Fig. 7·8 and

Fig. 7·10 show large false object and occlusion/exposed areas which make tunnels in

Fig. 7·9 and Fig. 7·11 very far from the underlying true segmentation volumes. This

is quite expected since a poor initial detection results lead to erroneous object and

background motion estimates, which in turn produce these poor segmentation results.

114

(a) (b)

(c) (d)

Figure 7·9: Volumes corresponding to results from Fig. 7·8: (a) object
tunnel, (b) background tunnel, (c) background occlusion volume , and (d)
background exposed volume.

To alleviate these problems, we use motion detection with background motion com-

pensation results (Fig. 7·4 and Fig. 7·5) to initialize the M-frame MCS-B algorithm. The

first step is to calculate motion of the object and background based on the detection

result obtained using the M-frame MD-BMC method. Next, we perform multiphase

level-set evolution (4.6) (segmentation step) with the following parameters: ω1 = 1,

ω2 = ω3 = 5, α1 = α2 = 1000, and λ1 = λ2 = 0.8. Parameters are the same for both

sequences. They are chosen to suppress false occluded and exposed background regions

in the result. The algorithm converges after 100 iterations and results for both sequences

are shown in Figs. 7·12–7·15. Fig. 7·12 and Fig. 7·14 show two frames from the original

sequence together with the final level-set contours, and the corresponding frames from

the sequence of estimated labels. Volumes corresponding to the four segmentation re-

gions are shown in Fig. 7·13 and Fig. 7·15 for the sequence Bean Small and Bean Normal,

115

(a) (b)

(c) (d)

Figure 7·10: Results for the M-frame MCS-B algorithm initialized with
the M-frame MD result (Fig. 7·2 (d–f)), applied to the synthetic image
sequence Bean Normal: frames (a) #10 and (b) #20 from the sequence
overlaid with final boundaries (intersections define four regions), and (c–
d) corresponding label fields (white – background, light gray – object,
dark gray – occluded background, and black – exposed background).

respectively. This result was obtained with a single segmentation step initialized using

the M-frame MD-BMC result; no additional motion estimation/segmentation steps were

necessary. Object and background tunnels are very accurate, while occlusion and ex-

posed volumes, although contain some spurious voxels at the periphery, still represent

very well occlusion and uncovering effects in the background. Overall, we retained the

accuracy of the segmentation results reported in Chapter 4 while expanding the set of

sequences for which our segmentation method works from static ones to those with a

moving background.

Since we know the ground-truth data, we can evaluate the segmentation accuracy

116

(a) (b)

(c) (d)

Figure 7·11: Volumes corresponding to results from Fig. 7·10: (a) object
tunnel, (b) background tunnel, (c) background occlusion volume , and (d)
background exposed volume.

objectively, and compare solutions for different methods. In Table 7.1 we compare the

M-frame MCS-B segmentation method with the simpler M-frame MD-BMC method.

It is obvious that the error drops significantly when object motion compensation and

explicit modeling of background occlusion volumes is introduced in the segmentation

algorithm. That solves the largest problem inherent to the detection algorithm, i.e.,

the object tunnel is no longer a union of object positions and background occlusion

regions in consecutive frames. The remaining small error is due to imperfect object and

background motion estimates.

117

(a) (b)

(c) (d)

Figure 7·12: Results for the M-frame MCS-B algorithm initialized with
the M-frame MD-BMC result (Fig. 7·4), applied to the synthetic image
sequence Bean Small: frames (a) #10 and (b) #20 from the sequence
overlaid with final boundaries (intersections define four regions), and (c–
d) corresponding label fields (white – background, light gray – object,
dark gray – occluded background, and black – exposed background).

Table 7.1: Object segmentation error εs (pixels per frame) for synthetic
test sequences, for motion detection and motion compensated segmenta-
tion algorithms.

Sequence M-frame MD-BMC M-frame MCS-B

Bean Small 391.1 (33%) 31.7 (2.7%)

Bean Normal 383.6 (32.4%) 41.1 (3.5%)

118

(a) (b)

(c) (d)

Figure 7·13: Volumes corresponding to results from Fig. 7·12: (a) object
tunnel, (b) background tunnel, (c) background occlusion volume , and (d)
background exposed volume.

119

(a) (b)

(c) (d)

Figure 7·14: Results for the M-frame MCS-B algorithm initialized with
the M-frame MD-BMC result (Fig. 7·5), applied to the synthetic image
sequence Bean Normal: frames (a) #10 and (b) #20 from the sequence
overlaid with final boundaries (intersections define four regions), and (c–
d) corresponding label fields (white – background, light gray – object,
dark gray – occluded background, and black – exposed background).

120

(a) (b)

(c) (d)

Figure 7·15: Volumes corresponding to results from Fig. 7·14: (a) object
tunnel, (b) background tunnel, (c) background occlusion volume , and (d)
background exposed volume.

121

Chapter 8

Fast level-set implementation

The level-set approach to image and video segmentation problems is very attractive since

it handles topological changes in the solution and has a simple numerical implementation

for arbitrary dimensions. However, it is very involved computationally (especially for

higher dimensional problems) and, therefore, not very practical for any time-critical ap-

plication (e.g., real-time tracking or segmentation). In this chapter, we describe a novel

implementation of the level-set method developed by Shi (Shi, 2005) which dramatically

reduces the computational complexity of the algorithm, and we apply his approach to

our problem of video segmentation.

8.1 Background

In the level-set method, a curve C is represented implicitly as the zero-level set of a

function φ defined over a uniform grid. Following a method proposed by Shi (Shi,

2005), we choose φ to be negative inside the contour C and positive outside C. We

assume that φ is defined over the domain D ⊂ RK and discretized on a uniform grid

with the sampling interval of one. Also, by curve C we mean a surface in 3-D case and

a hypersurface in K-dimensional case. Given this implicit representation for the curve

C, we can define two lists of grid points adjacent to contour C, as follows:

Lout = {x|φ(x) > 0 and ∃y ∈ N(x) such that φ(y) < 0},

Lin = {x|φ(x) < 0 and ∃y ∈ N(x) such that φ(y) > 0},
(8.1)

122

where x = (x1, x2, ..., xK) and N(x) is a discrete neighborhood of x defined as follows:

N(x) = {y ∈ D|

K∑

k=1

|yk − xk| = 1} ∀x ∈ D.

Lin is the list of grid points adjacent to the contour C that are just inside C, while Lout

is the list of adjacent points that are just outside C. For a given curve C, the two lists

of neighboring grid points Lin and Lout are unique and, vice versa, the location of the

curve can be determined up to the accuracy of the grid sampling interval if the two lists

are given.

Let us follow with an analysis of the relationship between the motion of the level-set

curve and the two lists Lin and Lout presented by Shi (Shi, 2005). In order to move the

curve C outside a certain grid point A at position xA (which means that φ(xA) becomes

negative) it is enough to switch it from the list Lout to Lin. Similarly, to move the curve

inward, inside of some point B, we just need to switch the grid point B membership

from Lin to Lout. Switching points between Lin and Lout requires only to set φ to some

negative or positive values at those points. By applying such a procedure to all points

in Lin and Lout, we can move the contour C inward or outward one grid point at a time

everywhere along the curve with minimal computation. This is the basis for the fast

level-set method proposed by Shi (Shi, 2005).

8.2 Implementation

In the standard level-set method, the curve C is evolved under a force field F by solving

the following PDE numerically:

φt + F |∇φ| = 0. (8.2)

123

However, in Shi’s method, the curve C is evolved by simply switching points from Lout

to Lin or back, without explicitly solving equation (8.2). There are two implementa-

tions of the fast level-set method proposed by Shi (Shi, 2005): for general evolution

forces F and using a fast, smoothing regularization. In the latter implementation, Shi

proposed to separate the evolution due to the data-dependent force and the smoothness

regularization into two cycles. The smoothness regularization is realized with simple

Gaussian filtering that is approximated with integer operations. The smoothing proce-

dure is performed much less frequently if the noise level is low. In the first cycle of the

algorithm, several iterations of the curve evolution with the data-dependent force are

performed using the fast algorithm for the general evolution speeds. In the second cycle,

several iterations of Gaussian filtering are applied to the level-set function to smooth the

curve. We will concentrate on the fast level-set method implementation for the general

evolution forces.

The following data structure is used in the fast implementation:

• φ – an array for the level-set function;

• F – an array for the force;

• Lin and Lout – lists of inside and outside neighboring grid points.

The values for the function φ are chosen from a limited set of integers to achieve faster

computation. This function is defined to locally approximate the signed distance func-

tion:

φ(x) =





3 if x is an exterior point;

1 if x ∈ Lout;

−1 if x ∈ Lin;

−3 if x is an interior point.

(8.3)

In Shi’s algorithm, the magnitude of the evolution force is ignored, only the sign is used.

124

Hence, F is also an integer array with entries 1, 0, or -1. The two lists Lin and Lout are

standard bi-directionally linked lists.

In the implementation proposed by Shi (Shi, 2005), two basic operations on the

data structure defined above are used. The procedure switch in() for a point x ∈ Lout

switches x from Lout to Lin. With x ∈ Lin now, all its neighbors that were exterior

points before become neighboring grid points now and are added to Lout in the second

step of the operation. By applying the switch in() procedure to any point in Lout, the

boundary is moved outward by one grid point at that location. Similarly, the procedure

switch out() for a point x ∈ Lin switches x from Lin to Lout and adds all its neighbors

which were interior points to Lin. By applying the switch out() procedure to an inside

neighboring grid point, we move the boundary inward by one grid point.

Now, we will describe the fast level-set implementation for general evolution forces.

At every iteration, the speed at all points in Lin and Lout is computed and its sign is

stored in F . Next, we scan through the list Lout and apply the switch in() procedure at

points for which F > 0. This scan moves parts of the curve with positive speed outward

by one grid point. After this scan, some of the points in Lin become interior points

due to newly-added inside neighboring grid points, and they are deleted. We then scan

through the list Lin and apply the switch out() procedure for each point with F < 0,

moving those parts of the curve with negative speed inward by one grid point. Similarly

to the previous scan, points in Lout which became exterior points, are deleted from the

list. After a scan through both lists, a stopping criterion is checked; for example, the

evolution stops if either of the following conditions is satisfied:

• the force at each neighboring pixel satisfies:

F (x) ≤ 0 ∀x ∈ Lout and

F (x) ≥ 0 ∀x ∈ Lin.
(8.4)

125

• a pre-defined maximum number of iterations is reached.

If the force F is non-positive for all points in Lout, the switch in() procedure is not

performed anywhere on the curve C (the curve is not moving outward). Similarly, if the

force F is non-negative for all points in Lin, the switch out() procedure is not performed

anywhere on the curve C (the curve is not moving inward). If both of these conditions

are satisfied, which is expressed in (8.4), the curve C does not move at all in the current

iteration and the values in the arrays Lin, Lout, and φ do not change. That means that

the curve would not move in the following iterations either, so the evolution process can

be stopped.

When the level-set function φ is chosen to be the signed distance function, the

curvature of C equals the Laplacian of φ. In the implementation proposed by Shi, φ is

chosen to locally (around zero-level set) approximate the signed distance function, and

given that only the sign of the force function is important, we decided to approximate

the curvature in the force calculation by the Laplacian of the level-set function φ:

κm ≈ ∆φ = φxx + φyy + φtt. (8.5)

This algorithm can be viewed as an extreme Narrow Banding since it limits the

computation to only grid points neighboring the curve. However, the curve is evolved

without solving the level-set PDE, while the major advantages of the level-set method

are kept, such as the automatic handling of topological changes and the generality of

the numerical scheme for arbitrary dimensions. The computations are on integers which

makes the algorithm even more efficient. Also, since no PDE is solved, there is no

need for careful step size control to maintain numerical stability in this method and

reinitialization is not an issue. However, intermediate positions of the curve C obtained

after each iteration of the fast level-set algorithm do not correspond to the ones obtained

by solving the level-set PDE (8.2). The level-set function is approximated by integer

126

values defined in (8.3), which means that the position of zero-level set which defines

the curve C is also approximate. Furthermore, the curvature of C which is calculated

from this integer-valued approximation of φ is only an approximation of the curvature

in the standard level-set method. Although Shi claims that the final position of curve

C calculated using the fast level-set method corresponds to the one obtained by the

standard method, we think that all these approximations may introduce errors in the

final solution.

8.3 Experimental comparison with the standard level-set method

In order to assess how much the approximations described in the previous section influ-

ence the results of the fast level-set method, we use it in several of our motion detection

and segmentation methods described earlier. Then, we compare those results to the

ones obtained using the standard level-set method.

(a) (b)

Figure 8·1: Results for the M-frame MD algorithm, applied to the syn-
thetic image sequence Bean: frame #15 from the sequence overlaid with
final boundary calculated using the (a) standard level-set implementation
and (b) fast level-set implementation.

Fig. 8·1 shows one frame of the Bean sequence overlaid with the final boundary

calculated using the M-frame MD method with the standard and fast level-set imple-

mentations. It is obvious that the results are very similar, which is further confirmed

by the segmentation error values shown in the first row of Table 8.1. However, the fast

127

level-set method requires only 100 iterations, and the result is computed in less than a

minute (less than 2s per frame since we are processing 30 frames at once), compared to

hours required by the standard method (Section 3.2).

(a) (b)

Figure 8·2: Results for the M-frame MD-BMC algorithm, applied to the
synthetic image sequence Bean Small: frame #15 from the sequence over-
laid with final boundary calculated using the (a) standard level-set imple-
mentation and (b) fast level-set implementation.

A similar conclusion can be drawn from Fig. 8·2, which shows results obtained by

applying the M-frame MD-BMC method on the Bean Small sequence. The fast imple-

mentation results in somewhat larger segmentation error, but that is due to the choice of

detection parameters. For the standard level-set implementation experiment, we used

the optimal set of parameters, which is no longer optimal when used with the fast

method. If another set of parameters is used with the fast method, object segmentation

error is much closer to that of the standard method (the error is 409.97 pixels per frame).

Different results are obtained when the same detection method is applied to the

standard Foreman sequence (Fig. 8·3). Even visually, the resulting level-set boundaries

for the standard (Fig. 8·3 (a)) and fast level-set method (Fig. 8·3 (b)) differ significantly.

Again, if we choose a different set of parameters for the fast level-set implementation,

adjusted for that method, we are able to achieve a result (Fig. 8·3 (c)) similar to the one

in Fig. 8·3 (a). However, there is one more aspect in which this experiment differs from

the others: the value of the regularization parameter λ was set to 0.2, while in all other

128

(a) (b) (c)

Figure 8·3: Results for the M-frame MD-BMC algorithm, applied to the
Foreman image sequence: frame #15 from the sequence overlaid with final
boundary calculated using the (a) standard level-set implementation, (b)
fast level-set implementation, and (c) fast level-set implementation with
adjusted set of parameters.

experiments we used λ = 0.1. Obviously, higher values of the curvature parameter λ

influence standard and fast level-set method solutions differently. It seems that for the

same value of λ the fast method solution is smoother which means that the curvature

term influence is larger.

(a) (b)

Figure 8·4: Results for the M-frame MCS-B algorithm, applied to the
synthetic image sequence Bean: frame #20 from the sequence overlaid
with final boundaries calculated using the (a) standard level-set imple-
mentation and (b) fast level-set implementation.

Finally, we applied our M-frame MCS-B method to the Bean sequence and the

results for the two implementations are shown in Fig. 8·4. Although we used the same

set of parameters in the segmentation step, we initialized it using the optimal detection

129

results and optimal motion estimates which are different for standard and fast level-set

implementation (i.e., different parameters are used in M-frame MD method implemented

using standard and fast level-set implementations to calculate the initial segmentation

surfaces; furthermore, different parameters are used in the initial estimation of motion

parameters based on the initial surfaces calculated using the standard and fast level-set

methods). As the result, we obtained very small object segmentation errors (Table 8.1,

third row), and almost perfect results.

Table 8.1: Object segmentation error εs (pixels per frame) for synthetic
test sequences, for different detection and segmentation algorithms imple-
mented using the standard and fast level-set methods.

Sequence (Method) standard level-set fast level-set

Bean (M-frame MD) 128.1 (10.8%) 120.5 (10.2%)

Bean Small (M-frame MD-BMC) 391.1 (33%) 479.2 (42.3%)

Bean (M-frame MCS-B) 6.0 (0.5%) 3.7 (0.3%)

Based on these experiments, we can conclude that the fast level-set method produces

results with the accuracy and flexibility of the standard level-set method, at a fraction of

the computational cost. The only major difference is how each method handles higher

values of the regularization parameter λ. The influence of the curvature term grows

much faster with λ for the fast method, and that should be taken into account when

the parameters for an experiment are being chosen.

8.4 Experimental results for the VIVID dataset

The fast level-set method allows us to run our segmentation algorithms on much larger

sequences (spatially and temporally) in a reasonable amount of processing time. An

interesting database of video sequences can be found on VIVID (Video Verification

130

of Identity) Tracking Evaluation Web Site (Collins et al., 2005) at Carnegie Mellon

University. For each sequence in the database, ground-truth segmentation data are

provided for one moving object. We chose two VIVID sequences to further test our

M-frame MD-BMC algorithm.

(a) (b)

(c) (d)

Figure 8·5: Results for the M-frame MD-BMC algorithm, applied to the
Egtest02 image sequence: frames (a) #10, (b) #30, and (c) #50 from the
sequence overlaid with ground-truth tracking rectangle and final bound-
aries, and (d) the corresponding object tunnel.

Figs. 8·5 (a)–(c) show three frames of the sequence Egtest02 (640×480 pixels, 60

frames) overlaid with the ground-truth tracking rectangle and final boundaries calcu-

lated using our M-frame MD-BMC method. The algorithm converges after 400 iterations

131

with the following parameters: α = 0.4 and λ = 0.1. Fig. 8·5 (d) shows the correspond-

ing object tunnels. The three moving cars are pretty well estimated throughout the

sequence. When the first car in the column turns left in the second part of the sequence,

it is not estimated as well anymore due to a change in illumination which makes it more

similar to the background. Given the moving background, some noise present in the

upper-left corner of the sequence is not unexpected – that area has more texture and

cannot be perfectly compensated for. False object areas along right and bottom edges

of each frame are newly uncovered background areas with no corresponding regions in

previous frames. The ground-truth segmentation is given only for the first car in the

column with respect to which our result gives 35.12% segmentation error (averaged over

30 frames for which the ground-truth data are known). As explained above, this error

is much larger once the vehicle turns in the second part of the sequence. In order to

compare our results with the baseline methods, we used results from the VIVID web site

(Collins et al., 2005). For the comparison measure, we used average accuracy in terms

of percentage of similarity between ground-truth bitmap and estimated bitmap within

the ground-truth tracking rectangle area. The best baseline results reported are ob-

tained using Basic Mean Shift method (Comaniciu et al., 2003), which produces 25.31%

segmentation error compared to 35.12% we obtained. Given that the baseline methods

are specifically developed for tracking ground vehicles from airborne sensor platforms,

performance of our detection method is quite satisfactory.

Fig. 8·6 shows results for the sequence Hollywood (720×480, 150 frames). Results

are obtained after 500 iterations for the following detection parameters: α = 0.4 and

λ = 0.1. There are several moving cars in the scene which are fairly well estimated.

There is also large background motion present, which yields false object regions simi-

larly to the Egtest02 sequence: noise in the background and newly-exposed background

regions on the right and top edges of each frame. The ground-truth data are given for

132

(a) (b)

(c) (d)

Figure 8·6: Results for the M-frame MD-BMC algorithm, applied to
the Hollywood image sequence: frames (a) #25, (b) #75, and (c) #125
from the sequence overlaid with ground-truth tracking rectangle and final
boundaries, and (d) the corresponding object tunnel.

the car bounded by the tracking rectangle in Fig. 8·6 (a)–(c), with respect to which our

method produces segmentation error of 20.96% (again averaged over 30 frames for which

the ground-truth data is known, using the same accuracy measure as for the previous se-

quence). The best baseline results reported on the VIVID web site are for the Enhanced

Meanshift with Foreground/Background Ratio method (Comaniciu et al., 2003), which

produces segmentation error of 27.88%. Although our method outperformed the best

baseline result, it is important to note that we performed tracking over a much smaller

subsequence of the Hollywood sequence compared to the baseline method.

133

Chapter 9

Conclusions and future work

In this dissertation we presented our work on several important areas of video analysis,

including video segmentation, motion estimation and modeling, and detection of oc-

clusion events. We proposed a novel approach to joint space-time, motion-based video

segmentation. The problem is posed in variational framework with respect to a 3-D

surface that partitions the image sequence domain into inside and outside. The inside

corresponds to object tunnel, a 3-D volume “carved out” by a moving object, while the

outside corresponds to background. The problem is formulated as volume competition,

a 3-D generalization of region competition (Zhu and Yuille, 1996). The resulting active

surface evolution equation is discretized and solved using standard level-set approach

(Sethian, 1996b). We used this framework to develop simple algorithm for motion de-

tection based on models proposed earlier in the literature (Jehan-Besson et al., 2000).

This multi-frame motion detection algorithm commits consistent errors due to the

nature of the observation model used: segmented objects in each frame represent a union

of object positions in consecutive frames. To address this issue, we extend the method

by explicitly modeling the evolution of object and background using motion trajectories

(Ristivojević and Konrad, 2004b). However, occluded and newly-exposed background

areas (due to object motion) cannot be explained by these motion trajectories. To

account for these regions, we include explicit models for the occluded and newly-exposed

background areas, which leads to new space-time concepts of occlusion volume and

exposed volume. As for motion trajectories, we use a parametric model associated either

134

with object or background. Since we need to partition the image sequence domain

into 4 volumes, we use the multiphase level-set framework (Vese and Chan, 2002).

Although this approach significantly improves segmentation accuracy, it does not handle

image sequences in which object occlusion is present. To alleviate that, we extend our

formulation to include explicit models of the occluded and newly-exposed areas of the

object (Ristivojević and Konrad, 2004a). Finally, we generalize our motion segmentation

formulation to allow for any number of moving objects and occlusion/exposure volumes.

Our simple multi-frame motion detection algorithm performs well only for image

sequences with static backgrounds, limiting the set of image sequences it can be applied

to. We expand our motion detection formulation to account for camera motion and

zoom. We use affine model to describe camera motion between frames and perform

simultaneous evolution of the level-set surface that encloses moving objects and motion

estimation in the background region.

To reduce computational complexity of the level-set method, we applied a novel

level-set implementation, recently developed by Shi (Shi, 2005), to our motion detection

and segmentation methods and investigated its performance. We obtained reduction of

computation time by up to 200 times, while preserving segmentation accuracy of the

standard level-set implementation.

In our segmentation methods, we modeled evolution of moving objects and back-

ground using motion trajectories which are piece-wise linear, i.e., they consist of motion

vectors calculated for each frame pair separately. Given that the underlying motion of

moving objects is smooth in temporal direction, we expanded our motion estimation for-

mulation with a term that penalizes the difference between consecutive motion vectors

along trajectory.

We can conclude that active-surface level-set framework looks very promising for

video analysis. Using our multi-frame motion detection and segmentation algorithms

135

(a) (b) (c)

Figure 9·1: Results for M-frame MD algorithm, applied to a natural
image sequence with two cars occluding one another: frames (a) #1, and
(b) #15 from the sequence overlaid with final boundaries, and (c) the
corresponding object tunnel.

complex tunnels can be calculated describing interesting events. For example, Fig. 9·1

shows results for an image sequence in which two cars are moving one behind the other.

At the start of the sequence, the first car occludes the second car, but as they turn

in different directions, both cars become visible. That is very well illustrated by the

fork in the tunnel in Fig. 9·1 (c). Based on such tunnels accurate motion over many

frames could perhaps be computed, as well as different interesting events in the sequence

(occlusions, moments of collision between objects, etc.).

The main contributions of this dissertation are:

• Development of a novel approach to joint spatio-temporal motion-based video

detection and video segmentation based on volume competition and surface evo-

lution.

• Development of new, space-time models for occluded and newly-exposed areas in

a video sequence.

• Introduction of new space-time concepts of occlusion and newly-exposed volumes.

136

9.1 Future work

In this section we will briefly describe several directions in which our work on video

segmentation, motion estimation and occlusion detection could be extended.

9.1.1 Better modeling of occluded and newly-exposed areas

In Chapter 5 we saw that estimated occluded and newly-exposed volumes of an object

are not very accurate for the case of the natural image sequence Car. We believe that

this is due to inaccuracies in the estimated motion and variations of object intensity

over time. However, these problems are likely to arise for any natural (camera-acquired)

sequence, in case of occluded/newly-exposed volumes of moving objects or non-static

background, i.e., whenever it is impossible to estimate motion with perfect accuracy. It

is necessary to address this problem by proposing better models for occluded and newly-

exposed areas as well as for fully-visible areas. Models proposed in equations (4.2)–(4.4)

assume that intensity variations over the part of motion trajectories where object is

visible must be small. However, if object intensity changes over time and/or motion

trajectories are not estimated accurately enough, this condition will not be satisfied.

The assumption of constant intensity over motion trajectory has to be replaced with

a different approach, and investigation of that problem is an important part of future

work. Negahdaripour and Gennert (Negahdaripour et al., 1989) propose to replace the

brightness constancy constraint with a more general constraint, which permits a linear

transformation between image brightness values. The transformation parameters are

allowed to vary smoothly so that inexact matching is allowed. De Micheli et al. (De

Micheli et al., 1993) replaced constant brightness assumption with the assumption of

constant spatial intensity gradient. These and other similar ideas should be investigated

and applied to the modeling of occluded and newly-exposed areas.

137

9.1.2 Spline modeling of motion trajectories

Our approach to the estimation of motion parameters, as described in Section 4.2.2,

was to estimate them separately for each frame pair in the sequence, with no explicit

relationship between motion vectors at different time instants. In Section 4.2.3, we

introduced a temporal smoothness constraint in the estimation of motion parameters,

to account for the smooth underlying motion of moving objects in the temporal direction.

However, in both approaches we model motion trajectories c(ti; x, t) (defined in Section

4.1) as piecewise-linear between images in each frame pair. Ideally, one would like a

consistent spatio-temporal motion model to match the spatio-temporal tunnel model

we proposed. Although a dense representation (optical flow) with suitable constraints

could serve this purpose, it requires very many parameters and does not support explicit

continuous representation (motion between grid points is computed through arbitrary

interpolation). An implicit continuous-space motion representation (such as affine) is

needed in order to recover motion at arbitrary grid point from a single set of parameters.

Clearly, a parametric motion model supporting explicit continuous representation would

be more suitable.

The ultimate goal here is to model motion trajectories over the whole span of an

image sequence. In this context, it would be interesting to introduce a continuous tem-

poral parametric model which will describe moving object trajectories across the image

sequence. Such a model would allow more accurate motion-compensated temporal inter-

polation of a video sequence. Moreover, a parametric temporal model would introduce

strong constraint on motion trajectories in the direction of time, which, in turn, may

allow one to replace the parametric spatial motion model (affine) with a less constrained

smooth motion field.

A quadratic trajectory model was originally proposed in (Dubois and Konrad, 1993),

and developed in detail by Chahine and Konrad (Chahine and Konrad, 1995). This

138

model worked well, but only for the trajectories with up to 7 frames, and with simple

spatial smoothness model. We feel that more flexible model is required and we think that

polynomial spline model (Unser, 1999; Szeliski and Shum, 1996; Szeliski and Coughlan,

1997) would be more appropriate to describe motion trajectories over sequences of 30

and more frames. Thus, we propose to model motion trajectories temporally using

splines.

In the current implementation of our video segmentation algorithm, we need mo-

tion defined on all grid points for each of the different motion trajectories (objects,

background). For example, if we consider level-set evolution equations for segmentation

surfaces in the M-frame MCS-B method, (4.6), it is obvious that the terms ξobj(x, t; p)

and ξobj(x, t; p̄) (defined in (4.2)) need to be calculated for all points of an image se-

quence. In order to calculate these terms at any point, we have to measure intensity

variation over object and background trajectories passing through that point, which

means that those trajectories need to be defined for all points of an image sequence (i.e.,

both object and background trajectories need to be defined inside the object volume, as

well as background volume). In general, motion trajectories passing through neighboring

grid points are related (except at object boundaries). Thus, any temporal motion model

needs to be combined with some form of spatial model. A simple solution would be to

enforce spatial smoothness of motion trajectories, however, only a spatially-parametric

model would allow us to compute displacements at any spatial position in a consistent

fashion. One option would be to keep the affine model in spatial domain, but it is not

clear how to combine it with the temporal spline model. Furthermore, spatial affine

models are restrictive and describe accurately only projection of the motion of a planar

patch in 3-D space under orthographic projection. For more complicated objects, e.g.,

human body motion, we need less restrictive spatial model. An alternative is to use a

spatial spline model (especially smoothing splines (Precioso et al., 2003)) in all three

139

dimensions.

We propose to represent motion trajectories using splines in the following manner.

For each point in the first frame of the sequence (the first frame is chosen as the reference

frame), (x, t1), a trajectory passing through this point is defined as follows

c(t; x, t1) = x + d(x, t), (9.1)

where we model the displacement d(x, t) using B-splines (Unser, 1999):

d(x, t) = (dx(x, t), dy(x, t))

dx(x, t) =
∑

k∈Z

∑

l∈Z

∑

m∈Z

cx(k, l,m)β3(x − k)β3(y − l)β3(t − m)

dy(x, t) =
∑

k∈Z

∑

l∈Z

∑

m∈Z

cy(k, l,m)β3(x − k)β3(y − l)β3(t − m).

(9.2)

In the equations above, the spatial position vector x has two components, x = (x, y),

while the B-spline of degree 3, denoted by β3(x), is defined as

β3(x) =





2
3
− |x|2 + |x|3

2
, 0 ≤ |x| < 1

(2−|x|)3

6
, 1 ≤ |x| < 2

0, 2 ≤ |x|.

(9.3)

The above model offers a spline representation of motion trajectories passing through

any point in the first frame, including grid points. However, those trajectories do not

necessarily pass through grid points in other frames of the sequence. Fig. 9·2 illustrates

this problem for 2-D case (x − t). In the segmentation methods we proposed thus far,

we need trajectories passing through all grid points in all frames in order to calculate

energy terms ξobj, ξocc, and ξexp (for example, in the case of M-frame MCS-B method,

defined in equations (4.2) – (4.4)). Therefore, we need to calculate trajectory passing

through any point in the sequence domain based on the proposed spline representation

140

x

t1 t

(x ,t)0

(x,t)1

Figure 9·2: Example of motion trajectories in 2-D case: the known mo-
tion trajectories passing through grid points in frame at t1 are represented
with solid lines; the unknown trajectories passing through grid points in
frame at t are dashed.

anchored in the first frame. In order to do that, we need to find a point (x, t1) in the

reference frame from which originates a trajectory passing through grid point (x0, t) in

frame at time t (see Fig 9·2 for an example of such trajectory). This can be formulated

as follows

find x such that x + d(x, t) = x0. (9.4)

Given the nonlinearity of d(x, t) = (dx(x, t), dy(x, t)), equation (9.4) cannot be solved

analytically. We propose to estimate x = (x, y) using the following minimization:

(x, y) = arg min
x∈Ω

f(x, y)

f(x, y) = (x0 − (x + dx(x, t)))2 + (y0 − (y + dy(x, t)))2.

(9.5)

We solve this minimization using steepest descent:

xk+1 = xk − λk∇f(xk). (9.6)

Using this method, only one set of spline coefficients, describing motion trajectories

passing through the reference frame, is enough to obtain motion trajectories passing

141

through any grid (or non-grid) point, in any frame, which makes this spline represen-

tation suitable for our segmentation problem. To demonstrate how this method works,

we test it on a simple synthetic 1-D example. In this case, we have

d(x) =
∑

k∈Z

c(k)β3(x − k), (9.7)

and we are looking for x such that x + d(x) = x0. Minimization (9.5) reduces to:

x = arg minx∈L(x0 − (x + d(x)))2, (9.8)

where L is the domain (line segment) on which x is defined. Fig. 9·3 (a) shows an

example of displacement function d(x) for a particular set of coefficients c(k) within

spline representation (9.7). Fig. 9·3 (c) shows estimated values of x for which x+d(x) =

x0, where x0 lays on 1-D grid (x0 is an integer value in this case). These values are

obtained after 100 iterations of the steepest descent algorithm, with λk = 0.2. The

associated estimation error is shown in Fig. 9·3 (d). This error is very small, proving

that our algorithm works correctly. In this example, the function x+d(x) is monotonic,

which corresponds to situations where each point in one frame maps to a different point

in the next frame. If this condition is not satisfied (due to occlusion, for example),

we would not be able to uniquely recover values of x. However, this condition can be

enforced in the process of motion estimation.

The case of 3-D spline representation of motion trajectories (9.2) is a little bit more

involved. We want to calculate trajectories passing through grid points in frame at

time t = τ using minimization (9.5). It is important to note that we are solving this

minimization for a single frame at time τ , in which case the displacement d(x, τ) is a

function of only two variables, x and y. Figs. 9·4 (a) and (b) show displacement functions

dx(x, y, τ) and dy(x, y, τ) which are calculated using spline representation (9.2). Figs. 9·4

(e) and (f) show the estimated values of x and y for which x+d(x, τ) = x0 holds, where

142

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

x

d(
x)

(a)

1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

x

x+
d(

x)

(b)

3 4 5 6 7 8 9 10 11

2

4

6

8

10

x
0

x(
x 0)

(c)

3 4 5 6 7 8 9 10 11

−3

−2

−1

0

x 10
−9

x
0

er
r(

x 0)

(d)

Figure 9·3: Results for 1-D example: (a) displacement d(x), (b) x+d(x),
(c) estimated values of x such that x+d(x) = x0, and (d) estimation error,
err(x0) = x0 − (x + d(x)).

point x0 = (x0, y0) is on a 2-D grid (x0 and y0 are integer values in this case). These

values are obtained after 100 iterations of the steepest descent algorithm, with λk = 0.2.

Fig. 9·4 (g) shows the estimation error which is again very small. This example shows

that the proposed method is quite adequate for the calculation of motion trajectories

passing through grid points in any frame of the sequence given a spline representation of

motion trajectories passing through reference frame. For the small example presented

here (10× 10 image), execution time of a MATLAB implementation of the algorithm is

around 30s. This means that a more efficient C implementation is required.

The main benefit of this new spatio-temporal spline representation of motion trajec-

tories lays in its flexibility. It allows us to find a balance between accuracy of a dense

143

(optical flow) representation (which requires too many parameters) and simplicity of

global parametric representation (such as affine). This can be achieved by changing the

number of spline coefficients c(k, l,m) used (changing the density of spline control grid).

This flexibility enables us to more accurately capture complex motion of the objects in

an image sequence, and better motion estimates lead to more accurate segmentation

results. This new spline motion model could also find application in video coding as an

alternative to currently predominant block-based models (better motion accuracy with

little additional transmission penalty).

An important area of future work is incorporation of spline spatio-temporal models

of motion trajectories into our video segmentation algorithms. A related issue is the

estimation of spline coefficients of the proposed model, or motion estimation is spline

spaces. One approach is to estimate dense motion vector fields between frames of the

sequence using optical flow techniques and then fit a spline model to those vector fields.

An alternative approach is to directly estimate the spline coefficients using a method

similar to the one proposed in Section 4.2.2, by extending the energy functional (4.9)

from two consecutive frames to the whole span of the sequence and minimizing it over

all coefficients of the spline model. Clearly, instead of the displaced frame difference, a

measure of intensity variation over motion trajectories would need to be minimized.

The estimated parameters of a spatio-temporal spline trajectory model would be

valid only within the associated object or background volume. In principle, the formu-

lation of our volume-competition segmentation requires that motion of each object and

background be defined everywhere in the image sequence. However, in practice motion

trajectory information is required only at zero-level sets where the evolution force is cal-

culated (i.e., at the boundary of two different volumes only motion for these two objects

needs to be defined). Note that in our segmentation algorithms we perform numerous

iterations of segmentation surface evolution between motion estimation steps. Even if

144

motion of all relevant objects and background were defined at the boundary of these

volumes initially, after the motion estimation step, as the segmentation surfaces move,

that would be no longer true. One solution is to re-estimate motion parameters after

each iteration of the surface evolution. However, that is very expensive computationally

and extremely inefficient given that the segmentation surfaces change very little between

iterations; the newly-estimated motion parameters would be virtually identical to the

previous ones. A better solution would be to extrapolate motion models for each vol-

ume in a narrow band around the volume boundary, so that a re-estimation of motion

parameters would be necessary only after a significant change in segmentation surfaces.

It is, however, necessary to investigate how inaccuracies in motion trajectories in the

extrapolated region would influence the segmentation result.

Another approach would be to have a single spatio-temporal trajectory model de-

scribing trajectories in the whole image sequence domain (all the object and background

tunnels). In that case modeling of motion discontinuities within the spline model be-

comes a very important issue.

9.1.3 Real-time implementation of our video segmentation algorithms

Currently, our segmentation and motion estimation algorithms are implemented using

a combination of MATLAB and C code. The evolution of segmentation surfaces using

standard level-set method is implemented in MATLAB, with some computationally

involved portions of code written as C functions called from MATLAB. However, this

implementation takes hours to reach a solution even for a 30-frame QCIF sequence.

Even with a more optimized implementation, written exclusively in C, standard level-

set implementation of our detection and segmentation algorithms would be far from

real-time. On the other hand, the fast level-set implementation takes only 2s per frame

to evolve segmentation surface until convergence, even though it is currently written in

145

MATLAB. An optimized version of this algorithm implemented in C would probably

result in near real-time performance.

The motion estimation part of the overall video segmentation algorithm is also writ-

ten in MATLAB, and takes less than a minute to calculate motion estimates for one

frame of an image sequence. A C implementation of the BFGS quasi-Newton method

used in MATLAB version would definitely reduce the computation time, however proba-

bly not to a real-time level. A faster method to minimize (4.9) is required ((Press et al.,

1992) is a good source for minimization algorithms). Overall, with efficient C imple-

mentations of both surface evolution and motion estimation algorithms, nearly real-time

performance of the overall video segmentation algorithm could be achieved even today.

Given the rapid rate of increase in the computing power of personal computers, a real-

time implementation will be available in the near future.

A real-time performance would require that our video segmentation method be also

autonomous. Currently, our method is semi-automatic; user interaction is still necessary

in the domain of choosing segmentation and motion estimation parameters (α, λ, ω’s,

etc.) and deciding how many segmentation surfaces need to be evolved. For a real-time

implementation, we need to find a way to choose or estimate these parameters automat-

ically. For example, value of the parameter α in the M-frame MD algorithm depends on

the level of noise in the background. Values of weights ωi in the M-frame MCS algorithms

depend on the variation of intensity over object/background trajectories. In order to

estimate those parameters automatically, one could use expectation-maximization (EM)

algorithm (Moon, 1996; Zhang et al., 1994).

The number of segmentation surfaces needed in our video segmentation algorithm

directly depends on the number of moving objects in the sequence. The M-frame MD

algorithm gives us the number of moving regions in each frame of the sequence (after

spurious, isolated pixels are removed using morphological operations). However, in

146

order to be able to perform initial estimation of motion parameters for each moving

object we need to track these moving regions throughout the sequence. An interesting

approach for finding the number of moving objects based on correspondence estimation

is proposed in (Mansouri and Konrad, 2003). They estimate correspondence points and

group them into separate classes, each with its own distinct motion, which gives them

the number of distinct motion classes and their parameters. One could adapt their

approach in the following manner: for each moving region estimated in the detection

step of the algorithm, feature points are extracted. For each pair of frames in the

image sequence, correspondence between feature points is established, thus establishing

correspondence between detected moving regions in those frames. That would allow

tracking of moving regions throughout the sequence, and also eliminate larger erroneous

regions in the detection result. The number of moving objects in the sequence, L, would

be the number of moving regions which were successfully tracked using feature points

correspondence. The number of surfaces would be M = dlog2 Ne, where N = 3(L + 1),

to account for occluded/newly-exposed regions in the objects and background.

Another important issue is the causality of the proposed video segmentation al-

gorithm. Since in our segmentation algorithm multiple frames are processed jointly,

including several future frames, the algorithm is inherently non-causal and would cause

delay in any real-time implementation. An interesting question for the future work

would be whether it is possible to approximate our algorithm with a causal one. The

obvious difficulty would be with the estimation of to-be-occluded volumes – in order to

check whether certain region will be occluded in the future we need information from

the future image frames.

147

(a) (b)

(c) (d)

3
5

7
9

11

3
5

7
9

11

2

4

6

8

10

x
0

y
0

x(
x 0,y

0)

(e)

3
5

7
9

11

3
5

7
9

11

0
2
4
6
8

10

x
0

y
0

y(
x 0,y

0)

(f)

3
5

7
9

11

3
5

7
9

11

0.4

0.8

1.2
x 10

−5

x
0

y
0

er
r(

x 0,y
0)

(g)

Figure 9·4: Results for 3-D example: displacements (a) dx(x, y, τ)
and (b) dy(x, y, τ), (c) x + dx(x, y, τ), (d) y + dy(x, y, τ), (e),(f)
estimated values of x and y such that x + dx(x, y, τ) = x0

and y + dy(x, y, τ) = y0, and (g) estimation error, err(x0, y0) =√
(x0 − (x + dx(x, y, τ)))2 + (y0 − (y + dy(x, y, τ)))2.

148

References

A. Cavallaro, O. Steiger, T. E. (2005). Semantic video analysis for adaptive
content delivery and automatic description. IEEE Transactions on Circuits
and Systems for Video Technology, 15(10):1200–1209.

Adalsteinsson, D. and Sethian, J. (1995). A fast level set method for propagating
interfaces. Journal of Computational Physics, 118:269–277.

Adalsteinsson, D. and Sethian, J. (1999). The fast construction of extension
velocities in level set methods. Journal of Computational Physics, 148:2–22.

Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the
Royal Statistical Society, B 48:259–279.

Black, M. (1992). Robust incremental optical flow. PhD dissertation, Yale
University, Department of Computer Science.

Bottreau, V., Bénetière, M., Felts, B., and Pesquet-Popescu, B. (2001). A fully
scalable 3D subband video codec. In Proceedings of the IEEE International
Conference on Image Processing, pages 1793–1796.

Brady, N. (1999). Mpeg-4 standardized methods for the compression of arbi-
trarily shaped video objects. IEEE Transactions on Circuits and Systems for
Video Technology, 9(8):1170–1189.

Caselles, V., Kimmel, R., and Sapiro, G. (1997a). Geodesic active contours.
International Journal of Computer Vision, 22(1):61–79.

Caselles, V., Kimmel, R., Sapiro, G., and Sbert, C. (1997b). Minimal surfaces
based object segmentation. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 19(4):394–398.

Chahine, M. and Konrad, J. (1995). Estimation and compensation of acceler-
ated motion for temporal sequence interpolation. Signal Processing, Image
Communication, 7(4–6):503–527.

Chan, T. and Vese, L. (2001). Active contours without edges. IEEE Transac-
tions on Image Processing, 10(2):266–277.

149

150

Chang, M., Tekalp, A., and Sezan, M. (1997). Simultaneous motion estimation
and segmentation. IEEE Transactions on Image Processing, 6(9):1326–1333.

Chang, S.-F., Horace, W. C. H., Sundaram, H., and Zhong, D. (1998). A
fully automated content based video search engine supporting spatio-temporal
queries. IEEE Transactions on Circuits and Systems for Video Technology,
8(5):602–615.

Chiuso, A., Favaro, P., Jin, H., and Soatto, S. (2002). Structure from motion
causally integrated over time. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(4):523–535.

Chou, P. and Brown, C. (1990). The theory and practice of Bayesian image
labelling. International Journal of Computer Vision, 4:185–210.

Chuang, Y.-Y., Curless, B., Salesin, D., and Szeliski, R. (2001). A bayesian
approach to digital matting. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, volume 2, pages II264–II271.

Collins, R., Lipton, A. J., and Kanade, T. (1999). A system for video surveil-
lance and monitoring. In American Nuclear Society Eight International Top-
ical Meeting on Robotics and Remote Systems.

Collins, R., Zhou, X., and Teh, S. (2005). An open source tracking testbed
and evaluation web site. In IEEE International Workshop on Performance
Evaluation of Tracking and Surveillance (PETS 2005).

Comaniciu, D., Ramesh, V., and Meer, P. (2003). Kernel-based object tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5):564–
577.

Cremers, D. (2003). A multiphase level set framework for motion segmentation.
In Griffin, L. and Lillholm, M., editors, 4th International Conference on Scale
Space Theories in Computer Vision, pages 599–614, Isle of Skye, Scotland.
Springer.

De Micheli, E., Torre, V., and Uras, S. (1993). The accuracy of the computation
of optical flow and of the recovery of motion parameters. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 15(5):434–447.

Debreuve, E., Barlaud, M., Aubert, G., Laurette, I., and Darcourt, J. (2001).
Space-time segmentation using level set active contours applied to myocardial
gated SPECT. IEEE Transactions on Medical Imaging, 20(7):643–659.

151

Depommier, R. and Dubois, E. (1992). Motion estimation with detection of
occlusion areas. In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing, pages III.269–III.272.

Driessen, J. and Biemond, J. (1991). Motion field estimation for complex scenes.
In Proceedings of SPIE Visual Communications and Image Processing, pages
511–521.

Dubois, E. (1992). Motion-compensated filtering of time-varying images. Mul-
tidimensional Systems and Signal Processing, 3:211–239.

Dubois, E. and Konrad, J. (1993). Estimation of 2-D motion fields from image
sequences with application to motion-compensated processing. In Sezan, M.
and Lagendijk, R., editors, Motion Analysis and Image Sequence Processing,
chapter 3, pages 53–87. Kluwer Academic Publishers.

Feghali, R. and Mitiche, A. (2004). Spatiotemporal motion boundary detection
and motion boundary velocity estimation for tracking moving objects with a
moving camera: A levels sets PDEs approach with concurrent camera motion
compensation. IEEE Transactions on Image Processing, 13(11):1473–1490.

Feghali, R., Mitiche, A., and Mansouri, A.-R. (2001). Tracking as motion bound-
ary detection in spatio-temporal space. In Proceedings of the International
Conference on Imaging Science, Systems, and Technology, pages 600–604.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 6(6):721–741.

Haan, G. D. and Bellers, E. (1998). Deinterlacing - an overview. Proceedings of
the IEEE, 86(9):1839–1857.

Han, S.-C. and Woods, J. (1997). Frame-rate up-conversion using transmitted
motion and segmentation fields for very low bit-rate video coding. In Pro-
ceedings of the IEEE International Conference on Image Processing, volume I,
pages 747–750.

Heitz, F. and Bouthemy, P. (1993). Multimodal estimation of discontinuous
optical flow using Markov random fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15(12):1217–1232.

Irani, M. and Peleg, S. (1993). Motion analysis for image enhancement: res-
olution, occlusion and transparency. Journal of Visual Communication and
Image Representation, 4(4):324–335.

152

Jehan-Besson, S., Barlaud, M., and Aubert, G. (2000). Detection and tracking
of moving objects using a new level set based method. In Proceedings of the
International Conference on Pattern Recognition, pages 1112–1117.

Jehan-Besson, S., Barlaud, M., and Aubert, G. (2001). Video object segmenta-
tion using Eulerian region-based active contours. In Proceedings of the IEEE
International Conference on Computer Vision.

Jehan-Besson, S., Barlaud, M., and Aubert, G. (2003). DREAM2S: Deformable
regions driven by an Eulerian accurate minimization method for image and
video segmentation. International Journal of Computer Vision, 53(1):45–70.

Karlsruhe, U. (1997). Web site. http://i21www.ira.uka.de/image

sequences/.

Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour
models. International Journal of Computer Vision, 1:321–331.

Keys, R. (1981). Cubic convolution interpolation for digital image processing.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(6):1153–
1160.

Koch, R. (1993). Dynamic 3-d scene analysis through synthesis feedback control.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(6):556–
568.

Konrad, J. and Dubois, E. (1992). Bayesian estimation of motion vector fields.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(9):910–
927.

Konrad, J. and Ristivojević, M. (2002). Joint space-time image sequence seg-
mentation based on volume competition and level sets. In Proceedings of the
IEEE International Conference on Image Processing, volume 1, pages 573–
576.

Konrad, J. and Stiller, C. (1997). On Gibbs-Markov models for motion com-
putation. In Li, H., Sun, S., and Derin, H., editors, Video Compression for
Multimedia Computing – Statistically Based and Biologically Inspired Tech-
niques, chapter 4, pages 121–154. Kluwer Academic Publishers.

Kuglin, C. and Hines, D. (1975). The phase correlation image alignment
method. In Proceedings of the International Conference on Cybernetics and
Society, pages 163–165.

153

Kühne, G., Weickert, J., Schuster, O., and Richter, S. (2001). A tensor-driven
active contour model for moving object segmentation. In Proceedings of the
IEEE International Conference on Image Processing, pages 73–76.

Lim, K., Das, A., and Chong, M. (2002). Estimation of occlusion and dense
motion fields in a bidirectional Bayesian framework. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24(5):712–718.

Luthon, F., Caplier, A., and Liévin, M. (1999). Spatiotemporal MRF approach
with application to motion detection and lip segmentation in video sequences.
Signal Processing, 76:61–80.

Malladi, R., Sethian, J., and Vemuri, B. (1995). Shape modeling with front
propagation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 17(2):158–176.

Mansouri, A.-R. and Konrad, J. (1999). Motion segmentation with level sets.
In Proceedings of the IEEE International Conference on Image Processing,
volume 2, pages 126–130.

Mansouri, A.-R. and Konrad, J. (2003). Multiple motion segmentation with
level sets. IEEE Transactions on Image Processing, 12(2):201–220.

Mansouri, A.-R. and Mitiche, A. (2002). Spatial/joint space-time motion seg-
mentation of image sequences by level set pursuit. In Proceedings of the IEEE
International Conference on Image Processing, volume 2, pages 265–268.

Mansouri, A.-R., Mitiche, A., and Feghali, R. (2002). Spatio-temporal motion
segmentation via level set partial differential equations. In Proceedings of
the Fifth IEEE Southwest Symposium on Image Analysis and Interpretation,
pages 243–247.

Mansouri, A.-R., Mitiche, A., and Vázquez, C. (March 2004). Multiregion
competition: A level set extension of region competition to multiple region
partitioning of images and image sequences. Computer Vision and Image
Understanding.

Mémin, E. and Pérez, P. (1998). Dense estimation and object-based segmenta-
tion of the optical flow with robust techniques. IEEE Transactions on Image
Processing, 7(5):703–719.

Mitiche, A., Feghali, R., and Mansouri, A.-R. (2002). Tracking moving objects
as spatio-temporal boundary detection. In Proceedings of the Fifth IEEE
Southwest Symposium on Image Analysis and Interpretation, pages 206–110.

154

Moon, T. (1996). The expectation-maximization algorithm. IEEE Signal
Processing Magazine, 13(6):47–60.

Negahdaripour, S., Shokrollahi, A., and Gennert, M. (1989). Relaxing the
brightness constancy assumption in computing optical flow. In Proceedings of
the IEEE International Conference on Image Processing, pages 806–810.

Ohm, J. (1994). Three-dimensional subband coding with motion compensation.
IEEE Transactions on Image Processing, 3(5):559–571.

Osher, S. and Sethian, J. (1988). Fronts propagating with curvature-dependent
speed: Algorithms based on the hamilton-jacobi formulation. Journal of
Computational Physics, 79:12–49.

Paragios, N. and Deriche, R. (2000). Geodesic active contours and level sets for
the detection and tracking of moving objects. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(3):266–280.

Parker, B. and Magarey, J. (2001). Three-dimensional video segmentation using
a variational method. In Proceedings of the IEEE International Conference
on Image Processing, pages 765–768.

Pesquet-Popescu, B. and Bottreau, V. (2001). Three-dimensional lifting schemes
for motion compensated video compression. In Proceedings of the IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing, pages
1793–1796.

Porikli, F.-M. and Wang, Y. (2001). An unsupervised multi-resolution object
extraction algorithm using video-cube. In Proceedings of the IEEE Interna-
tional Conference on Image Processing, pages 359–362.

Precioso, F., Barlaud, M., Blu, T., and Unser, M. (2003). Smoothing B-Spline
active contour for fast and robust image and video segmentation. In Proceed-
ings of the IEEE International Conference on Image Processing, volume I,
pages 137–140.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1992). Numerical
recipes in C: The art of scientific computing. Cambridge University Press,
2-nd edition.

Ristivojevic, M. (2004). Web site. http://iss.bu.edu/mirko/Research/

research.html.

Ristivojević, M. and Konrad, J. (2004a). Joint space-time image sequence
segmentation: object tunnels and occlusion volumes. In Proceedings of the

155

IEEE International Conference on Acoustics, Speech, and Signal Processing,
volume III, pages 9–12.

Ristivojević, M. and Konrad, J. (2004b). Joint space-time motion-based video
segmentation and occlusion detection using multi-phase level sets. In Pro-
ceedings of SPIE Visual Communications and Image Processing, volume 5308,
pages 156–167.

Sawhney, H. and Ayer, S. (1996). Compact representations of videos through
dominant and multiple motion estimation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 18(8):814–830.

Sethian, J. (1996a). A fast marching level set method for monotonically ad-
vancing fronts. Proceedings of the National Academy of Sciences of the United
States of America, 93(4):1591–1595.

Sethian, J. (1996b). Level Set Methods. Cambridge University Press.

Shi, Y. (2005). Dynamic imaging with fast level set method. PhD dissertation,
Boston University.

Shi, Y., Konrad, J., and Karl, W. (2004). Multiple motion and occlusion seg-
mentation with a multiphase level set method. In Proceedings of SPIE Visual
Communications and Image Processing, volume 5308, pages 189–198.

Szeliski, R. and Coughlan, J. (1997). Spline-based image registration. Interna-
tional Journal of Computer Vision, 22(3):199–218.

Szeliski, R. and Shum, H.-Y. (1996). Motion estimation with quadtree splines.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(12):1199–
1210.

Taubman, D. and Zakhor, A. (1994). Multirate 3-D subband coding of video.
IEEE Transactions on Image Processing, 3(5):572–588.

Thoma, R. and Bierling, M. (1989). Motion compensating interpolation consid-
ering covered and uncovered background. Signal Processing, Image Commu-
nication, 1:191–212.

Tsai, A., Yezzi, A., and Willsky, A. (2000). A curve evolution approach to
smoothing and segmentation using the Mumford-Shah functional. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 119–124.

156

Tsai, Y., Cheng, L., Osher, S., and Zhao, H. (2003). Fast sweeping algorithms for
a class of hamilton-jacobi equations. SIAM Journal on Numerical Analysis,
41(2):673–694.

Unser, M. (1999). Splines: A perfect fit for signal and image processing. IEEE
Signal Processing Magazine, 16(6):22–38.

Vese, L. and Chan, T. (2002). A multiphase level set framework for image
segmentation using the Mumford and Shah model. International Journal of
Computer Vision, 50(3):271–293.

Vetro, A., Sun, H., and Wang, Y. (2001). Object-based transcoding for adapt-
able video content delivery. IEEE Transactions on Circuits and Systems for
Video Technology, 11(3):387–401.

Wang, J. and Adelson, E. (1994). Representing moving images with layers.
IEEE Transactions on Image Processing, 3(5):625–638.

Wang, Y., Ostermann, J., and Zhang, Y.-Q. (2002). Video Processing and
Communciations. Prentice Hall.

Wright, J. and Pless, R. (2005). Analysis of persistent motion patterns using
the 3d structure tensor. In Proceedings of the IEEE Workshop on Motion and
Video Computing, pages 14–19.

Zhang, J., Gao, J., and Liu, W. (2001). Image sequence segmentation using
3-D structure tensor and curve evolution. IEEE Transactions on Circuits and
Systems for Video Technology, 11(5):629–641.

Zhang, J., Modestino, J., and Langan, D. (1994). Maximum-likelihood param-
eter estimation for unsupervised stochastic model-based image segmentation.
IEEE Transactions on Image Processing, 3(4):404–420.

Zhu, S. and Yuille, A. (1996). Region competition: Unifying snakes, region
growing, and Bayes/MDL for multiband image segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 18(9):884–900.

157

CURRICULUM VITAE

Mirko Ristivojević

1125 Commonwealth Avenue, Apt. 28
Allston, MA 02134

mirko@bu.edu
(617) 642-2733

http:/iss.bu.edu/mirko

Vita

Birth year: 1974.
Birthplace: Šabac, Serbia, Yugoslavia.

Education

Current Ph.D. in Electrical and Computer Engineering, Boston
University (GPA: 3.43/4.00).
Advisor: Prof. Janusz Konrad; expected graduation: January 2006.

May 2002 M.S. in Electrical and Computer Engineering, Boston
University (GPA: 3.90/4.00).

November 1999 Dipl.Ing. in Electrical Engineering, School of Electrical
Engineering, University of Belgrade, Serbia, Yugoslavia
(GPA: 8.93/10.00).

Experience

May 2001 - Research Assistant with Prof. Janusz Konrad, Boston University.
Spring 2005 Teaching Assistant for Prof. T. Toffoli and R. Giles, Boston

University: SC450 Microprocessors.
Summer 2004 Research visit, University of Nice at Sophia Antipolis, France.
Summer 2002 Quality Engineer, Mathworks Inc., Natick, MA.
2000 - 2001 Teaching Assistant for Prof. Tommaso Toffoli, Boston University:

SC450 Microprocessors.
1999 - 2000 Development Engineer, GVS Company, Belgrade, Yugoslavia.
1993 - 1995 Teaching instructor in Electronics, Petnica Science Center,

Yugoslavia.

158

Honors

2000 2000 Graduate Teaching Fellowship at BU.
March 1998 Invited visitor, National Technical University of Athens, Greece.
1993 - 1999 Prize scholarship for college from my home town of Sabac.
1993 Participated in the summer school of science at the Weizmann Institute,

Israel as one of the two representatives from Yugoslavia.
1993 Elected to the five-member Yugoslavian team for the International

Physics Olympiad.
1993 Second award on Yugoslavian federal Physics Competition.
1989 First award on Yugoslavian federal Physics Competition.

Professional Societies

Member of the IEEE.

Publications

Journal Papers

[1] M. Ristivojević and J. Konrad. Space-time image sequence analysis: Object

tunnels and occlusion volumes. IEEE Trans. Image Processing, pages 364–376,
February 2006.

Conference Papers

[1] M. Ristivojević and J. Konrad. Joint space-time image sequence segmenta-

tion: object tunnels and occlusion volumes. Proc. IEEE Int. Conf. Accoustic
Speech Signal Processing, vol. III, pp 9-12, Montreal, Canada, May 2004.

[2] M. Ristivojević and J. Konrad. Joint space-time motion-based video seg-

mentation and occlusion detection using multi-phase level sets. Proc.
SPIE Visual Communications and Image Processing, vol. 5308, San Jose, Califor-
nia, January 2004.

[3] J. Konrad and M. Ristivojević. Video segmentation and occlusion detec-

tion over multiple frames. Proc. SPIE Image and Video Communications and
Process., vol. 5202, San Jose, California, January 2003.

159

[4] J. Konrad and M. Ristivojević. Joint space-time image sequence segmen-

tation based on volume-competition and level sets. Proc. IEEE Int. Conf.
Image Processing, vol. 1, Rochester, New York, September 2002.

Other Publications

[1] M. Ristivojević. Fingerprint image compression using wavelet transforma-

tion and scalar quantization. Engineering Diploma Thesis (in Serbian), School
of Electrical Engineering, University of Belgrade, Serbia, July 1999.

