
'

&

$

%

EXPERIMENTAL VALIDATION OF

SURVEILLANCE CAMERA AS A VIBRATION

SENSOR

YUECHENG SHAO

Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

BOSTON

UNIVERSITY

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Thesis

EXPERIMENTAL VALIDATION OF SURVEILLANCE

CAMERA AS A VIBRATION SENSOR

by

YUECHENG SHAO

B.S., Fudan University, 2009

Submitted in partial fulfillment of the

requirements for the degree of

Master of Science

2011

Approved by

First Reader

Janusz Konrad, Ph.D.
Professor of Electrical and Computer Engineering

Second Reader

Prakash Ishwar, Ph.D.
Assistant Professor of Electrical and Computer Engineering

Acknowledgments

First and foremost I would like to thank my advisor Professor Janusz Konrad for his

guidance and encouragement through this research. He always answers my questions

very quickly and points out what should I improve during the progress of the research.

Since this is my first thesis in English, he has spent a lot of time revising it although

he is extremely busy. I have learnt how to be a good researcher from him.

In addition, I would like to thank Meng Wang, a PhD student and also a very

good friend, for his suggestions and great ideas. I would also like to extend my thanks

to all my friends in Boston University.

Finally, I would like to thank my committee Professor Janusz Konrad and Pro-

fessor Prakash Ishwar for reviewing this thesis and providing valuable comments. It

is my great pleasure to work with you.

iii

EXPERIMENTAL VALIDATION OF SURVEILLANCE

CAMERA AS A VIBRATION SENSOR

YUECHENG SHAO

ABSTRACT

In the last decade, surveillance video cameras have become ubiquitous in city centers,

at transportation hubs, and along highways. Today, there are well over 30 million

surveillance cameras in the US, all predominantly focused on security-related tasks.

This high urban density of visual sensors, that are only expected to increase in the fu-

ture, can potentially be leveraged for goals other than those related to security-related

goals. A video camera, especially at a long zoom setting, is an excellent vibration

sensor; as the camera shakes, the captured video undergoes jitter. If camera vibra-

tions can be accurately characterized based on the captured jitter, applications such

as earthquake early warning, building “tomography”, or bridge stability testing can

be envisaged in the future. This thesis attempts to validate the feasibility of using a

surveillance camera as a vibration sensor. More specifically, the goal is to estimate

small 3D translations and rotations of a camera and to compare them with data cap-

tured by an accelerometer attached to the camera. This comparison is conducted in

a laboratory setting using planar, easy-to-track targets (chessboard patterns) under

controlled lighting conditions. The homographies between consecutive video frames

are estimated using feature-point correspondences, and then decomposed into 3D

translations and rotations using a method proposed by Faugeras and Lustman. First,

the algorithm is validated on synthetic data (ground truth) and tested for its robust-

ness to uncertainty in localization of feature points. Then, the algorithm is applied

to camera-captured data. The free 2-D movements of the camera on a level table

are compared with the measurements of an accelerometer. The resulting normalized

iv

correlation factors between the camera and the accelerometer translation waveforms

suggest that in a laboratory setting a camera can serve as a surrogate for an ac-

celerometer.

v

Contents

1 Prior work 1

2 Background material 6

2.1 Pinhole camera model in Euclidean space 6

2.2 Homogeneous coordinates . 7

2.3 Pinhole camera model in projective space 10

2.4 Homography . 13

2.4.1 Definition . 13

2.4.2 Estimation of homography using the Direct Linear Transform 15

3 Phase correlation 18

4 Camera calibration method of Zhang 25

5 Homography decomposition method of Faugeras and Lustman 38

5.1 Case #1: λ1 6= λ2 6= λ3 (λ1 > λ2 > λ3) 43

5.2 Case #2: λ1 = λ2 6= λ3 (λ1 = λ2 > λ3) or λ1 6= λ2 = λ3 (λ1 > λ2 = λ3) 45

5.3 Case #3: λ1 = λ2 = λ3 . 46

5.4 Summary of solutions . 46

5.5 Implementation of the method of Faugeras and Lustman 49

6 Experimental results 52

6.1 Synthetic data experiments . 52

6.2 “Ground-truth” experiments . 73

6.2.1 Table-top experiments . 73

vi

6.2.2 Platform-based experiments 89

6.3 Accelerometer-based experiments . 99

6.3.1 Table-top experiments . 102

6.3.2 Platform-based experiments 102

7 Conclusions 107

7.1 Discussion of results . 107

7.2 Future work . 108

References 110

Curriculum Vitae 111

vii

List of Figures

1·1 Examples of augmented reality in (a) gaming and (b) broadcasting. . 2

2·1 Pinhole camera geometry in (a) 3D view and (b) side-view. The im-

age plane is unrealistically located between the optical center and the

object in order to forgo the ”-” sign in equations (2.1). 7

2·2 Example of projective geometry. Railroad track gets narrower and the

rails meet at horizon. 8

2·3 Finding the direction of the cross product by the right-hand rule . . . 9

2·4 Image (x, y) and camera (Xcam, Ycam, Zcam) coordinate systems (Zcam

axis is not shown here and it’s perpendicular to the image plane). . . 11

2·5 Transformation R, ~t between the world coordinate system and the

camera coordinate system. Three coordinate systems are shown: the

camera coordinate system (Xcam, Ycam, Zcam), the world coordinate sys-

tem (Xworld, Yworld, Zworld), and the image coordinate system (x, y). . 11

2·6 A scene captured from five different orientations of a camera. 14

2·7 Alignment of five images from Figure 2·6 using homographies. 15

3·1 Two images corrupted by iid Gaussian noise. The right image is trans-

lated by (30, 33) pixels relative to the left image. 19

3·2 The result of phase correlation applied to two images from Figure 3·1 19

3·3 (a) A synthetic image and (b) its shifted version (by (6,15)). 21

3·4 Correlation surface r(x, y) computed using equations (3.1) and (3.2)

between images from Figure 3·3. 21

viii

3·5 Two video frames captured by a vibrating camera. 24

3·6 Error between images in Figure 3·5: (a) without and (b) with motion

compensation. 24

3·7 (a) Horizontal (x direction) and (b) vertical (y direction) displacement

estimated from video shown in Figure 3·5 using phase correlation. . 24

4·1 Consecutive frames of a video captured by camera moving parallel to

the target (chessboard pattern). 29

4·2 Consecutive frames of a video captured by camera (vertically flipped)

moving perpendicular to the target (chessboard pattern). 29

4·3 Geometric interpretation of experimental results for camera motion

parallel to the target (camera-centered view). 32

4·4 Geometric interpretation of experimental results for camera motion

parallel to the target (world-centered view). 33

4·5 Geometric interpretation of experimental results for camera motion

perpendicular to the target (camera-centered view). 34

4·6 Geometric interpretation of experimental results for camera motion

perpendicular to the target (world-centered view). 35

4·7 (a) Frontal view and (b) non-frontal view of feature points on the

chessboard pattern . 36

5·1 The relationship between object plane (chessboard pattern), the first

camera coordinate system (Xcam1, Ycam1, Zcam1) and the second camera

coordinate system (Xcam2, Ycam2, Zcam2). 39

6·1 Synthetic lattice with the camera coordinate system aligned to the

world coordinate system. 53

ix

6·2 Translation of the synthetic lattice along x axis of the world coordinate

system by ~t
(k)
g = (t

(k)
gx , t

(k)
gy , t

(k)
gz)T = (1000k, 0, 0)T 54

6·3 Translation of the synthetic lattice along y axis of the world coordinate

system by ~t
(k)
g = (t

(k)
gx , t

(k)
gy , t

(k)
gz)T = (0, 1000k, 0)T 55

6·4 Translation of the synthetic lattice along z axis of the world coordinate

system by ~t
(k)
g = (t

(k)
gx , t

(k)
gy , t

(k)
gz)T = (0, 0, 1000k)T 55

6·5 Rotation of the synthetic lattice around x axis of the world coordinate

system by ~θ
(k)
g = (θ

(k)
gx , θ

(k)
gy , θ

(k)
gz)T = (k − 5, 0, 0)T 56

6·6 Rotation of the synthetic lattice around y axis of the world coordinate

system by ~θ
(k)
g = (θ

(k)
gx , θ

(k)
gy , θ

(k)
gz)T = (0, k − 5, 0)T 56

6·7 Rotation of the synthetic lattice around z axis of the world coordinate

system by ~θ
(k)
g = (θ

(k)
gx , θ

(k)
gy , θ

(k)
gz)T = (0, 0, k − 5)T 57

6·8 Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T under ground

truth translation ~t
(k)
g = (1000k, 0, 0)T and rotation ~θ

(k)
g = (0, 0, 0)T in

case 1. 58

6·9 Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T under ground

truth translation ~t
(k)
g = (0, 1000k, 0)T and rotation ~θ

(k)
g = (0, 0, 0)T in

case 2. 59

6·10 Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T under ground

truth translation ~t
(k)
g = (0, 0, 1000k)T and rotation ~θ

(k)
g = (0, 0, 0)T in

case 3. 60

6·11 Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T under ground

truth translation ~t
(k)
g = (0, 0, 0)T and rotation ~θ

(k)
g = (k − 5, 0, 0)T in

case 4. 61

x

6·12 Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T under ground

truth translation ~t
(k)
g = (0, 0, 0)T and rotation ~θ

(k)
g = (0, k − 5, 0)T in

case 5. 62

6·13 Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T under ground

truth translation ~t
(k)
g = (0, 0, 0)T and rotation ~θ

(k)
g = (0, 0, k − 5)T in

case 6. 63

6·14 Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T for arbitrary cam-

era motion in case 7. 64

6·15 Root-mean-squared error of translation in x direction. 67

6·16 Root-mean-squared error of translation in y direction. 68

6·17 Root-mean-squared error of translation in z direction. 68

6·18 Root-mean-squared error of rotation around x axis. 69

6·19 Root-mean-squared error of rotation around y axis. 69

6·20 Root-mean-squared error of rotation around z axis. 70

6·21 Root-mean-squared error of translation in x direction as a function of

assumed focal length f (500 is the ground truth). 70

6·22 Root-mean-squared error of translation in y direction as a function of

assumed focal length f (500 is the ground truth). 71

6·23 Root-mean-squared error of translation in z direction as a function of

assumed focal length f (500 is the ground truth). 71

6·24 Root-mean-squared error of rotation around x axis as a function of

assumed focal length f (500 is the ground truth). 72

6·25 Root-mean-squared error of rotation around y axis as a function of

assumed focal length f (500 is the ground truth). 72

6·26 Root-mean-squared error of rotation around z axis as a function of

assumed focal length f (500 is the ground truth). 73

xi

6·27 Camera setup for real-data experiments 74

6·28 Translation of the camera along x axis of the world coordinate system

by ~t
(k)
g = (k, 0, 0)T in case 1. 76

6·29 Translation of the camera along z axis of the world coordinate system

by ~t
(k)
g = (0, 0,−k)T in case 2. 76

6·30 Rotation around x-axis by angle β1 followed by translation of the cam-

era along z axis of the world coordinate system by ~t
(k)
g = (0, 0,−k)T in

case 3. 77

6·31 Rotation around y-axis by angle β2 followed by translation of the cam-

era along x axis of the world coordinate system by ~t
(k)
g = (k, 0, 0)T case

4. 77

6·32 Rotation around z-axis by angle β3 followed by translation of the cam-

era along x axis of the world coordinate system by ~t
(k)
g = (k, 0, 0)T in

case 5. 78

6·33 Camera movements in case 6. 78

6·34 Sample frames from a video captured in case 1. 79

6·35 Sample frames from a video captured in case 2. 79

6·36 Sample frames from a video captured in case 3. 80

6·37 Sample frames from a video captured in case 4. 80

6·38 Sample frames from a video captured in case 5. 81

6·39 Sample frames from a video captured in case 6. 81

6·40 Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T under camera

movement in case 1. 82

6·41 Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T under camera

movement in case 2. 83

xii

6·42 Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T under camera

movement in case 3. 84

6·43 Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T under camera

movement in case 4. 85

6·44 Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T under camera

movement in case 5. 86

6·45 Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T under camera

movement in case 6. 87

6·46 Mechanical platform developed to allow precise camera translations

and rotations. 90

6·47 Sample frames from a video captured while moving the camera along

x-axis. 91

6·48 Sample frames from a video captured while moving the camera along

z-axis. 91

6·49 Sample frames from a video captured while rotating the camera around

x-axis. 92

6·50 Sample frames from a video captured while rotating the camera around

y-axis. 92

6·51 Sample frames from a video captured while rotating the camera around

z-axis. 93

6·52 Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T under camera

moved along x-axis . 94

6·53 Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T under camera

moved along z-axis . 95

6·54 Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T under camera

rotated around its x-axis . 96

xiii

6·55 Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T under camera

rotated around its y-axis . 97

6·56 Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T under camera

rotated around its z-axis . 98

6·57 (a) Acceleration measured by accelerometer. (b) Velocity and (c) trans-

lation computed by integration and double integration, respectively,

of acceleration from (a). Note the drift in velocity and translation

caused by acceleration bias (see text for discussion). (e) Velocity and

(e) translation obtained by integration after compensating the bias in

acceleration. Cleraly, the drift has been significantly reduced. 101

6·58 Velocities along the x-axis of the world coordinate system obtained

from the accelerometer and from camera-based estimation (homogra-

phy decomposition method). Normalized cross-correlation: 0.4773. . . 103

6·59 Velocities along the z-axis of the world coordinate system obtained

from the accelerometer and from camera-based estimation (homogra-

phy decomposition method). Normalized cross-correlation: 0.9138. . . 103

6·60 Velocities along the x-axis of the world coordinate system obtained

from the accelerometer and from camera-based estimation (phase cor-

relation). Normalized cross-correlation: 0.3001. 104

6·61 Velocities along the x-axis of the world coordinate system obtained

from the accelerometer and from camera-based estimation (homogra-

phy decomposition method tested on calibrated platform). Normalized

cross-correlation: 0.9212. 105

xiv

6·62 Velocities along the z-axis of the world coordinate system obtained

from the accelerometer and from camera-based estimation (homogra-

phy decomposition method tested on calibrated platform). Normalized

cross-correlation: 0.8921. 106

xv

1

Chapter 1

Prior work

3D motion estimation has been studied extensively in video coding, camera jitter

compensation, autonomous navigation, robotic control, augmented reality and 3D

scene reconstruction. Since motion of an object is interchangeable with motion of a

camera, for example moving an object to the right is equivalent to moving the camera

to the left, as long as we know the motion of one of them and their relative position,

we can compute the motion of the other one. Therefore, we consider both methods

targeting 3D camera motion and those that focus on 3D object motion.

The application of 3D motion estimation mentioned above can be categorized into

two major groups. In the first group are methods that are concerned with the impact

of 3D motion on images or videos, but are not concerned with the 3D motion by itself.

Imagine recording a video using a hand-held camera. It is very likely that the video

will be jittery due to the fact that operator’s hand is shaking or he/she is walking

during the recording. In order to cancel this jittering effect, first we have to estimate

the jitter, or global motion, from frame to frame. By knowing how frames evolve over

time, we can compensate those motions to stabilize the video. This kind of motion

estimation is typically done based on a global affine model, which is also used in video

coding. In video coding, rather than transmitting every frame, motion information

(local or global), i.e., the direction of maximum data correlation, is transmitted.. By

doing so, one is able to dramatically reduce bit rates.

In the second group are methods that are explicitly concerned with the analysis of

2

3D motion of objects in the real world. Typically, 3D models of objects are computed

before estimating 3D motion. For example, in camera-based robotic control, in order

to give robot a correct command, we have to know where the robot is in the real

world and where we are going to move the robot. This requires understanding of

the scene, i.e., the location and shape of objects in the world or camera coordinate

system. Then, using properties of projection we are able to estimate 3D motion

from 2D images. Augmented reality (Figure 1·1) is another recent application of 3D

reconstruction, especially in sports telecasting. The yellow “first down” line seen in

television broadcasts of American football games shows the line the offensive team

must cross to receive a first down (Figure 1·1). The real-world elements are the

football field and players, and the virtual element is the yellow line, which augments

the image in real time. In order to make sure this yellow line is always shown where

it should be during the camera panning, tilting and zooming, the 3D model of the

field must be computed prior to the game.

(a) (b)

Figure 1·1: Examples of augmented reality in (a) gaming and (b)
broadcasting.

First, we discuss motion estimation techniques in the first group. One technique to

estimate global motion is to use a perspective (8-parameter) model for camera motion

3

and minimize the sum of square differences (SSD) between the current frame and

the motion-compensated previous frame (Dufaux and Konrad, 2000). A hierarchical

algorithm is introduced which first computes a coarse estimate of the translation

component between the frames by 3-step matching (Koga et al., 1981), and then

iterates a gradient descent to minimize the sum of squared differences to obtain and

refine 8 parameters of the perspective model. The perspective model is suitable

when the scene can be approximated by a planar surface, or when the scene is static

and the camera motion is a pure rotation around its optical center. This model

accurately representates homography in Euclidean space, which transforms an image

to another image in projective space. The 8 parameters of the perspective model or

a homography matrix contain 3D motion information (translation and rotation) of a

camera but they don’t automatically tell us what the translation and rotation are.

Thus, we have to find a way to extract 3D translation and rotation from them.

Another technique is based on the use of focus of expansion (Burger and Bhanu,

1994). It allows one to estimate 3D motion of a camera directly from 2D images

without computing the 3D scene structure. By computing optical flow from video

captured by a camera moving towards or away from an object, one can identify a

point or small region (due to estimation errors), which is called the focus of expansion.

From the location of the focus of expansion, one can estimate the 3D motion of the

camera. Unfortunately, computing the precise location of the focus of expansion is

difficult in real-life scenarios due to the impact of camera rotations, noisy optical flow

vectors, and spatial discretization errors.

Another technique in the first group is phase correlation that can estimate dis-

placement between two similar images. The main idea is to rely on the shift property

of the Fourier transform. First, one calculates the discrete 2D Fourier transform of

both images to obtain the normalized cross-power spectrum. Then, one applies the

4

inverse Fourier transform to obtain the so-called correlation surface. By finding a

peak in the correlation surface, one can estimate translation between these two im-

ages. We will discuss this method in detail in Chapter 3. Phase correlation is a very

simple and effective way to calculate displacement between two images, but its per-

formance depends on the type of 3D motion observed. The method works well only

in very restricted scenarios such as images undergoing small camera pan and tilt. It

fails under camera rotation and zoom.

The second group of methods, we are primarily interested in, deals with 3D mo-

tion of objects in the real world. First, we consider a popular camera calibration

method (Zhang, 98). It requires the camera to observe a planar pattern shown at a

few different orientations. The method offers a closed-form solution, followed by a

nonlinear refinement based on the maximum likelihood criterion. The details will be

discussed in Chapter 4. We implemented this method and tested it in a laboratory

environment. We obtained very good results using this method on a chessboard pat-

tern, but we abandoned it because it requires a precise specification of the pattern

used. In particular, the user needs to provide coordinates of feature points in the

real-world coordinate system (3D), which is impractical in our scenario of thousands

of surveillance cameras.

None of the papers discussed so far propose a suitable technique for our goal,

namely to precisely estimate camera motion using single camera viewing a planar

object, without prior knowledge of scene depth and with only a limited knowledge of

intrinsic camera parameters. An ideal method would:

1. precisely estimate 3D translation and 3D rotation of a camera.

2. require no or minimal knowledge of the scene.

3. require no camera calibration.

In short, what we are looking for is a method that can estimate 3D translation

5

and 3D rotation from two images taken by single camera targeting a static scene in

different positions without pre-calibration of the camera.

Given these constraints we seleted a technique that decomposes a homography

into 3D translations and 3D rotations (Faugeras and Lustman, 1988). The authors

of the method prove that it is possible to recover 3D translations and 3D rotations

from a provided homography. A homography can be obtained when the scene can be

approximated by a planar surface, or when the scene is static and the camera motion

is a pure rotation around its optical center. This is acceptable since, in practice, we

can find planar objects such as floors, walls, ceilings, roads etc., in the field of view of

surveillance cameras. If we cannot find a planar surface in the field of view, we argue

that it is acceptable to assume the camera is only rotating around its optical center,

if the vibrations are small enough that the effects of translation and rotation on the

images are almost the same. Details of this method will be discussed in Chapter 5,

where we will derive all equations needed.

6

Chapter 2

Background material

In order to pose the problem of 3D motion estimation and describe some of methods

used to solve it, we need to introduce several definitions, such as the pinhole camera

model, homogeneous coordinates and homography. We will first introduce the pinhole

camera model in Euclidean space, then the concept of homogeneous coordinates, then

turn to the pinhole camera model in projective space, and finally we will introduce

homography.

2.1 Pinhole camera model in Euclidean space

The pinhole camera model describes the relationship between a 3D scene and the

corresponding 2D image. By applying the pinhole camera model, we project points

from a 3D coordinate system onto a 2D coordinate system. If we denote a point in

the 3D coordinate system as ~X = (X, Y, Z)T and in the 2D coordinate system as

~x = (x, y)T , the relationship between them, under a pinhole camera model, is (Figure

2·1)
x
X

= f
Z
⇒ x = fX

Z

y
Y

= f
Z
⇒ y = fY

Z

(2.1)

where f is the focal length of the camera.

As we can see from equation (2.1), coordinates of the projection of a point are

proportional to the focal length and inversely proportional to the distance of the 3D

point from the Xcam - Ycam plane. Figure 2·1 illustrates the pinhole camera geometry.

7

(a) (b)

Figure 2·1: Pinhole camera geometry in (a) 3D view and (b) side-
view. The image plane is unrealistically located between the optical
center and the object in order to forgo the ”-” sign in equations (2.1).

Note that point ~P is the intersection of the image plane with the principal axis,

and is called the principal point. We will return to the pinhole camera model after

introducing homogeneous coordinates in the next section. Then, will interpret this

model using homogeneous coordinates.

2.2 Homogeneous coordinates

In Euclidean space, it is known that two parallel lines on the same plane cannot

intercept. However, it is not true any more in a projective space. For example,

railroad tracks become narrower as the distance increases (Figure 2·2). The two

parallel rails meet at the horizon, forming a point at infinity. The Euclidean space

describes 2D/3D geometry quite well, but cannot handle projective effects. Indeed,

Euclidean geometry is a subset of projective geometry.

Points at infinity are very unique points that we want to distinguish from finite

points. But it is difficult to distinguish projections of 3D infinite points from pro-

jections of 3D finite points in 2D Euclidean space. In addition, equations (2.1) form

a nonlinear system that is difficult to solve for x and y. Therefore, the question is

8

Figure 2·2: Example of projective geometry. Railroad track gets nar-
rower and the rails meet at horizon.

whether we can find a linear representation of the pinhole camera model. Mathemati-

cians have thought about these issues long time ago.

Homogeneous coordinates, introduced by August Ferdinand Möbius, make geo-

metric calculations possible in projective space. At the highest level, one can thinks

of homogeneous coordinates as representing N -dimensional coordinates with N+1

numbers.

A point in 2D Euclidean space is represented by two coordinates: (x, y)T . We

may define the same point by adding an extra coordinate to this pair, such as

(x, y, 1)T . One can multiply these three coordinates by any non-zero value k to obtain

(kx, ky, k)T which represents the same point on the image plane due to the projection

model our eye or camera we use. These are called the homogeneous coordinates of

a point. A point with homogeneous coordinates ~x = (x1, x2, x3)
T in 3D projective

space corresponds to a point in 2D Euclidean space with coordinates (x1/x3, x2/x3)
T

.

A line in 2D Euclidean space can also be represented in 3D projective space

using homogeneous coordinates. Consider a line represented by an equation, such as

9

ax+by+c = 0, in which a, b and c are line’s three parameters. Thus, we can represent

a line in 2D Euclidean space by a 3D vector (a, b, c)T . Clearly lines ax+by+c = 0 and

(ka)x+(kb)y+(kc) = 0 are indistinguishable for any non-zero k, and are represented

by homogeneous coordinates (a, b, c)T and k(a, b, c)T .

There are three results concerning the relationship between homogeneous points

and lines that we will use later:

Result 1: A point ~x lies on the line ~l if and only if ~xT~l = 0.

Result 2: The intersection of two lines ~l and ~l′ is the point ~x = ~l ×~l′.

Result 3: The line through two points ~x and ~x′ is ~l = ~x× ~x′.

The operation “×” between vectors is called the cross product and is defined by

the formula: ~a×~b = ‖a‖‖b‖~nsinθ, where ~a and ~b are vectors, ‖a‖ and ‖b‖ are norms

of those vectors, ~n is a unit vector perpendicular to the plane containing ~a and ~b in

the direction given by the right-hand rule as illustrated in Figure 2·3 and θ is the

measure of the smaller angle between ~a and ~b (0◦ ≤ θ ≤ 180◦).

Figure 2·3: Finding the direction of the cross product by the right-
hand rule

The homogeneous representation of points and lines in 3D Euclidean space is a

straightforward generalization of those quantities in 2D Euclidean space, and we will

not discuss them in detail here.

10

2.3 Pinhole camera model in projective space

If the world and image points are represented by homogeneous vectors, then the

pinhole camera model can be simply expressed as a linear mapping between their

homogeneous coordinates. In particular, equations (2.1) may be written in terms of

matrix multiplication as follows:
X
Y
Z
1

 7→
 fX

fY
Z

 =

 f 0 0 0
0 f 0 0
0 0 1 0

X
Y
Z
1

 . (2.2)

The matrix in this expression may be written as diag(f, f, 1)[I|~0] where diag(f, f, 1)

is a diagonal matrix and [I|~0] represents a matrix divided up into a 3× 3 block (the

identity matrix) plus a column vector, here the zero vector.

The expression (2.2) assumes the origin of coordinates of the image plane is at

the principal point ~P (Figure 2·1). However, it may not be the case in practice. The

origin of coordinates of the image plane is more likely to be at the left top or left

bottom corner of an image as shown in Figure 2·4. Thus, the mapping (X, Y, Z)T 7→

(fX/Z, fY/Z)T becomes (X, Y, Z)T 7→ (fX/Z + u0, fY/Z + v0)
T , where (u0, v0) are

the coordinates of the principal point in the image coordinate system.

If we use matrix notation, (2.2) becomes
X
Y
Z
1

 7→
 fX + Zu0

fY + Zv0
Z

 =

 f 0 u0 0
0 f v0 0
0 0 1 0

X
Y
Z
1

 .

We would like to emphasize that the point (X, Y, Z) is expressed in the camera

coordinate system rather than the world coordinate system. So what if an object is

described in the world coordinate system which is different from the camera coordinate

system and we want to apply the pinhole camera model to it?

11

Figure 2·4: Image (x, y) and camera (Xcam, Ycam, Zcam) coordinate
systems (Zcam axis is not shown here and it’s perpendicular to the
image plane).

Figure 2·5: Transformation R, ~t between the world coordinate sys-
tem and the camera coordinate system. Three coordinate systems are
shown: the camera coordinate system (Xcam, Ycam, Zcam), the world co-
ordinate system (Xworld, Yworld, Zworld), and the image coordinate sys-
tem (x, y).

12

We have to transform the world coordinate system into the camera coordinate

system; they are related by rotation and translation (Figure 2·5). Let’s consider a

point (X̂, Ŷ , Ẑ) expressed in the world coordinate system. We need to apply the

rotation and translation first, which in homogeneous coordinates can be expressed as

follows:
X
Y
Z
1

 =

[
R ~t
0 1

]
X̂

Ŷ

Ẑ
1

 (2.3)

where R is a 3×3 3D rotation matrix and ~t is a 3D translation vector. Then, we

can project (X, Y, Z), which is expressed in the camera coordinate system, onto the

image plane.

For convenience, let’s change our previous notation to the conventional notation

of the central projection:

 x
y
1

 = λ

 fx γ u0 0
0 fy v0 0
0 0 1 0

X
Y
Z
1

 = λ

 fx γ u0
0 fy v0
0 0 1

 [R | ~t
]

X̂

Ŷ

Ẑ
1

 (2.4)

where (x, y, 1)T is the projection point on the image, (X̂, Ŷ , Ẑ, 1) is the object point

expressed in the world coordinate system, λ is an arbitrary scale factor, (fx, fy) are

focal lengths in x and y directions expressed in pixels, γ is a skew factor that accounts

for pixel aspect ratio, (u0, v0) are coordinates of the principal point in the image co-

ordinate system, R is a rotation matrix between the world coordinate system and the

camera coordinate system and ~t is a translation vector between those two coordinate

systems.

13

2.4 Homography

Homography is a very important concept in computer vision especially when consid-

ering multiple cameras. Projections of a scene onto an image plane are related by

homography in two situations. In one situation, several cameras are viewing a planar

object; the projections of that planar object onto those cameras are related by ho-

mographies. In the second situation, a camera viewing a scene undergoes a rotation

around its optical center; the different projections of the scene are again related by

homographies. Below, we define homography and provide some examples.

2.4.1 Definition

Consider a point ~x = (x, y, w)T in one image and its corresponding point ~x′ =

(x′, y′, w′)T in another image, where w and w′ are non-zero scale factors. Correspond-

ing points are projections of the same 3D feature observed in world coordinates, e.g.,

tip of a person’s nose. These points are related by a 3×3 matrix called the homography

matrix H (Malis and Vargas, 2007):

~x′ = H~x, H =

 h1 h2 h3
h4 h5 h6
h7 h8 h9

 (2.5)

if and only if, the scene can be approximated by a planar surface, or when the scene is

static and the camera motion is a pure rotation around its optical center. By applying

a homography matrix to every pixel in one image, one can find the corresponding

points in the other image.

Figure 2·6 shows five images taken from different orientations of a camera and

Figure 2·7 shows the result of mosaicing those images together into a large image

using homograpies. Since the camera undergoes rotation around its optical center,

the homography is quite accurate in this case.

14

Figure 2·6: A scene captured from five different orientations of a
camera.

15

Figure 2·7: Alignment of five images from Figure 2·6 using homogra-
phies.

Assuming we already know the corresponding points in two images, how can we

compute a homography given those corresponding points? We introduce a method

called Direct Linear Transform (Hartley and Zisserman, 2004) next.

2.4.2 Estimation of homography using the Direct Linear Transform

The relationship (2.5) involves homogeneous vectors, so ~x′ and H~x are not really

equal to each other. They are equal to each other up to a non-zero scale factor s.

Then, the correct relationship should be written as ~x′ = sH~x, where s is a non-zero

scale factor. If we express this equation in the notation of cross product, it becomes

~x′ ×H~x = ~0.

Let’s denote the ith pair of corresponding points in two images as ~xi and ~xi
′, and

the jth row of the matrix H by ~hj
T

. Then, we have

H~xi =

~h1
T
~xi

~h2
T
~xi

~h3
T
~xi

16

and, the cross product becomes

~xi
′ ×H~xi =

 y′i
~h3
T
~xi − w′i ~h2

T
~xi

w′i
~h1
T
~xi − x′i ~h3

T
~xi

x′i
~h2
T
~xi − y′i ~h1

T
~xi

=

 ~0T −w′i~xi
T y′i~xi

T

w′i~xi
T ~0T −x′i~xi

T

−y′i~xi
T x′i~xi

T ~0T

 ~h1

~h2

~h3

= ~0. (2.6)

The equation (2.6) has the form Ai
~h = 0, where Ai is a 3×9 matrix and ~h is a 9

dimensional vector made up of the entries of matrix H as follows:

~h =

 ~h1

~h2

~h3

 .
There are three equations in (2.6), but only two of them are linearly independent.

In consequence, each two points in correspondence give us two equations. If we only

keep the first two equations, then (2.6) becomes

Ai
~h =

[
~0T −w′i~xi

T y′i~xi
T

w′i~xi
T ~0T −x′i~xi

T

] ~h1

~h2

~h3

 = 0 (2.7)

where Ai is now a 2×9 matrix. Therefore, if we have n correspondences, we can stack

up Ai matrices to form a 2n× 9 matrix A.

Now our task is to solve A~h = 0. Due to uncertainty in feature detection (locations

~x and ~x′ are noisy), equation (2.7) may not have an exact solution. Instead, we would

like to find an approximate solution ~h such that it minimizes the norm ‖A~h‖, for

example under the condition that ‖~h‖ = 1.

The solution to this problem is known as the unit eigenvector corresponding to the

smallest singular value of A. We first apply SVD to A so that A = UDVT. Then,

17

the task is to minimize ‖UDVT~h‖. Due to the fact that ‖U‖ = ‖V‖ = ‖VT‖ = 1, we

have ‖UDVT~h‖ = ‖DVT~h‖. Let’s denote ~y = VT~h. Finally, we need to minimize

‖D~y‖ subject to ‖~y‖ = 1. Since D is a matrix with entries on the diagonal in

decreasing order, we want to make ~y = (0, 0, ..., 0, 1)T , and ~h = V~y is then simply the

last column of V. Thus, we have solved the minimization problem.

In order to make geometric error of DLT algorithm invariant to similarity trans-

forms of the images, we usually normalize coordinates of correspondences before ap-

plying the DLT algorithm. Here is the description of the normalized DLT algorithm:

(1) Normalization of ~x: Compute a similarity transformation T, consisting of a

translation and scaling, that takes points ~xi to a new set of points ~̌xi such that the

centroid of the points ~̌xi is the coordinate origin (0, 0)T , and their average distance

from the origin is
√

2.

(2) Normalization of ~x′: Compute a similar transformation T′ for the points in

the second image, transforming points ~x′i to ~̌x′i.

(3) DLT: Apply the DLT algorithm to the correspondences ~̌xi ↔ ~̌x′i to obtain a

homography Ȟ.

(iv) Denormalization: Set H = T′−1ȞT.

18

Chapter 3

Phase correlation

An image plane is a 2D plane, so motion observed in the image plane cannot fully

describe the 3D motion in the world coordinate system. For example, one will see

no change in an image of a ball rotating around its center (ignoring the pattern on

the ball, light conditions and other factors). However, 3D motion is somehow related

to 2D motion and, in some circumstances, 2D motion is a good approximation of 3D

motion. For example, when viewing a very far away object, both small horizontal

camera translation and rotation around y axis (pam) will cause almost the same effect,

namely a displacement in the image. Thus, under certain assumptions, such as large

distance from the camera, we expect 2D motion estimated using phase correlation

to be a good approximation of 3D motion we are interested in. We first show an

example of phase correlation and then we discuss its mathematical details.

Phase correlation is an important method to estimate 2D displacements between

two similar images. Phase correlation is computationally efficient, as it relies on FFT,

and resilient to noise, occlusions, and other defects. For example, consider two images

corrupted by iid Gaussian noise (Figure 3·1), of which one is translated by (30, 33)

pixels. The white spot at (30, 33) in Figure 3·2 is the result of phase correlation

applied to these images.

Let’s now consider mathematical details of phase correlation. Let Ia(x, y) be an

M ×N image and let Ib(x, y) = Ia((x−4x)modM, (y−4y)modN) be its circularly-

shifted version, by 4x along x direction and by 4y along y direction. Let Fa(k, l) =

19

Figure 3·1: Two images corrupted by iid Gaussian noise. The right
image is translated by (30, 33) pixels relative to the left image.

Figure 3·2: The result of phase correlation applied to two images from
Figure 3·1

20

F{Ia(x, y)} and Fb(k, l) = F{Ib(x, y)}, where F denotes the discrete-space Fourier

transform. Then:

Fb(k, l) = Fa(k, l)e
−2πi(k4x

M
+ l4y

N
).

The normalized cross-power spectrum of those two images is:

R(k, l) =
Fa(k, l)F

∗
b (k, l)

|Fa(k, l)F ∗b (k, l)|

=
Fa(k, l)F

∗
a (k, l)e2πi(

k4x
M

+ l4y
N

)

|Fa(k, l)F ∗a (k, l)e2πi(
k4x
M

+ l4y
N

)|

=
Fa(k, l)F

∗
a (k, l)e2πi(

k4x
M

+ l4y
N

)

|Fa(k, l)F ∗a (k, l)|
= e2πi(

k4x
M

+ l4y
N

) (3.1)

since Fa(k, l)F
∗
a (k, l) = |Fa(k, l)|2 = |Fa(k, l)F ∗a (k, l)|. Taking the inverse Fourier

transform of R(k, l), we obtain:

r(x, y) = δ(x+4x, y +4y). (3.2)

Thus, by finding the location of an impulse on surface r(x, y), one can identify the

displacement, or shift (4x,4y) between images. In practice, the motion is often a

combination of translation and rotation, rather than a pure translation. In that case,

the correlation surface r(x, y) will not be a Kronecker delta, but will be somewhat

spread out or multiple peaks may be present. A suitable search for the dominant peak

must be performed. However, the performance of phase correlation is not satisfactory

when dealing with a combination of motions, especially if camera rotation or zoom

are present.

First, we tested this algorithm on synthetic data: an original image and its shifted

version (Figure 3·3). As we can see from Figure 3·4, there is a peak at (6, 15) which

indicates the exact amount of shift in the synthetic data.

21

(a) (b)

Figure 3·3: (a) A synthetic image and (b) its shifted version (by
(6,15)).

Figure 3·4: Correlation surface r(x, y) computed using equations (3.1)
and (3.2) between images from Figure 3·3.

22

We also applied phase correlation to real data. We captured video from a camera

undergoing vibrations. Figure 3·5 shows two frames from that video. We estimated

displacements in x and y directions over time by comparing the kth frame denoted as

I(x, y, t = k) with the initial frame denoted as I(x, y, t = 0). Since we do not have

ground truth to compare this result with, we performed a different test. We motion

compensated the video using vectors estimated by phase correlation as follows:

Î(x, y, t = k) = I(x+4x(k), y +4y(k), t = k)

where Î(x, y, t = k) is the motion compensated kth frame and (4x(k),4y(k)) is dis-

placement vector between the kth frame and the initial frame. In order to show phase

correlation is effective, we first calculated an error image Ierror(x, y, t = k) with no

motion compensation

Ierror(x, y, t = k) = I(x, y, t = k)− I(x, y, t = 0)

and then an error image Îerror(x, y, t = k) after motion compensation

Îerror(x, y, t = k) = Î(x, y, t = k)− I(x, y, t = 0).

In addition, we calculated the mean-squared error before (ε) and after (ε̂) motion

compensation as follows:
ε = 1

MNT

M∑
x=1

N∑
y=1

300∑
t=1

(Ierror(x, y, t))
2

ε̂ = 1
MNT

M∑
x=1

N∑
y=1

300∑
t=1

(Îerror(x, y, t))
2

where T is the number of video frames used in the test.

For video from Figure 3·5 we obtained ε̂ = 13.46 after compensation and ε =

147.13 before compensation, indicating that phase correlation estimates the displace-

23

ments effectively. In Figure 3·6 we show the error images before (Ierror(x, y, t = k))

and after (Îerror(x, y, t = k)) compensation for k = 14. We mapped the dynamic range

of the error images to the range [0,255] for display. As we can see from Figure 3·6, the

error is smaller after compensation. Figure 3·7 shows the estimated displacements in

x and y directions over time. Clearly, the estimated displacements have integer values

and many zeros. This is due to the fact that we applied phase correlation with full

pixel precision and some displacements may be too small to be accurately captured by

phase correlation. Also local motion of trees may have biased the estimation results.

Although the phase correlation algorithm is computationally efficient and works

relatively well, it has severe limitations. It can only estimate spatially-invariant 2D

displacements along x and y directions. It cannot compensate 2D rotations, 3D

rotations and zooming effects. In consequence, it may not be accurate enough for our

application and we have to consider alternatives.

24

(a) I(x, y, t = 0) (b) I(x, y, t = 14)

Figure 3·5: Two video frames captured by a vibrating camera.

(a) Ierror(x, y, t = 14) (b) Îerror(x, y, t = 14)

Figure 3·6: Error between images in Figure 3·5: (a) without and (b)
with motion compensation.

0 50 100 150 200 250 300
−5

−4

−3

−2

−1

0

1

2

3

4

5

Frame number

D
is

pl
ac

em
en

t i
n

x
di

re
ct

io
n

/ p
ix

el

(a)

0 50 100 150 200 250 300
−5

−4

−3

−2

−1

0

1

2

3

4

5

Frame number

D
is

pl
ac

em
en

t i
n

y
di

re
ct

io
n

/ p
ix

el

(b)

Figure 3·7: (a) Horizontal (x direction) and (b) vertical (y direction)
displacement estimated from video shown in Figure 3·5 using phase
correlation.

25

Chapter 4

Camera calibration method of Zhang

In order to control a robot by cameras or reconstruct a face from images taken by

multiple cameras, it is important to know the relationship between coordinate systems

of any two cameras or between a camera coordinate system and the world coordinate

system. This procedure is called calibration. By calibrating a camera with the world,

we can recover the position and orientation of the object and of the camera in the

world coordinate system. After calibration, we can use 2D images to recover 3D

motion either caused by camera motion or object motion. Thus, it is of interest to

us to investigate calibration methods in order to recover 3D camera motion from 2D

images.

There exits a popular camera calibration method that is effective not only in a

laboratory environment but also in real world use (Zhang, 98) (Hartley and Zisserman,

2004). It only requires the camera to observe a planar pattern shown at a few different

orientations. Without knowing the motion, it can calibrate the camera coordinate

system with the world coordinate system. We discuss the details of this method

below.

Let a 2D point be denoted by ~x = (x, y, 1)T , and let a 3D point be denoted by

~X = [X, Y, Z, 1]T . We can express a 3D point and its projection using the a pinhole

camera model (equation (2.4)) as follows:

~x = λA[R ~t] ~X = λA[~r1 ~r2 ~r3 ~t] ~X ′ (4.1)

26

where λ is an arbitrary scale factor, R is a rotation matrix and ~t is translation vector

which relates the world coordinate system to the camera coordinate system. ~ri is ith

column of the rotation matrix R. A, called the intrinsic matrix, is given by equation

(2.4)

A =

 fx γ u0
0 fy v0
0 0 1

 .
If we assume Z = 0, which implies that target is a planar object at Z = 0 of the

world coordinate system, then (4.1) becomes

 x
y
1

 = λA[~r1 ~r2 ~r3 ~t]

X
Y
0
1

= λA[~r1 ~r2 ~t]

 X
Y
1

 . (4.2)

We denote our new ~X as (X, Y, 1)T , so that

~x = H ~X with H =

 h11 h21 h31
h12 h22 h32
h13 h23 h33

 = [~h1 ~h2 ~h3] = λA[~r1 ~r2 ~t]

(4.3)

where ~hi = (hi1, hi2, hi3)
T is ith column of H. Using the constraint that ~r1 and ~r2 are

orthonormal, we get {
~hT1 A−TA−1~h2 = 0
~hT1 A−TA−1~h1 = ~hT2 A−TA−1~h2

(4.4)

27

We introduce the following notations in order to solve equation (4.4) for A. Let

B = A−TA−1 ≡

 B11 B12 B13

B12 B22 B23

B13 B23 B33

=

1
f2x

− γ
f2xfy

v0γ−u0fy
f2xfy

− γ
f2xfy

γ2

f2xf
2
y

+ 1
f2y

−γ(v0γ−u0fy)
f2xf

2
y

− v0
f2y

v0γ−u0fy
f2xfy

−γ(v0γ−u0fy)
f2xf

2
y

− v0
f2y

(v0γ−u0fy)2
f2xf

2
y

+
v20
f2y

+ 1

 . (4.5)

Clearly, B is a symmetric matrix. By using matrix B, equation (4.4) becomes:{
~hT1 B~h2 = 0
~hT1 B~h1 = ~hT2 B~h2

. (4.6)

Let’s define ~b as

~b ≡ (B11, B12, B22, B13, B23, B33)T

and ~vij as

~vij ≡ (hi1hj1, hi1hj2 + hi2hj1, hi2hj2, hi3hj1 + hi1hj3, hi3hj2 + hi2hj3, hi3hj3)T .

Because ~hTi B~hj and ~vTij
~b are equal to each other, we can rewrite equation (4.6) using

~b and ~vij as follows: {
~vT12
~b = 0

~vT11
~b = ~vT22

~b
. (4.7)

By rewriting equation (4.7) into matrix representation, we obtain:[
~vT12

(~v11 − ~v22)T
]
~b = 0. (4.8)

If we have many images, we stack up those equations similarly to (4.8) and obtain:

V~b = 0 (4.9)

The solution to (4.9) is the eigenvector of VTV associated with the smallest eigenvalue

28

mentioned in Section 2.4.2. After ~b is obtained, we can uniquely extract the intrinsic

parameters from matrix B using equation (4.5) as follows:

fx =
√

1
B11

fy =
√

B11

B11B22−B2
12

γ = −
√

B12

B2
11−B11B12

u0 = B12B23−B22B13

B11B12−B2
12

v0 = B12B13−B11B23

B11B22−B2
12

.

After A is calculated, we finally obtain:
~r1 = λA−1~h1
~r2 = λA−1~h2
~r3 = ~r1 × ~r2
~t = λA−1~h3

(4.10)

with λ = 1/‖A−1~h1‖ = 1/‖A−1~h2‖ to assure unit length of ~r1, ~r2 and ~r3.

We have tested this algorithm on real data using a chessboard pattern as target.

Figures 4·1 and 4·2 show two different kinds of motion: in one case the camera is

moving to the left parallel to the target and in the other case it is moving away from

the target perpendicularly. In both cases, we move the camera inch by inch. The

images in Figure 4·2 may seem a bit odd since the table is at the top of the images.

It is so because we vertically flipped the camera in order to avoid the table occupying

too much space in the images (without flipping camera’s center was too close to the

table).

We can show the experimental results geometrically in two different ways. In one

setting, that we call camera-centered view, we fix the position of the camera and

show different positions of the pattern. In a world-centered view, we fix the position

29

(a) t=0 (b) t=1 (c) t=2

(d) t=3 (e) t=4 (f) t=5

Figure 4·1: Consecutive frames of a video captured by camera moving
parallel to the target (chessboard pattern).

(a) t=0 (b) t=1 (c) t=2

(d) t=3 (e) t=4 (f) t=5

Figure 4·2: Consecutive frames of a video captured by camera (verti-
cally flipped) moving perpendicular to the target (chessboard pattern).

30

of the pattern and show different positions of the camera. The second setting is more

intuitive as it corresponds to the way we set up the problem.

Figures 4·3 and 4·4 show the estimation results for the first case, i.e., camera

motion parallel to the target, in both camera-centered view and world-centered view.

Figures 4·5 and 4·6 show the estimation results for the second case. As shown in

Figure 4·3, the chessboard pattern is moving with constant velocity to the right, i.e.,

dispalcement from frame to frame is fixed, and as shown in Figure 4·4, the camera is

moving with constant velocity to the left, both consistent with the fact that we are

moving the camera to the left parallel to the chessboard pattern. Figures 4·5 and

4·6 also support the fact that we are moving the camera away from the chessboard

pattern perpendicularly.

Tables 4.1 and 4.2 show the above experimental results numerically. We denote

the estimated translation and rotation of the kth frame relative to the first frame

(k = 0) as ~tk = (t
(k)
x , t

(k)
y , t

(k)
y)T (the unit is 1 millimeter) and ~θk = (θ

(k)
x , θ

(k)
y , θ

(k)
y)T

(the unit is 1 degree), and denote the increments of translation and rotation of

the kth frame relative to the (k − 1)th frame as 4~tk = (4t(k)x ,4t(k)y ,4t(k)y)T and

4~θk = (4θ(k)x ,4θ(k)y ,4θ(k)y)T . As we can see from Tables 4.1 and 4.2 the increments

4t(k)x in the first case and4t(k)z in the second case are much larger numbers compared

to other increments, because we are moving along the x axis in the first case and along

the z axis in the second case. One can observe that 4t(k)y and 4t(k)z in the first case

and 4t(k)x and 4t(k)y in the second case are not close to zero. It is because the table

used in testing was not flat and level. In addition, since we did not provide the size of

the chessboard pattern and the pixel size, the estimation is only proportional to the

ground truth. We calculated the mean and standard deviation of translation incre-

ments along x-axis in the first case and along z-axis in the second case. Respectively,

they were -513 and 4.7969 in the first case and -465.8 and 13.4663 in the second case.

31

Since the standard deviations are small in both cases compared to the means, we can

conclude that this method estimates the motion of the camera accurately.

Table 4.1: Translation and rotation increments for a camera moving
parallel to the target.

k = 1 k = 2 k = 3 k = 4 k = 5

4t(k)x -514.1 -516.3 -509.7 -518.3 -506.6

4t(k)y -16.2 -10.3 -13.6 -11.5 -16.0

4t(k)z -2.6 -3.8 -6.4 -7.0 -8.6

4θ(k)x -0.02 0.04 0.16 -0.03 -0.18

4θ(k)y 0.03 0.02 -0.13 -0.15 -0.08

4θ(k)z -0.10 -0.09 0.03 0.05 -0.02

In conclusion, Zhang’s method calibrates camera’s coordinate system with the

world coordinate system. It can even estimate camera motion in the units of pixel

size. As long as we know the pixel size and provide coordinates of target points in

absolute units, we will recover the camera motion in absolute units.

Thus, why don’t we use this method to estimate camera motion? The critical

fact is that it requires the frontal view of the pattern as implied by equation (4.2),

in which it is assumed that the target pattern is on the plane Z = 0 of the world

coordinate system. In other words, if we use a chessboard pattern as the target, we

should provide the coordinates of feature points such as the left image in Figure 4·7

rather than the right one.

As we mentioned before, we expect to use thousands of surveillance cameras and

thus it is impossible to provide the structure of targets except perhaps the fact that

they are planar. Furthermore, we don’t really care about the units of camera motion,

32

−3000 −2000 −1000 0 1000 2000 3000
0

1000

2000

3000

4000

5000

−1000

−500

0

500

1000

X
c

Extrinsic parameters (camera−centered)

Y
c

Z
cO

c

1

(a) t=0

−3000 −2000 −1000 0 1000 2000 3000
0

1000

2000

3000

4000

5000

−1000

−500

0

500

1000

X
c

Extrinsic parameters (camera−centered)

Y
c

Z
cO

c

2

(b) t=1

−3000 −2000 −1000 0 1000 2000 3000
0

1000

2000

3000

4000

5000

−1000

−500

0

500

1000

X
c

Extrinsic parameters (camera−centered)

Y
c

Z
cO

c

3

(c) t=2

−3000 −2000 −1000 0 1000 2000 3000
0

1000

2000

3000

4000

5000

−1000

−500

0

500

1000

X
c

Extrinsic parameters (camera−centered)

Y
c

Z
cO

c

4

(d) t=3

−3000 −2000 −1000 0 1000 2000 3000
0

1000

2000

3000

4000

5000

−1000

−500

0

500

1000

X
c

Extrinsic parameters (camera−centered)

Y
c

Z
cO

c

5

(e) t=4

−3000 −2000 −1000 0 1000 2000 3000
0

1000

2000

3000

4000

5000

−1000

−500

0

500

1000

X
c

Extrinsic parameters (camera−centered)

Y
c

Z
cO

c

6

(f) t=5

Figure 4·3: Geometric interpretation of experimental results for cam-
era motion parallel to the target (camera-centered view).

33

−3000 −2000 −1000 0 1000 2000 3000
0

1000

2000

3000

4000

5000

−1000

−500

0

500

1000

Extrinsic parameters (camera−centered)

1

(a) t=0

−3000 −2000 −1000 0 1000 2000 3000
0

1000

2000

3000

4000

5000

−1000

−500

0

500

1000

Extrinsic parameters (camera−centered)

1

(b) t=1

−3000 −2000 −1000 0 1000 2000 3000
0

1000

2000

3000

4000

5000

−1000

−500

0

500

1000

Extrinsic parameters (camera−centered)

1

(c) t=2

−3000 −2000 −1000 0 1000 2000 3000
0

1000

2000

3000

4000

5000

−1000

−500

0

500

1000

Extrinsic parameters (camera−centered)

1

(d) t=3

−3000 −2000 −1000 0 1000 2000 3000
0

1000

2000

3000

4000

5000

−1000

−500

0

500

1000

Extrinsic parameters (camera−centered)

1

(e) t=4

−3000 −2000 −1000 0 1000 2000 3000
0

1000

2000

3000

4000

5000

−1000

−500

0

500

1000

Extrinsic parameters (camera−centered)

1

(f) t=5

Figure 4·4: Geometric interpretation of experimental results for cam-
era motion parallel to the target (world-centered view).

34

−2000

0

2000 0
2000

4000
6000

8000
10000−2000

−1000

0

1000

2000

1

Extrinsic parameters (camera−centered)

(a) t=0

−2000

0

2000 0
2000

4000
6000

8000
10000−2000

−1000

0

1000

2000

2

Extrinsic parameters (camera−centered)

(b) t=1

−2000

0

2000 0
2000

4000
6000

8000
10000−2000

−1000

0

1000

2000

3

Extrinsic parameters (camera−centered)

(c) t=2

−2000

0

2000 0
2000

4000
6000

8000
10000−2000

−1000

0

1000

2000

4

Extrinsic parameters (camera−centered)

(d) t=3

−2000

0

2000 0
2000

4000
6000

8000
10000−2000

−1000

0

1000

2000

5

Extrinsic parameters (camera−centered)

(e) t=4

−2000

0

2000 0
2000

4000
6000

8000
10000−2000

−1000

0

1000

2000

6

Extrinsic parameters (camera−centered)

(f) t=5

Figure 4·5: Geometric interpretation of experimental results for cam-
era motion perpendicular to the target (camera-centered view).

35

−2000

0

2000 −2000
0

2000
4000

6000−2000

−1000

0

1000

2000
1

Extrinsic parameters (camera−centered)

(a) t=0

−2000

0

2000 −2000
0

2000
4000

6000−2000

−1000

0

1000

2000
1

Extrinsic parameters (camera−centered)

(b) t=1

−2000

0

2000 −2000
0

2000
4000

6000−2000

−1000

0

1000

2000
1

Extrinsic parameters (camera−centered)

(c) t=2

−2000

0

2000 −2000
0

2000
4000

6000−2000

−1000

0

1000

2000
1

Extrinsic parameters (camera−centered)

(d) t=3

−2000

0

2000 −2000
0

2000
4000

6000−2000

−1000

0

1000

2000
1

Extrinsic parameters (camera−centered)

(e) t=4

−2000

0

2000 −2000
0

2000
4000

6000−2000

−1000

0

1000

2000
1

Extrinsic parameters (camera−centered)

(f) t=5

Figure 4·6: Geometric interpretation of experimental results for cam-
era motion perpendicular to the target (world-centered view).

36

Table 4.2: Translation and rotation increments for a camera moving
perpendicular to the target.

k = 1 k = 2 k = 3 k = 4 k = 5

4t(k)x -19.4 -18.6 -28.2 -30.6 -9.2

4t(k)y -22.8 -27.6 -29.0 -33.8 -36.6

4t(k)z -451.4 -467.8 -459.6 -462.8 -487.4

4θ(k)x 0.03 0.08 -0.03 0.13 -0.04

4θ(k)y 0.01 -0.05 -0.08 -0.03 0.08

4θ(k)z -0.07 0.10 0.03 -0.06 -0.08

(a) (b)

Figure 4·7: (a) Frontal view and (b) non-frontal view of feature points
on the chessboard pattern

37

so it is acceptable to estimate camera motion in relative units.

38

Chapter 5

Homography decomposition method of

Faugeras and Lustman

As discussed in Chapter 2, a homography contains 3D translation and rotation be-

tween two camera positions. In addition, homography can be calculated directly from

two images without using the 3D coordinate system, which is exactly what we want

because we are not interested in the structure of the 3D scene. What we want to

compute is the relative position of the camera, and a homography contains this in-

formation. However, 3D translation and rotation are not immediately appeared in a

homography. We have to find a way to extract the information about 3D translation

and rotation from a homography.

The method we are going to describe uses the fundamental property that projec-

tions of planar objects are related by homographies (Faugeras and Lustman, 1988).

The authors show that given a homography, the position and orientation of the second

camera and the target plane can be recovered with respect to the first camera. There

exists an ambiguity when solving the problem, but it can be removed by including

another plane or by using a third image of the same plane.

The position and orientation of the second camera with respect to the first one

are defined by a translation vector ~t and a rotation matrix R, respectively. The

object plane is defined by its normal direction ~n and its distance d to the origin of

the first camera coordinate system is shown in Figure 5·1. We will show it is possible

to decompose a homography into physical parameters:

39

1. the normal direction ~n to the reference plane,

2. the rotation matrix R,

3. the ratio ~t/d of the translation and the distance of the plane to the origin.

Figure 5·1: The relationship between object plane (chessboard pat-
tern), the first camera coordinate system (Xcam1, Ycam1, Zcam1) and the
second camera coordinate system (Xcam2, Ycam2, Zcam2).

Consider a planar object denoted by ~π = (~nT , d)T = (a, b, c, d)T where ~n is the

normal of this object in the first camera coordinate system. A 3D point on this planar

object is denoted by ~X = (X, Y, Z,W)T . Recall the three results from Section 2.2

(page 9). We can generalize result 1 to 3D space: a point ~X lies on the plane ~π if

and only if ~πT ~X = 0. If we assume two camera coordinate sysmtes are related via R

and −~t, we can express their 2D projections as follows
~x1 = A[I | 0] ~X

~x2 = A[R | − ~t] ~X

. (5.1)

From the first equation in (5.1), we have ~X = (A−1~x1,W)T . Since the 3D point ~X is

on the planar object, expressed as ~πT ~X = 0, solving for W we have W = −~nTA−1~x1
d

.

40

Substituting ~X in the second equation in (5.1), we have

~x2 = A[R | − ~t] ~X (5.2)

= A[R | − ~t]

(
A−1~x1
−~nTA−1~x1

d

)
= A(RA−1~x1 + ~t

~nTA−1~x1
d

)

= A(R +
~t~nT

d
)A−1~x1

Recall that, two projections of a planar object are related by a homography:

~x2 = sH~x1.

Combined with equation (5.2), a homography matrix H, up to a scale factor, can be

described as follows:

H = A(dR + ~t~nT)A−1. (5.3)

We denote normalized homography as

Ĥ = A−1HA = dR + ~t~nT (5.4)

The goal is to solve equation (5.4), i.e., based on a normalized homography matrix

Ĥ, find translation vector ~t and rotation matrix R.

Using singular value decomposition (SVD), we can decompose Ĥ into UΛVT,

where Λ is a diagonal matrix with square roots of eigenvalues λi of ĤĤT sorted in

decreasing order: λ1 ≥ λ2 ≥ λ3 ≥ 0, and U and V being orthonormal matrices.

There is no restriction on homography which means that any 3× 3 matrix can be

a homography matrix. Thus, we can assume Λ is a homography matrix,

Λ = d
′
R
′
+ ~t′ ~n′

T
(5.5)

41

where R, d, ~t and ~n are related to R′, d′, ~t′ and ~n′ as follows:
R = UR

′
VT

~t = U~t′

d = d
′

~n = V~n′

(5.6)

with

~t′ = (t′1, t
′
2, t
′
3)
T ~n′ = (a1, a2, a3)

T .

We assume that ~n′ is a unit-length vector. If we expand equation (5.5), we will get

Λ =

 λ1 0 0
0 λ2 0
0 0 λ3

= d

′
R
′
+

 t
′
1

t
′
2

t
′
3

(a1 a2 a3
)

= d
′
R
′
+

 t
′
1a1 t

′
1a2 t

′
1a3

t
′
2a1 t

′
2a2 t

′
2a3

t
′
3a1 t

′
3a2 t

′
3a3

 . (5.7)

If we use an orthonormal basis: ~e1 = (1, 0, 0)T , ~e2 = (0, 1, 0)T , ~e3 = (0, 0, 1)T , we can

express equation (5.7) as follows:

Λ~ei = λi~ei = d
′
R
′
~ei + ~t′ai for i = 1, 2, 3

which implies
λ1~e1 = d

′
R
′
~e1 + ~t′a1

λ2~e2 = d
′
R
′
~e2 + ~t′a2

λ3~e3 = d
′
R
′
~e3 + ~t′a3

(5.8)

or

λi~ei = d
′
R
′
~ei + ~t′ai for i = 1, 2, 3. (5.9)

If we eliminate ~t′, we have

λi~eiaj − λj ~ejai = d
′
R
′
(aj~ei − ai~ej) for i 6= j. (5.10)

42

As R
′

is a rotation matrix, it preserves the vector norm :

‖λi~eiaj − λj ~ejai‖ = ‖d′(aj~ei − ai~ej)‖ for i 6= j

thus leading to:
(d
′2 − λ21)a23 + (d

′2 − λ23)a21 = 0
(d
′2 − λ22)a21 + (d

′2 − λ21)a22 = 0
(d
′2 − λ23)a22 + (d

′2 − λ22)a23 = 0
. (5.11)

These are linear equations with unknowns a21, a
2
2, a

2
3. Equations (5.11) have the form

C~x = 0, where

C =

 (d
′2 − λ23) 0 (d

′2 − λ21)
(d
′2 − λ22) (d

′2 − λ21) 0
0 (d

′2 − λ23) (d
′2 − λ22)

 and ~x =

 a21
a22
a23

 .

In order to obtain a non-zero solution, A must be singular which means its determi-

nant must be zero. Otherwise, we will get a solution all equal to zero which violates

the assumption that ~n′ has a unit norm. Thus, we have

(d
′2 − λ21)(d

′2 − λ22)(d
′2 − λ23) = 0. (5.12)

Equation (5.12) implies that d′ = ±λ1, ±λ2 or ±λ3. Now we are facing three

different cases, according to the order of multiplicity of the singular values λi’s of Λ:

1. λ1 6= λ2 6= λ3 (λ1 > λ2 > λ3)

2. λ1 = λ2 6= λ3 (λ1 = λ2 > λ3) or λ1 6= λ2 = λ3 (λ1 > λ2 = λ3)

3. λ1 = λ2 = λ3.

We will consider these three cases separately in order to solve equation (5.4) for

translation vector ~t and rotation matrix R.

43

5.1 Case #1: λ1 6= λ2 6= λ3 (λ1 > λ2 > λ3)

If we assume d
′
= ±λ1, the equation (5.11) will yield:

(λ21 − λ23)a21 = 0
(λ21 − λ22)a21 = 0
(λ21 − λ23)a22 + (λ21 − λ22)a23 = 0

(5.13)

The first two equations in (5.13) imply a1 = 0. In addition, as λ1 > λ2 > λ3,

(λ21 − λ23) and (λ21 − λ22) will be both positive in the third equation in (5.13). Thus,

we get a2 = a3 = 0, which is impossible for the assumption that ~n′ has a unit norm.

If we assume d
′
= ±λ3, the equation (5.11) will yield:

(λ23 − λ21)a23 = 0
(λ23 − λ22)a21 + (λ23 − λ21)a22 = 0
(λ23 − λ22)a23 = 0

. (5.14)

The first and the third equations in (5.14) imply a3 = 0. In addition, as λ1 > λ2 > λ3,

(λ23− λ22) and (λ23− λ21) will be both negative in the second equation in (5.14). Thus,

we get a1 = a2 = 0, which is again impossible for the assumption that ~n′ has a unit

norm.

We conclude that the only solution to equation (5.12) is d′ = ±λ2. Under the

condition that λ1 6= λ3 and a21 + a22 + a23 = 1 (~n′ has the unit norm), we can express

a1, a2 and a3 using equation (5.11) as follows:
a1 = ε1

√
λ21−λ22
λ21−λ23

a2 = 0 ε1, ε3 = ±1

a3 = ε3

√
λ22−λ23
λ21−λ23

. (5.15)

1. Case #1, sub-case: d′ = λ2.

Since a2 = 0 and d′ = λ2, according to the second equation in (5.8) we obtain:

~e2 = R
′
~e2, which implies that R

′
is a rotation matrix around axis ~e2 (recall that

44

~e2 = (0, 1, 0)T): cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

 .

Substituting a2 = 0, d′ = λ2 and R
′
=

 cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

 into equation (5.10) and

solving for sinθ and cosθ, we have:{
sinθ = (λ1 − λ3)a1a3λ2

cosθ =
λ1a23+λ3a

2
1

λ2

. (5.16)

Substituting equation (5.15) into equation (5.16), we have: sinθ = ε1ε3

√
(λ21−λ22)(λ22−λ23)
(λ1+λ3)λ2

cosθ =
λ22+λ1λ3
(λ1+λ3)λ2

.

Substituting equation (5.16) into equation (5.8) with the condition that a21+a
2
2+a

2
3 = 1

(a2 = 0), we get:

~t′ = (λ1 − λ3)

 a1
0
−a3

 .

2. Case #1, sub-case: d′ = −λ2.

Since a2 = 0 and d′ = −λ2, according to the second equation in (5.8), we obtain:

−~e2 = R
′
~e2, which implies that

R′ =

 cosϕ 0 sinϕ
0 −1 0

sinϕ 0 −cosϕ

 .

Following the same procedure as for the case of d′ = λ2 we solve for sinϕ and cosϕ: sinϕ = (λ1 + λ3)
a1a3
λ2

= ε1ε3

√
(λ21−λ22)(λ22−λ23)
(λ1−λ3)λ2

cosϕ =
λ3a21+λ1a

2
3

λ2
=

λ1λ3−λ22
(λ1−λ3)λ2

. (5.17)

45

Substituting these values into equation (5.8), we get:

~t′ = (λ1 + λ3)

 a1
0
a3

 .

5.2 Case #2: λ1 = λ2 6= λ3 (λ1 = λ2 > λ3) or λ1 6= λ2 = λ3

(λ1 > λ2 = λ3)

We consider the sub-case of λ1 = λ2 6= λ3 (the other sub-case will be equivalent).

If we assume d
′

= ±λ3, equations (5.11) will yield equations (5.14) and thus

a1 = a2 = a3 = 0, which is again impossible for the assumption that ~n′ has a unit

norm.

Thus, we have d
′

= ±λ1 = ±λ2. Let’s use d′ = ±λ2 for consistency with the

previous derivation. Under the condition λ1 = λ2 6= λ3 and a21 + a22 + a23 = 1 (~n′ has

a unit norm), we can express a1, a2 and a3 using equation (5.11) as follows:
a1 = 0
a2 = 0
a3 = ±1

. (5.18)

1. Case #2, sub-case: d′ = λ2.

Since we have a2 = 0 and d′ = λ2, we obtain: ~e2 = R
′
~e2 as in case #1, and following

the same procedure, we get: {
sinθ = 0
cosθ = 1

.

Substituting these values into equation (5.8), we get:

~t′ = (λ3 − λ1)

 0
0
±1

 .

2. Case #2, sub-case: d′ = −λ2.

Again, since we have a2 = 0 and d′ = −λ2, we obtain: −~e2 = R
′
~e2 as in case #1, and

46

following the same procedure, we get:{
sinϕ = 0
cosϕ = −1

.

Substituting these values into equation (5.8), we get:

~t′ = (λ3 + λ1)

 0
0
±1

 .

5.3 Case #3: λ1 = λ2 = λ3

1. Case #3, sub-case: d′ = λ1 = λ2 = λ3.

In this case, a1, a2 and a3 are undefined according to equation (5.11), which means

that under the condition that d′ = λ1 = λ2 = λ3, equations (5.10) and (5.8) must be

satisfied for all values of a1, a2 and a3. Thus, equation (5.10) leads to R′ = I and

(5.8) leads to ~t′ = ~0.

2. Case #3, sub-case: d′ = −λ1 = −λ2 = −λ3.

In this case, a1, a2 and a3 are again undefined according to equation (5.11). Further-

more, under the condition that d′ = −λ1 = −λ2 = −λ3, equation (5.10) becomes:

R′(aj~ei − ai~ej) = −(aj~ei − ai~ej)

which must be satisfied for all values of a1, a2 and a3. Thus, R′ is a rotation matrix

in the object plane, i.e., around the axis that is orthogonal to the normal ~n. Because

that normal ~n is undefined here, the solution in this case is undetermined.

5.4 Summary of solutions

On the following pages, we list solutions to all three cases.

47

1. Case #1:

R′ =

λ22+λ1λ3
(λ1+λ3)λ2

0 −ε1ε3
√

(λ21−λ22)(λ22−λ23)
(λ1+λ3)λ2

0 1 0

ε1ε3

√
(λ21−λ22)(λ22−λ23)
(λ1+λ3)λ2

0
λ22+λ1λ3
(λ1+λ3)λ2

~t′ = (λ1 − λ3)

 ε1

√
λ21−λ22
λ21−λ23
0

−ε3
√

λ22−λ23
λ21−λ23

~n′ =

 ε1

√
λ21−λ22
λ21−λ23
0

−ε3
√

λ22−λ23
λ21−λ23

d′ > 0, ε1, ε3 = ±1.

R′ =

λ1λ3−λ22
(λ1−λ3)λ2 0 ε1ε3

√
(λ21−λ22)(λ22−λ23)
(λ1−λ3)λ2

0 −1 0

ε1ε3

√
(λ21−λ22)(λ22−λ23)
(λ1−λ3)λ2 0 − λ1λ3−λ22

(λ1−λ3)λ2

~t′ = (λ1 + λ3)

 ε1

√
λ21−λ22
λ21−λ23
0

ε3

√
λ22−λ23
λ21−λ23

~n′ =

 ε1

√
λ21−λ22
λ21−λ23
0

−ε3
√

λ22−λ23
λ21−λ23

d′ < 0, ε1, ε3 = ±1.

48

2. Case #2:

R′ =

 1 0 0
0 1 0
0 0 1

~t′ = (λ3 − λ1)

 0
0
±1

~n′ =

 0
0
±1

d′ > 0.

R′ =

 −1 0 0
0 −1 0
0 0 1

~t′ = (λ3 + λ1)

 0
0
±1

~n′ =

 0
0
±1

d′ < 0.

49

3. Case #3:

R′ =

 1 0 0
0 1 0
0 0 1

~t′ =

 0
0
0

~n′ undetermined

d′ > 0. (5.19)

R′ undetermined

~t′ undetermined

~n′ undetermined

d′ < 0. (5.20)

After obtaining R′, ~t′ and ~n′, R, ~t and ~n can be calculated from equation (5.6).

Clearly, we will get multiple solutions in case #1 and case #2. How can we

determine which one is the right solution? We explain this in detail in the next

section.

5.5 Implementation of the method of Faugeras and Lustman

There are several issues that need to be resolved when implementing the method

derived above:

1. First, we calculate normalized homographies Ĥ between a reference frame (typ-

ically the first frame) and the consecutive frames. Then, we apply the method

of Faugeras and Lustman to decompose the homographies into 3D rotations

and translations. Every estimation result is relative to the coordinate system

of the reference camera position (typically the initial camera position).

2. Equations (5.20) indicate that we cannot solve for R, ~t and ~n, when d′ < 0

and λ1 = λ2 = λ3. This case corresponds to the situation when a transparent

50

plane is observed from two opposite sides and at the same distance, which will

not happen under our assumption that the target is not transparent and we are

always viewing the target from one side.

3. After determining the sign of d′, we have to choose from possible solutions in

cases #1 and #2. Since we know we are viewing the object from one side,

and the object is oriented towards the camera, we know that c in the normal

~n = (a, b, c)T to the object will always be negative. Thus, we choose solutions

with negative c.

4. After choosing solutions with negative c, we will still have two solutions in case

#1, and we have to determine one unique solution. By applying the algorithm

between an arbitrary frame and the reference frame, one quantity will remain

the same, namely the normal vector ~nref of the object in the reference camera

coordinate system. By finding the normal vector ~nref , we are able to choose

the correct solution to the problem, i.e., the solution with the minimum norm

‖~n− ~nref‖. In order to find ~nref , we use a third image of the same object from

a different camera position. Let’s denote the normal vector estimated between

the reference frame and the second frame as ~n1 and ~n2, and the normal vector

estimated between the reference frame and the third frame as ~n′1 and ~n′2. We

will set ~nref = (~ni − ~n′j)/2 (i, j = 1, 2), where ~ni and ~n′j are the normal vectors

with minimum norm ‖~ni − ~n′j‖ (i, j = 1, 2).

5. Due to estimation errors, even if camera hasn’t moved, the eigenvalues λi of Λ

in equation (5.7) might be slightly different. In order to tolerate small errors,

we threshold absolute eigenvalue differences as follows: if |λi − λj| > ε (i 6= j),

λi and λj are considered different, otherwise they are considered identical. The

threshold ε is an important parameter that needs to be carefully selected. This

51

will be discussed in Chapter 6.

52

Chapter 6

Experimental results

In this chapter, we evaluate the effectiveness of the method described in Chapter

5 in estimation of 3D camera motion. First, we present results for synthetic data

simulating translation and rotation of a planar object. Then, we present results of

a “ground truth” experiment in which the camera is translated and/or rotated with

precise increments in front of a planar object (chessboard pattern). At last, we discuss

results of a direct comparison of camera-derived 3-D translations with those derived

from accelerometer measurements.

6.1 Synthetic data experiments

We first validate the algorithm on simulated data, i.e., data generated in software

without ever using a real camera. In this simulation, we aligned the camera coor-

dinate system with the world coordinate system so that the image plane is in the

(Xworld, Yworld) plane of the world coordinate system for convenience (Figure 6·1).

We generated a 2D lattice to simulate feature points of the chessboard pattern. The

lattice is located on a plane with normal ~n = (0, 0,−1)T and at distance d = 1000

from the origin of the camera coordinate system. We simulated a camera with the

following intrinsic matrix:

A =

 500 0 0
0 500 0
0 0 1

 . (6.1)

53

In addition, we set threshold ε described in Section 5.5 to 10−10. We projected the

synthetic lattice onto the image plane to produce a set of feature points in a video

frame. Then, we changed the position/orientation of the synthetic lattice and pro-

jected it again onto the image plane. After obtaining two frames of feature points

projected from two positions/orientations of the synthetic lattice, we calculated the

normalized homography between them and then applied the algorithm described in

Chapter 5 to estimate 3D translation and 3D rotation. By specifying different po-

sitions and orientations of the synthetic lattice, we have generated ground truth to

compare our estimation with. We denote our ground truth translation vector as

~t
(k)
g = (t

(k)
gx , t

(k)
gy , t

(k)
gz)T , and rotation vector as ~θ

(k)
g = (θ

(k)
gx , θ

(k)
gy , θ

(k)
gz)T , where both vec-

tors apply between the kth frame and the first frame. The translation vector has no

units, while the rotation vector is expressed in degrees.

Figure 6·1: Synthetic lattice with the camera coordinate system
aligned to the world coordinate system.

We have tested this method in the following seven cases of translation and rotation

of the synthetic pattern:

• Case 1: Translation along x axis by vector ~t
(k)
g = (t

(k)
gx , t

(k)
gy , t

(k)
gz)T =

(1000k, 0, 0)T (Figure 6·2).

54

• Case 2: Translation along y axis by vector ~t
(k)
g = (t

(k)
gx , t

(k)
gy , t

(k)
gz)T =

(0, 1000k, 0)T (Figure 6·3).

• Case 3: Translation along z axis by vector ~t
(k)
g = (t

(k)
gx , t

(k)
gy , t

(k)
gz)T =

(0, 0, 1000k)T (Figure 6·4).

• Case 4: Rotation around x axis by vector ~θ
(k)
g = (θ

(k)
gx , θ

(k)
gy , θ

(k)
gz)T =

(k − 5, 0, 0)T (Figure 6·5).

• Case 5: Rotation around y axis by vector ~θ
(k)
g = (θ

(k)
gx , θ

(k)
gy , θ

(k)
gz)T =

(0, k − 5, 0)T (Figure 6·6).

• Case 6: Rotation around z axis by vector ~θ
(k)
g = (θ

(k)
gx , θ

(k)
gy , θ

(k)
gz)T =

(0, 0, k − 5)T (Figure 6·7).

• Case 7: Arbitrary translation and rotation.

Figure 6·2: Translation of the synthetic lattice along x axis of the

world coordinate system by ~t
(k)
g = (t

(k)
gx , t

(k)
gy , t

(k)
gz)T = (1000k, 0, 0)T .

55

Figure 6·3: Translation of the synthetic lattice along y axis of the

world coordinate system by ~t
(k)
g = (t

(k)
gx , t

(k)
gy , t

(k)
gz)T = (0, 1000k, 0)T .

Figure 6·4: Translation of the synthetic lattice along z axis of the

world coordinate system by ~t
(k)
g = (t

(k)
gx , t

(k)
gy , t

(k)
gz)T = (0, 0, 1000k)T .

56

Figure 6·5: Rotation of the synthetic lattice around x axis of the world

coordinate system by ~θ
(k)
g = (θ

(k)
gx , θ

(k)
gy , θ

(k)
gz)T = (k − 5, 0, 0)T .

Figure 6·6: Rotation of the synthetic lattice around y axis of the world

coordinate system by ~θ
(k)
g = (θ

(k)
gx , θ

(k)
gy , θ

(k)
gz)T = (0, k − 5, 0)T .

57

Figure 6·7: Rotation of the synthetic lattice around z axis of the world

coordinate system by ~θ
(k)
g = (θ

(k)
gx , θ

(k)
gy , θ

(k)
gz)T = (0, 0, k − 5)T .

Figures 6·8 to 6·14 illustrate the estimation results of translation and rotation in

the above cases. Clearly, in each case the method of Faugeras and Lustman (Faugeras

and Lustman, 1988) provides accurate estimations of translation and rotation on

synthetic data.

For quantitative assessment, we calculated average root-mean-squared error of

58

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

t̂ x

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

t̂ y

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

t̂ z

(a)

1 2 3 4 5 6 7 8 9 10
−1

0

1

Frame number

θ̂ x

1 2 3 4 5 6 7 8 9 10
−1

0

1

Frame number

θ̂ y

1 2 3 4 5 6 7 8 9 10
−1

0

1

Frame number

θ̂ z

(b)

Figure 6·8: Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T

under ground truth translation ~t
(k)
g = (1000k, 0, 0)T and rotation

~θ
(k)
g = (0, 0, 0)T in case 1.

59

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

t̂ x

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

t̂ y

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

t̂ z

(a)

1 2 3 4 5 6 7 8 9 10
−1

0

1

Frame number

θ̂ x

1 2 3 4 5 6 7 8 9 10
−1

0

1

Frame number

θ̂ y

1 2 3 4 5 6 7 8 9 10
−1

0

1

Frame number

θ̂ z

(b)

Figure 6·9: Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T

under ground truth translation ~t
(k)
g = (0, 1000k, 0)T and rotation

~θ
(k)
g = (0, 0, 0)T in case 2.

60

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

t̂ x

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

t̂ y

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

t̂ z

(a)

1 2 3 4 5 6 7 8 9 10
−1

0

1

Frame number

θ̂ x

1 2 3 4 5 6 7 8 9 10
−1

0

1

Frame number

θ̂ y

1 2 3 4 5 6 7 8 9 10
−1

0

1

Frame number

θ̂ z

(b)

Figure 6·10: Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T

under ground truth translation ~t
(k)
g = (0, 0, 1000k)T and rotation ~θ

(k)
g =

(0, 0, 0)T in case 3.

61

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

t̂ x

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

t̂ y

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

t̂ z

(a)

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

θ̂ x

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

θ̂ y

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

θ̂ z

(b)

Figure 6·11: Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T

under ground truth translation ~t
(k)
g = (0, 0, 0)T and rotation ~θ

(k)
g =

(k − 5, 0, 0)T in case 4.

62

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

t̂ x

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

t̂ y

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

t̂ z

(a)

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

θ̂ x

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

θ̂ y

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

θ̂ z

(b)

Figure 6·12: Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T

under ground truth translation ~t
(k)
g = (0, 0, 0)T and rotation ~θ

(k)
g =

(0, k − 5, 0)T in case 5.

63

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

t̂ x

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

t̂ y

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

t̂ z

(a)

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

θ̂ x

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

θ̂ y

1 2 3 4 5 6 7 8 9 10
−10

0

10

Frame number

θ̂ z

(b)

Figure 6·13: Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T

under ground truth translation ~t
(k)
g = (0, 0, 0)T and rotation ~θ

(k)
g =

(0, 0, k − 5)T in case 6.

64

1 2 3 4 5 6 7 8 9 10
−5

0

5

Frame number

t̂ x

1 2 3 4 5 6 7 8 9 10
−5

0

5

Frame number

t̂ y

1 2 3 4 5 6 7 8 9 10
−5

0

5

Frame number

t̂ z

(a)

1 2 3 4 5 6 7 8 9 10
−20

0

20

Frame number

θ̂ x

1 2 3 4 5 6 7 8 9 10
−20

0

20

Frame number

θ̂ y

1 2 3 4 5 6 7 8 9 10
−20

0

20

Frame number

θ̂ z

(b)

Figure 6·14: Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T for
arbitrary camera motion in case 7.

65

translation and rotation in every case as follows:

ε̄tx =

√
1
10

10∑
k=1

(t̂
(k)
x − t(k)gx)2

ε̄ty =

√
1
10

10∑
k=1

(t̂
(k)
y − t(k)gy)2

ε̄tz =

√
1
10

10∑
k=1

(t̂
(k)
z − t(k)gz)2

ε̄θx =

√
1
10

10∑
k=1

(θ̂
(k)
x − θ(k)gx)2

ε̄θy =

√
1
10

10∑
k=1

(θ̂
(k)
y − θ(k)gy)2

ε̄θz =

√
1
10

10∑
k=1

(θ̂
(k)
z − θ(k)gz)2

where (t̂x
(k)
, t̂y

(k)
, t̂y

(k)
) and (θ̂x

(k)
, θ̂y

(k)
, θ̂z

(k)
) are the estimated translation and rota-

tion vectors, respectively. As can be seen in Table 6.1, these estimation errors are

extremely small. This was to be expected since the error is only limited by the 64-bit

precision of the computer we ran the experiments on. However, in cases 4, 5 and

6 the estimation errors for translation are exactly zero because in these three cases

of pure rotation the three singular values of Λ are all equal and all the translation

vectors are set to zero (equation (5.19)).

In order to test the robustness and accuracy of this method in presence of un-

certainty, we added Gaussian-distributed noise to the positions of projected feature

points in every video frame. There are two important parameters that affect the es-

timation results if noise is added: threshold ε and standard deviation σ of the noise.

66

Table 6.1: Root-mean-squared errors between ground truth and esti-
mated translations and rotations for cases 1-7

tgx only tgy only tgz only θgx only θgy only θgz only free motion

ε̄tx 2.1e−11 4.7e−12 3.1e−11 0 0 0 1.1e−12

ε̄ty 1.3e−11 1.9e−11 3.9e−12 0 0 0 9.9e−13

ε̄tz 8.0e−12 8.0e−12 3.6e−11 0 0 0 7.0e−13

ε̄θx 7.8e−13 1.4e−11 2.7e−13 2.3e−15 1.5e−15 2.0e−15 1.0e−14

ε̄θy 1.3e−11 3.4e−13 6.4e−13 1.4e−15 3.4e−15 2.5e−15 9.6e−15

ε̄θz 2.8e−12 3.2e−13 45.0e−14 3.6e−15 8.5e−16 7.6e−16 6.2e−15

We sampled ε in the range from 0 to 1 every 0.01 and σ from 0 to 10 every 0.1. For

every pair of values, we applied the algorithm between projections of the reference

frame with normal n = (0, 0,−1)T and d = 1000 and the second frame translated by

~tg = (200, 200,−200)T and rotated by ~θg = (15, 15, 15)T . We added Gaussian noise

with mean 0 and standard deviation σ to the positions of feature points on the image

plane and we generated 1000 realizations. We computed root-mean-squared errors of

translations and rotations for different values of ε and σ. As shown in Figures 6·15

to 6·20, the mean-square error increases as ε and σ increase. There is a discontinuity

near ε = 0.14 in rotation and translation errors because for larger ε we will classify

the eigenvalues as belonging to case #2 (Section 5.2) rather than case #1 (Section

5.1). The same situation occurs near ε = 0.30 where we classify the eigenvalues as

belonging to case #3 (Section 5.3) rather than case #2 (Section 5.2). Since the esti-

mated rotations are all set to be zero in cases #2 and #3, we will not see the second

discontinuity in the plots of rotation errors. A saturation occurs when ε is over 0.3

since all results will be classified as case #3 and all the estimations will be the same.

In conclusion, we should set ε small enough when we apply this algorithm to real data

67

where noise will be introduced by feature extraction, low resolution of images, etc.

0
0.2

0.4
0.6

0.8
1

0

5

10
0

0.01

0.02

0.03

0.04

0.05

εσ

ε tx

Figure 6·15: Root-mean-squared error of translation in x direction.

We also tested the impact of focal length error on the estimation error of trans-

lation and rotation. With the ground truth focal length at 500, we assumed varying

focal lengths, from 400 to 600 with an increment of 1, in our estimation procedure. We

used translation vector ~tg = (100, 100,−100)T and rotation vector ~θg = (10, 15, 20)T

as ground truth. We added no noise to the positions of feature points and used

ε = 10−10. As we see in Figures 6·21 to 6·26, the root-mean-squared errors of trans-

lation and rotation increase as focal length departs from the ground truth. However,

overall the root-mean-squared errors are very small. Thus, although the focal length

provided by a manufacturer may not be accurate, the estimation results won’t be

severely affected.

68

0
0.2

0.4
0.6

0.8
1

0

5

10
0

0.01

0.02

0.03

0.04

0.05

εσ

ε ty

Figure 6·16: Root-mean-squared error of translation in y direction.

0
0.2

0.4
0.6

0.8
1

0

5

10
0

0.01

0.02

0.03

0.04

0.05

εσ

ε tz

Figure 6·17: Root-mean-squared error of translation in z direction.

69

0
0.2

0.4
0.6

0.8
1

0

5

10
0

0.5

1

1.5

2

2.5

εσ

ε θ
x /

de
gr

ee

Figure 6·18: Root-mean-squared error of rotation around x axis.

0
0.2

0.4
0.6

0.8
1

0

5

10
0

0.5

1

1.5

2

2.5

εσ

ε θ
y /

de
gr

ee

Figure 6·19: Root-mean-squared error of rotation around y axis.

70

0
0.2

0.4
0.6

0.8
1

0

5

10
0

0.5

1

1.5

2

2.5

εσ

ε θ
z /

de
gr

ee

Figure 6·20: Root-mean-squared error of rotation around z axis.

420 440 460 480 500 520 540 560 580 600
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

focal length

ε tx

Figure 6·21: Root-mean-squared error of translation in x direction as
a function of assumed focal length f (500 is the ground truth).

71

420 440 460 480 500 520 540 560 580 600
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

focal length

ε ty

Figure 6·22: Root-mean-squared error of translation in y direction as
a function of assumed focal length f (500 is the ground truth).

420 440 460 480 500 520 540 560 580 600
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

focal length

ε tz

Figure 6·23: Root-mean-squared error of translation in z direction as
a function of assumed focal length f (500 is the ground truth).

72

420 440 460 480 500 520 540 560 580 600
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

focal length

ε θ
x

Figure 6·24: Root-mean-squared error of rotation around x axis as a
function of assumed focal length f (500 is the ground truth).

420 440 460 480 500 520 540 560 580 600
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

focal length

ε θ
y

Figure 6·25: Root-mean-squared error of rotation around y axis as a
function of assumed focal length f (500 is the ground truth).

73

420 440 460 480 500 520 540 560 580 600
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

focal length

ε θ
z

Figure 6·26: Root-mean-squared error of rotation around z axis as a
function of assumed focal length f (500 is the ground truth).

6.2 “Ground-truth” experiments

Having tested the accuracy of the algorithm in a simulated environment, we now

test it on real data, i.e., using a camera (Logitech C905) pointed at a planar target

(chessboard pattern). In this section, we first present initial results obtained in a

simple table-top experiment, and then we repeat the experiments using a recently-

built platform that allows more precise control of camera movements.

6.2.1 Table-top experiments

While our test platform was being built, we performed initial experiments on a lab

table that we adjusted to be as close to level as possible. We taped a chessboard

pattern to an adjacent wall and placed a square on the table as a guidance for camera

movement. Figure 6·27 illustrates how we set up our table-top experiment in the

lab. We set the world coordinate system’s z-axis perpendicular to the target plane,

74

x-axis parallel to the table surface pointing to the right and y-axis perpendicular to

the table pointing up.

Figure 6·27: Camera setup for real-data experiments

We tested the homography decomposition method using the above setup in 6 cases

(the unit for translation vector is 1 inch and the unit for rotation vector is 1 degree):

• Case 1: The camera coordinate system is aligned with the world coordinate

system, and the camera is moved along the x axis of the world coordinate system

by ~t
(k)
g = (k, 0, 0)T (Figure 6·28 shows the setup in this case and Figure 6·34

shows some sample frames from the captured video).

• Case 2: The camera coordinate system is aligned with the world coordinate

system, and the camera is moved along the z axis of the world coordinate system

by ~t
(k)
g = (0, 0,−k)T (Figure 6·29 shows the setup in this case and Figure 6·35

shows some sample frames from the captured video).

• Case 3: The camera is tilted down to miss-align the y and z axes of the

camera coordinate system with respect to the world coordinate system by angle

75

β1, and the camera is moved along the z-axis of the world coordinate system

by ~t
(k)
g = (0, 0,−k)T . (Figure 6·30 shows the setup in this case and Figure 6·36

shows some sample frames from the captured video).

• Case 4: The camera is panned to the right to miss-align the x and z axes of the

camera coordinate system with respect to the world coordinate system by angle

β2, and the camera is moved along the x-axis of the world coordinate system

by ~t
(k)
g = (k, 0, 0)T . (Figure 6·31 shows the setup in this case and Figure 6·37

shows some sample frames from the captured video).

• Case 5: The camera is rotated around the z-axis clockwise to miss-align the x

and y axes of the camera coordinate system with respect to the world coordinate

system by angle β3, and the camera is moved along the x-axis of the world

coordinate system by ~t
(k)
g = (k, 0, 0)T . (Figure 6·32 shows the set-up in this

case and Figure 6·38 shows some sample frames from the captured video).

• Case 6: In this scenario, the camera is first moved away from the target to the

end of the square, then is moved to the other side of the square, and finally it is

moved towards the target. Figure 6·33 shows how the camera is being moved in

this case. The black camera indicates the reference position for our estimation,

which is the first frame we took. Figure 6·39 shows some frames of the captured

image sequence.

Figures 6·40 to 6·45 show the plots of translation and rotation estimates in all

cases. Since we always move the camera inch by inch, we expect the translation

estimates to either increase or decrease linearly. From the results of the first two

cases (Figures 6·40 and 6·41), we can see that the estimates of tx and tz change

almost linearly, however, ty, tz in the first case and tx, ty in the second case remain

zero as expected. In addition, estimates of the rotation angles change within a small

76

Figure 6·28: Translation of the camera along x axis of the world

coordinate system by ~t
(k)
g = (k, 0, 0)T in case 1.

Figure 6·29: Translation of the camera along z axis of the world

coordinate system by ~t
(k)
g = (0, 0,−k)T in case 2.

77

Figure 6·30: Rotation around x-axis by angle β1 followed by trans-
lation of the camera along z axis of the world coordinate system by
~t
(k)
g = (0, 0,−k)T in case 3.

Figure 6·31: Rotation around y-axis by angle β2 followed by trans-
lation of the camera along x axis of the world coordinate system by
~t
(k)
g = (k, 0, 0)T case 4.

78

Figure 6·32: Rotation around z-axis by angle β3 followed by trans-
lation of the camera along x axis of the world coordinate system by
~t
(k)
g = (k, 0, 0)T in case 5.

Figure 6·33: Camera movements in case 6.

79

Figure 6·34: Sample frames from a video captured in case 1.

Figure 6·35: Sample frames from a video captured in case 2.

80

Figure 6·36: Sample frames from a video captured in case 3.

Figure 6·37: Sample frames from a video captured in case 4.

81

Figure 6·38: Sample frames from a video captured in case 5.

Figure 6·39: Sample frames from a video captured in case 6.

82

1 2 3 4 5 6 7 8 9 10 11
−0.5

0

0.5

frame number

t̂ x

1 2 3 4 5 6 7 8 9 10 11
−0.5

0

0.5

frame number

t̂ y

1 2 3 4 5 6 7 8 9 10 11
−0.5

0

0.5

frame number

t̂ z

(a)

1 2 3 4 5 6 7 8 9 10 11
−1

0

1

frame number

θ̂ x

1 2 3 4 5 6 7 8 9 10 11
−1

0

1

frame number

θ̂ y

1 2 3 4 5 6 7 8 9 10 11
−1

0

1

frame number

θ̂ z

(b)

Figure 6·40: Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T

under camera movement in case 1.

83

1 2 3 4 5 6 7 8 9
−0.5

0

0.5

frame number

t̂ x

1 2 3 4 5 6 7 8 9
−0.5

0

0.5

frame number

t̂ y

1 2 3 4 5 6 7 8 9
−0.5

0

0.5

frame number

t̂ z

(a)

1 2 3 4 5 6 7 8 9
−1

0

1

frame number

θ̂ x

1 2 3 4 5 6 7 8 9
−1

0

1

frame number

θ̂ y

1 2 3 4 5 6 7 8 9
−1

0

1

frame number

θ̂ z

(b)

Figure 6·41: Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T

under camera movement in case 2.

84

1 2 3 4 5 6 7
−0.5

0

0.5

frame number

t̂ x

1 2 3 4 5 6 7
−0.5

0

0.5

frame number

t̂ y

1 2 3 4 5 6 7
−0.5

0

0.5

frame number

t̂ z

(a)

1 2 3 4 5 6 7
−4
−2

0
2
4

frame number

θ̂ x

1 2 3 4 5 6 7
−4
−2

0
2
4

frame number

θ̂ y

1 2 3 4 5 6 7
−4
−2

0
2
4

frame number

θ̂ z

(b)

Figure 6·42: Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T

under camera movement in case 3.

85

1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

frame number

t̂ x

1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

frame number

t̂ y

1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

frame number

t̂ z

(a)

1 1.5 2 2.5 3 3.5 4 4.5 5
−4
−2

0
2
4

frame number

θ̂ x

1 1.5 2 2.5 3 3.5 4 4.5 5
−4
−2

0
2
4

frame number

θ̂ y

1 1.5 2 2.5 3 3.5 4 4.5 5
−4
−2

0
2
4

frame number

θ̂ z

(b)

Figure 6·43: Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T

under camera movement in case 4.

86

1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

frame number

t̂ x

1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

frame number

t̂ y

1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

frame number

t̂ z

(a)

1 1.5 2 2.5 3 3.5 4 4.5 5
−4
−2

0
2
4

frame number

θ̂ x

1 1.5 2 2.5 3 3.5 4 4.5 5
−4
−2

0
2
4

frame number

θ̂ y

1 1.5 2 2.5 3 3.5 4 4.5 5
−4
−2

0
2
4

frame number

θ̂ z

(b)

Figure 6·44: Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T

under camera movement in case 5.

87

2 4 6 8 10 12 14
−0.5

0

0.5

frame number

t̂ x

2 4 6 8 10 12 14
−0.5

0

0.5

frame number

t̂ y

2 4 6 8 10 12 14
−0.5

0

0.5

frame number

t̂ z

(a)

2 4 6 8 10 12 14
−4
−2

0
2
4

frame number

θ̂ x

2 4 6 8 10 12 14
−4
−2

0
2
4

frame number

θ̂ y

2 4 6 8 10 12 14
−4
−2

0
2
4

frame number

θ̂ z

(b)

Figure 6·45: Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T

under camera movement in case 6.

88

range due to errors introduced by feature extraction and estimation.

By developing cases 3 and 4, we want to emphasize that the estimated 3D transla-

tion and rotation are relative to the reference camera coordinate system rather than

the world coordinate system. For example, results in Figure 6·42 show that both ty

and tz are linearly changing because we miss-aligned the y and z axes of the camera

coordinate system with respect to the world coordinate system. As we move the

camera along the z axis of the world coordinate system, the position of the camera

actually moves to the point where the y coordinate increases to a positive value and

z coordinate decreases to a negative value in the coordinate system of the reference

camera. It is difficult to see any changes in ty in Figure 6·44 due to the fact that

the rotation angle is not large enough to clearly see the impact. By testing under

scenario 6, we expected that tx would remain constant until we placed the camera

on the other side of the set square, ty would remain zero all the time and tz would

decrease linearly when the camera moved away from the pattern and increase linearly

when it moved towards the pattern. Results in Figure 6·45 confirm that, so we can

conclude that this algorithm works well under combinations of motions.

Since the estimated translations are only proportional to the ground truth vec-

tor ~tg, we cannot calculate the root-mean-squared error. Instead, we calculated the

mean µt and standard deviation σt of the translation increments estimated between

consecutive video frames for each case. If the estimates are consistent across time,

we should have very small standard deviations compared to the means. As shown in

Table 6.2, the standard deviations are at most 1/8-th of the corresponding means,

which indicates a good consistency of the algorithm.

We did not test rotations in the initial table-top experiments for the lack of suitable

rotation angle measurement device.

89

Table 6.2: Means µt and standard deviations σt of the corresponding
translation for 5 cases.

Case 1 Case 2 Case 3 Case 4 Case 5

µ -0.055 -0.0538 -0.0548 -0.0655 0.0642

σ 0.0043 0.0018 0.0071 0.0082 0.0018

6.2.2 Platform-based experiments

Our table-top experiments did not allow precise camera control or table leveling,

and were performed while we awaited completion of a precise mechanical platform

being built to our specifications. The platform, shown in Figure 6·46, allows precise

movement in x-z plane and rotation around all three axes.

First, we repeated the initial translation experiments where the camera was moved

along x and z axes inch by inch. Then, we performed rotation experiments since the

platform is equipped with two goniometers and one rotation stage allowing rotation

around the x, y and z axes. Between each two consecutive images captured, we

incremented angles by 4 degrees around the x and z axes, and by 2 degrees around

the y axis. Figures 6·47 to 6·51 show sample video frames for each of the experiments,

while Figure 6·52 to 6·56 show the resulting translation and rotation estimate plots.

As expected, the rotation remained zero while the camera moved along the x and z

axes, and translation remained zero while the camera rotated around the x, y and

z axes. Furthermore, the translation and rotation estimates change linearly in each

case tested.

Again, in order to check consistency of the estimates we calculated the mean µt

and standard deviation σt of the translation increments estimated between consec-

utive video frames when camera moved along the x and z axes. Table 6.3 shows

that standard deviations are less than 1/20-th of the corresponding means indicating

90

Figure 6·46: Mechanical platform developed to allow precise camera
translations and rotations.

91

Figure 6·47: Sample frames from a video captured while moving the
camera along x-axis.

Figure 6·48: Sample frames from a video captured while moving the
camera along z-axis.

92

Figure 6·49: Sample frames from a video captured while rotating the
camera around x-axis.

Figure 6·50: Sample frames from a video captured while rotating the
camera around y-axis.

93

Figure 6·51: Sample frames from a video captured while rotating the
camera around z-axis.

even better estimate consistency than in the table-top experiments. This was to be

expected since the platform was desgined to allow more precise calibration and move-

ments. Since the unit of the estimated rotations is the same as for the ground-truth,

namely 1 degree, we are able to calculate the root-mean-squared errors ε̄θ. As can

be seen in Table 6.4 the root-mean-squared errors are small enough to conclude that

the estimates of rotation are quite accurate.

Table 6.3: Mean µt and standard deviation σt of the corresponding
translation along x and z axes.

x-axis translation z-axis translation

µt -0.0839 -0.0610

σt 0.0035 0.0032

94

1 2 3 4 5 6
−0.5

0

0.5

frame number

t̂ x

1 2 3 4 5 6
−0.5

0

0.5

frame number

t̂ y

1 2 3 4 5 6
−0.5

0

0.5

frame number

t̂ z

(a)

1 2 3 4 5 6
−20

0

20

frame number

θ̂ x

1 2 3 4 5 6
−20

0

20

frame number

θ̂ y

1 2 3 4 5 6
−20

0

20

frame number

θ̂ z

(b)

Figure 6·52: Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T

under camera moved along x-axis

95

1 2 3 4 5 6
−0.5

0

0.5

frame number

t̂ x

1 2 3 4 5 6
−0.5

0

0.5

frame number

t̂ y

1 2 3 4 5 6
−0.5

0

0.5

frame number

t̂ z

(a)

1 2 3 4 5 6
−20

0

20

frame number

θ̂ x

1 2 3 4 5 6
−20

0

20

frame number

θ̂ y

1 2 3 4 5 6
−20

0

20

frame number

θ̂ z

(b)

Figure 6·53: Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T

under camera moved along z-axis

96

1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

frame number

t̂ x

1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

frame number

t̂ y

1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

frame number

t̂ z

(a)

1 1.5 2 2.5 3 3.5 4 4.5 5
−20

0

20

frame number

θ̂ x

1 1.5 2 2.5 3 3.5 4 4.5 5
−20

0

20

frame number

θ̂ y

1 1.5 2 2.5 3 3.5 4 4.5 5
−20

0

20

frame number

θ̂ z

(b)

Figure 6·54: Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T

under camera rotated around its x-axis

97

1 2 3 4 5 6 7 8 9 10 11
−0.5

0

0.5

frame number

t̂ x

1 2 3 4 5 6 7 8 9 10 11
−0.5

0

0.5

frame number

t̂ y

1 2 3 4 5 6 7 8 9 10 11
−0.5

0

0.5

frame number

t̂ z

(a)

1 2 3 4 5 6 7 8 9 10 11
−20

0

20

frame number

θ̂ x

1 2 3 4 5 6 7 8 9 10 11
−20

0

20

frame number

θ̂ y

1 2 3 4 5 6 7 8 9 10 11
−20

0

20

frame number

θ̂ z

(b)

Figure 6·55: Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T

under camera rotated around its y-axis

98

1 2 3 4 5 6
−0.5

0

0.5

frame number

t̂ x

1 2 3 4 5 6
−0.5

0

0.5

frame number

t̂ y

1 2 3 4 5 6
−0.5

0

0.5

frame number

t̂ z

(a)

1 2 3 4 5 6
−20

0

20

frame number

θ̂ x

1 2 3 4 5 6
−20

0

20

frame number

θ̂ y

1 2 3 4 5 6
−20

0

20

frame number

θ̂ z

(b)

Figure 6·56: Plots of estimates (a) (t̂x, t̂y, t̂z)
T and (b) (θ̂x, θ̂y, θ̂z)

T

under camera rotated around its z-axis

99

Table 6.4: Root-mean-squared errors ε̄theta between ground truth
and estimated rotations around x, y and z axes.

x-axis rotation y-axis rotation z-axis rotation

ε̄ 0.4180 0.6809 0.3530

6.3 Accelerometer-based experiments

At last, we compare the estimated 3D translations and rotations with accelerometer

measurements, such as the one in Figure 6·57 (a). We attached the same camera

we used earlier (Logitech C905) to an accelerometer (Sensr GP2-LX) as shown in

(Figure 6·27 and connected both to a computer via USB interface. We aligned their

coordinate systems to the best degree we could (Figure 6·27). Then, we applied peri-

odic movement to the accelerometer and camera by hand in both x and z directions

of the world coordinate system (plane orthogonal to the direction of gravity). Since

our accelerometer can only measure the acceleration in x, y and z directions of its

coordinate system and cannot measure the rotation angle around it’s center, we can

only compare the translations obtained by camera and accelerometer, but not the

rotations. We need to point out that acceleration measurements in the y direction

are based on gravity, and thus unless the accelerometer is perfectly level, gravity

will add a component to the acceleration in x and z directions. This introduces an

acceleration bias in x and z directions, thus causing velocity and translation errors

(drift) after integration (Figure 6·57 (b) and (c)). Since we cannot perfectly level the

accelerometer to eliminate the bias, we remove it by a method describe below.

Let’s denote acceleration before compensation as a[n] and after compensation as

â[n], where n is the sample number captured. From n0 to n1 and from n2 to n3 are

the intervals in which the accelerometer is stopped, but the accelerometer is moving

100

during the interval from n1 to n2. We compensate the bias in the acceleration as

follows:

â[n] =

a[n]−

n1∑
n=n0

a[n]

n1−n0
n0 ≤ n ≤ n1,

a[n]−

n1∑
n=n0

a[n]

n1−n0
− (

n3∑
n=n2

a[n]

n3−n2
−

n1∑
n=n0

a[n]

n1−n0
) n−n1

n2−n1
n1 < n < n2,

a[n]−

n3∑
n=n2

a[n]

n3−n2
n2 ≤ n ≤ n3.

(6.2)

Clearly, we remove an average acceleration when the accelerometer is stopped during

the intervals from n0 to n1 and from n2 to n3 (averages are different), and a linear

ramp in the interval from n1 to n2, i.e., when we move the accelerometer.

After bias compensation in acceleration, we obtain a relatively drift-free velocity

but not translation (Figure 6·57 (d) and (e)). Since we are unable to fully compensate

the translation drift, we decided to compare the accelerometer results and camera

results in terms of velocities.

We encountered another issue. While the temporal sampling frequency (frame

rate) of our camera is 30Hz, the sampling frequency of the acclerometer is 400Hz. In

order to make the estimates from the camera and the data from the accelerometer

comparable, we first interpolate the estimated camera translations to the same sam-

pling rate as the data from the accelerometer. Then, we take the first-order derivative

of the interpolated translation to obtain velocity. At the same time, we compensate

the bias in acceleration using equations (6.2) and integrate the compensated acceler-

ation to obtain velocity. Then, we calculate normalized cross-correlation between the

velocity obtained from camera and from accelerometer. This will provide us with a

measurement of performance of the camera motion estimation algorithm.

101

0 1000 2000 3000 4000 5000 6000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Sample

A
cc

el
er

at
io

n
(m

/s
2)

(a)

0 1000 2000 3000 4000 5000 6000
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Samples

V
el

oc
ity

 (
m

/s
)

(b)

0 1000 2000 3000 4000 5000 6000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Samples

T
ra

ns
la

tio
n

 (
m

)

(c)

0 1000 2000 3000 4000 5000 6000
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Samples

V
er

lo
ci

ty
 (

m
/s

)

(d)

0 1000 2000 3000 4000 5000 6000
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2
x 10

−3

Samples

T
ra

ns
la

tio
n

(m
)

(e)

Figure 6·57: (a) Acceleration measured by accelerometer. (b) Veloc-
ity and (c) translation computed by integration and double integration,
respectively, of acceleration from (a). Note the drift in velocity and
translation caused by acceleration bias (see text for discussion). (e)
Velocity and (e) translation obtained by integration after compensat-
ing the bias in acceleration. Cleraly, the drift has been significantly
reduced.

102

6.3.1 Table-top experiments

In our initial experiments, we used an approximately level table top. We moved the

camera-accelerometer assembly along either the x-axis or z-axis. We compared the

x and z velocities obtained from the accelerometer and camera. As can be seen in

Figure 6·58, the estimated velocity along x-axis of the world coordinate system is quite

similar in both cases. The normalized cross-correlation between these waveforms is

0.4773. In case of the z-axis movement, the velocity waveforms are even more similar

(Figure 6·59). This is confirmed by their high normalized cross-correlation factor of

0.9138. The relatively low normalized cross-correlation of 0.4773 in the former case is

likely due to a bias that could not be fully compensated for by the method described

by equation (6.2).

We also applied phase correlation to the video captured by the camera moving

along x-axis and took the first-order derivative of the interpolated estimated trans-

lation to obtain velocity (Figure 6·60). Again, we calculated the normalized cross-

correlation between the estimate from phase correlation and the measurement from

accelerometer, and obtained 0.3001. Clearly, phase correlation does not perform as

well in this case as the homography decomposition method. We did not test phase

correlation on camera translation along the z-axis since the method cannot deal with

the diverging/converging effects of such motion.

6.3.2 Platform-based experiments

Our recently-completed mechanical platform allows more precise leveling of the x− z

plane in which the camera-accelerometer assembly moves. This reduces the acceler-

ation bias and allows a more accurate compensation using equations (6.2). Follow-

ing the same procedure as before, we performed the tests by moving the camera-

accelerometer assembly along x and z axes again. This time, the high correlation

103

0 1000 2000 3000 4000 5000
−0.1

−0.05

0

0.05

0.1

Samples

V
el

oc
ity

Data from accelerometer

0 1000 2000 3000 4000 5000
−4

−2

0

2

4
x 10

−3

Samples

V
el

oc
ity

Data from estimation

Figure 6·58: Velocities along the x-axis of the world coordinate sys-
tem obtained from the accelerometer and from camera-based estimation
(homography decomposition method). Normalized cross-correlation:
0.4773.

0 1000 2000 3000 4000 5000 6000
−0.04

−0.02

0

0.02

0.04

Samples

V
el

oc
ity

Data from accelerometer

0 1000 2000 3000 4000 5000 6000
−4

−2

0

2
x 10

−3

Samples

V
el

oc
ity

Data from estimation

Figure 6·59: Velocities along the z-axis of the world coordinate sys-
tem obtained from the accelerometer and from camera-based estimation
(homography decomposition method). Normalized cross-correlation:
0.9138.

104

0 1000 2000 3000 4000 5000
−0.1

−0.05

0

0.05

0.1

Samples

V
el

oc
ity

 a
lo

ng
 x

 a
xi

s

Data from accelerometer

0 1000 2000 3000 4000 5000
−4

−2

0

2

4

Samples

V
el

oc
ity

 a
lo

ng
 x

 a
xi

s

Data from estimation

Figure 6·60: Velocities along the x-axis of the world coordinate sys-
tem obtained from the accelerometer and from camera-based estimation
(phase correlation). Normalized cross-correlation: 0.3001.

factors of 0.9212 for x-axis motion and 0.8291 for z-axis motion indicate that the ho-

mography decomposition method produces 3D camera motion estimates that closely

follow accelerometer measurements, as long as the bias is compensated well (Figures

6·61 to 6·62). This suggests that, at least in our laboratory setting, a video camera

can serve as a surrogate for accelerometer.

105

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.04

−0.02

0

0.02

0.04

Samples

V
el

oc
ity

Data from accelerometer

0 1000 2000 3000 4000 5000 6000 7000 8000
−4

−2

0

2

4
x 10

−3

Samples

V
el

oc
ity

Data from estimation

Figure 6·61: Velocities along the x-axis of the world coordinate sys-
tem obtained from the accelerometer and from camera-based estimation
(homography decomposition method tested on calibrated platform).
Normalized cross-correlation: 0.9212.

106

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−0.5

0

0.5

1

Samples

V
el

oc
ity

Data from accelerometer

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−5

0

5

10
x 10

−3

Samples

V
el

oc
ity

Data from estimation

Figure 6·62: Velocities along the z-axis of the world coordinate sys-
tem obtained from the accelerometer and from camera-based estimation
(homography decomposition method tested on calibrated platform).
Normalized cross-correlation: 0.8921.

107

Chapter 7

Conclusions

Below, we draw conclusions from the experimental results obtained by phase cor-

relation, calibration method (Zhang, 98) and decomposition method (Faugeras and

Lustman, 1988). In addition, we discuss possible future work in order to move our

experiments from the laboratory setting to a real-world environment.

7.1 Discussion of results

Based on experimental results using using the decomposition method (Faugeras and

Lustman, 1988) on synthetic data and real data, as well as using phase correlation

and calibration (Zhang, 98), we can make the following conclusions:

1. Phase correlation discussed in Chapter 3 is a simple method to estimate 2D

displacements from similar images. The advantages of phase correlation are it’s

computational efficiency and good performance under pure translations parallel

to image plane. However, phase correlation cannot deal with 3D displacements,

rotations or large objects with local (deformable) motions.

2. The calibration method is a powerful tool to relate the world coordinate system

to the camera coordinate system or between two camera coordinate systems. It

is an essential step in order to locate a camera or an object in the world co-

ordinate system. With the method described by Zhang (Zhang, 98), it is very

easy to calibrate a camera with the world using a chessboard pattern. During

108

the calibration procedure, we calculate both intrinsic parameters such as focal

length and skew factor, and extrinsic parameters such as rotation matrix and

translation vector. However, since we seek the extrinsic parameters, calculating

intrinsic parameters is redundant and unnecessarily time consuming. In addi-

tion, this method requires 3D information about the target which is impossible

to provide in practice (thousands of cameras).

3. The decomposition method (Faugeras and Lustman, 1988) seems the most suit-

able technique for our tasks. As long as the homography constraints are sat-

isfied, i.e., the scene can be approximated by a planar surface or the scene is

static and the camera motion is a pure rotation around its optical center, we

can always decompose a homography into 3D translation and rotation. As the

experimental results on synthetic data showed, the method is very precise in

an ideal environment and robust to noise and focal-length inaccuracies. From

the experimental results on real data, we can conclude that this method es-

timates translation and rotation accurately and the results are comparable to

measurements from accelerometer. Furthermore, the high normalized correla-

tions indicate that camera can serve as a vibration sensor under assumptions of

sufficiently long zoom and object planarity in the field of view.

7.2 Future work

Although we demonstrated that estimation results on both synthetic and real data

are quite accurate, in our experiments, we manually extracted corresponding feature

points and the target object was limited to a chessboard pattern. In order to consider

this system for real surveillance setting, a number of improvements are needed.

First, on must develop a method to identify planar objects in the field of view of

the camera (e.g., buildings, road surfaces). With planar areas identified, one must

109

be able to reliably identify unique features in those areas without human operator

input. A number of feature descriptors can be considered for this purpose, such as

Harris detector, SIFT (Lowe, 1999), etc. Finally, one must develop a robust method

to establish correspondent between features in a video frame and a reference (e.g.,

initial) frame. This is a well studied problem by rich literature (Faugeras, 1993).

References

Burger, W. and Bhanu, B. (1994). A geometric constraint method for estimating 3-d
camera motion. In IEEE International Conference on Robotics and Automation,
pages 1155–1160.

Dufaux, F. and Konrad, J. (2000). Efficient, robust and fast global motion estimation
for video coding. IEEE Transactions on Image Processing, 9(3):497–501.

Faugeras, O. (1993). Three-Dimensional Computer Vision. The MIT Press.

Faugeras, O. and Lustman, F. (1988). Motion and structure from motion in a
piecewise planar environment. Technical Report RR-0856, National Institute for
Research in Computer Science and Control.

Hartley, R. I. and Zisserman, A. (2004). Multiple View Geometry in Computer
Vision. Cambridge University Press, second edition.

Koga, T., Iinuma, K., Hirano, A., Iijima, Y., and Ishigur, T. (1981). Motion compen-
sated interframe coding of video conferencing. Image Processing National Telecom-
munications Conference, pages G5.3.1–G.5.3.5.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. Proceed-
ings of the International Conference on Computer Vision, 2:1150C1157.

Malis, E. and Vargas, M. (2007). Deeper understanding of the homography decom-
position for vision-based control. Research Report RR-6303, National Institute for
Research in Computer Science and Control.

Zhang, Z. (98). A flexible new technique for camera calibration. Technical Report
MSR-TR-98-71, Microsoft Research, Redmond, WA.

110

CURRICULUM VITAE

Yuecheng Shao

Business: 857-334-2285, ycshao0402@gmail.com, http://ycshao.blogspot.com/,
Date of birth: 4/2/1986

Educational Background

M.S., Electrical Engineering (Signal Processing and Communication) 2011
Boston University, Boston, MA, GPA: 3.9/4.0
B.S., Microelectronics 2009
Fudan University, Shanghai, China, GPA: 3.1/4.0

Project Experience

Experimental validation of surveillance camera as a vibration sensor
Measure vibration of cameras precisely based on content
Auto-reconstruct text on board using stereo cameras
Reconstruct text on board for online use
3D face localization and reconstruction from two cameras
Reconstruct human faces using stereo cameras
Google Challenge: Video genre classification
Classify videos based on their story lines extracted from relating main characters in
videos
Template-based tracking
Find an object and track it using normalized correlation coefficient
Copy detection
Detect copies of original images using DCT-based and Covariance Matrix-based
methods

