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ABSTRACT

Video cameras are commonly used today in surveillance and security, autonomous

driving and flying, manufacturing and healthcare. While different applications seek

different types of information from the video streams, detecting changes and finding

people are two key enablers for many of them. This dissertation focuses on both

of these tasks: change detection, also known as background subtraction, and people

detection from overhead fisheye cameras, an emerging research topic.

Background subtraction has been thoroughly researched to date and the top-

performing algorithms are data-driven and supervised. Crucially, during training

these algorithms rely on the availability of some annotated frames from the video

being tested. Instead, we propose a novel, supervised background-subtraction algo-

rithm for unseen videos based on a fully-convolutional neural network. The input

to our network consists of the current frame and two background frames captured

at different time scales along with their semantic segmentation maps. In order to

reduce the chance of overfitting, we introduce novel temporal and spatio-temporal

data-augmentation methods. We also propose a cross-validation training/evaluation

strategy for the largest change-detection dataset, CDNet-2014, that allows a fair
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and video-agnostic performance comparison of supervised algorithms. Overall, our

algorithm achieves significant performance gains over state of the art in terms of F-

measure, recall and precision. Furthermore, we develop a real-time variant of our

algorithm with performance close to that of the state of the art.

Owing to their large field of view, fisheye cameras mounted overhead are becom-

ing a surveillance modality of choice for large indoor spaces. However, due to their

top-down viewpoint and unique optics, standing people appear radially oriented and

radially distorted in fisheye images. Therefore, traditional people detection, track-

ing and recognition algorithms developed for standard cameras do not perform well

on fisheye images. To address this, we introduce several novel people-detection al-

gorithms for overhead fisheye cameras. Our first two algorithms address the issue

of radial body orientation by applying a rotating-window approach. This approach

leverages a state-of-the-art object-detection algorithm trained on standard images and

applies additional pre- and post-processing to detect radially-oriented people. Our

third algorithm addresses both the radial body orientation and distortion by apply-

ing an end-to-end neural network with a novel angle-aware loss function and training

on fisheye images. This algorithm outperforms the first two approaches and is two

orders of magnitude faster. Finally, we introduce three spatio-temporal extensions of

the end-to-end approach to deal with intermittent misses and false detections. In or-

der to evaluate the performance of our algorithms, we collected, annotated and made

publicly available four datasets composed of overhead fisheye videos. We provide a

detailed analysis of our algorithms on these datasets and show that they significantly

outperform the current state of the art.
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Chapter 1

Introduction

While surveillance and security cameras have been prevalent for decades, with the

latest advances in big data and machine learning their usefulness has grown tremen-

dously leading to diverse applications ranging from public safety to animal-behavior

analysis. In most of such applications, the data are recorded continuously for long

periods of time, even 24/7 in many cases, and making sense of these vast visual data

is a huge challenge. One of the commonly-used mechanisms to filter out unnecessary

information is to detect changes in video data. This is usually accomplished by the

so-called background subtraction (BGS). In BGS, the aim is to separate foreground

areas of a video frame from the background. Since most of the critical information is

associated with the foreground (e.g., people, cars), BGS turns out to be a very useful

pre-processing tool for many applications. For example, in surveillance and security,

one may be interested in detecting suspicious activities (e.g., a person entering a re-

stricted area); a detected foreground is useful for this task. Similarly, in autonomous

driving, it is critical to detect the nearby pedestrians and cars; both are usually ap-

pear in the foreground. A less known application of BGS is animal-behavior analysis

where several cameras help monitor animal activity patterns by detecting changes

between video frames.

Another critical video-analysis task is the detection of people. It is often the very

first step in recognition, counting and tracking of people and their actions. In outdoor

environments, the detection and tracking of pedestrians is critical for autonomous
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driving; a successful tracking algorithm can locate pedestrians and even predict their

near-future locations thus helping avoid accidents. In indoor environments, counting

people throughout a building is essential for next-generation heating, ventilation, and

air conditioning (HVAC), safety and security as well as space management. Today,

HVAC systems operate in a binary fashion – they provide a minimum air flow when a

room is empty and a maximum air flow even if a single person enters. Obviously, this

results in huge energy waste. This waste can be significantly reduced by automatically

counting people in a room and controlling the HVAC system as a function of the

occupancy level. Knowing how many people are in a building and where is critical

for emergency situations, such as fire, chemical hazard, active-shooter scenario, etc.

Finally, a long-term analysis of occupancy patterns in a building can help optimize

space usage and reduce rental costs.

In this dissertation, we focus on both problems – background subtraction and

people detection – using supervised algorithms and provide solutions suitable for

unseen videos with various real-life challenges.

1.1 Background Subtraction

Background subtraction aims to segment an input video frame into regions corre-

sponding to either foreground (e.g., motor vehicles) or background (e.g., highway

surface). It is frequently used as a pre-processing step for higher-level tasks such as

object tracking, people and motor-vehicle recognition, human activity recognition,

etc. Since BGS is often the first pre-processing step, the accuracy of its output has

an overwhelming impact on the overall performance of subsequent steps. Therefore,

it is critical that BGS produce as accurate a foreground/background segmentation as

possible.

Traditional BGS algorithms are unsupervised and rely on a background model
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to predict foreground regions [Stauffer and Grimson, 1999, Elgammal et al., 2002,

Zivkovic, 2004, Mittal and Paragios, 2004, Barnich and Van Droogenbroeck, 2011,

St-Charles et al., 2015a, St-Charles et al., 2015b, Işık et al., 2018, Lee et al., 2018].

Pixel-based Adaptive Word Consensus Segmenter (PAWCS) [St-Charles et al., 2015a],

Sliding Window-based Change Detection (SWCD) [Işık et al., 2018] and WisenetMD

[Lee et al., 2018] are currently considered to be state-of-the-art unsupervised BGS

algorithms. However, since they rely on the accuracy of the background model, they

encounter difficulties when applied to complex scenes. Ensemble methods combine the

results produced by several BGS algorithms by means of genetic programming [Bianco

et al., 2017] or convolutional neural networks (CNNs) [Zeng et al., 2019b] and have

been shown to significantly outperform traditional algorithms.

The success of deep learning in computer vision did not bypass BGS research

[Bouwmans et al., 2019]. A number of supervised deep-learning BGS algorithms have

been developed [Braham and Van Droogenbroeck, 2016, Wang et al., 2017, Sakkos

et al., 2018, Babaee et al., 2018, Bakkay et al., 2018, Zeng and Zhu, 2018, Lim and

Keles, 2018a, Lim and Keles, 2018b] with performance easily surpassing that of the

traditional methods. However, these algorithms have been tuned to either one specific

video or to a group of videos similar to the test video, and their performance drops

significantly when applied to unseen videos. Clearly, they are not suitable for real-

world applications.

To address this problem, we introduce Background Subtraction for Unseen Videos

(BSUV-Net). BSUV-Net is a video-agnostic supervised BGS algorithm that can be

applied to unseen videos with no or little loss of performance. A key feature of BSUV-

Net is that the training and test sets are composed of frames originating from different

videos. This guarantees that no ground-truth data from the test videos have been

shown to the network in the training phase. Figure 1·1 depicts the training/testing
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regimes used in video- or video-group-optimized algorithms versus video-agnostic al-

gorithms for 4 videos from CDNet-2014 [Goyette et al., 2014]. Clearly, the training

and test sets used by video- or video-group-optimized algorithms share lots of similar-

ities (e.g., very similar background and foreground objects in Figure 1·1a) that the

network can memorize. However, memorization can reduce the performance of these

algorithms significantly on unseen videos. On the other hand video-agnostic algo-

rithms use completely different videos in their training and test sets (see Figure 1·1b)

which forces them to generalize better to unseen videos.

Another key feature of BSUV-Net is the composition of network input. By employ-

ing two reference backgrounds at different time scales, BSUV-Net addresses two chal-

lenges often encountered in BGS: (i) varying scene illumination and (ii) intermittently-

static objects that tend to get absorbed into the background. We also propose a

novel temporal data augmentation strategy that further improves the method’s per-

formance under varying illumination. Furthermore, motivated by the work of Braham

et al. on the use of semantic segmentation in BGS [Braham et al., 2017], we improve

our method’s accuracy by complementing the reference backgrounds and the current

frame on input with a semantic segmentation for each of them.

One of the most successful approaches for increasing the generalization capacity of

computer vision algorithms trained with limited data is the use of data augmentation.

Spatial data augmentations, such as random crops, rotations, color changes, noise etc.

have proved very successful in image-related tasks [Taylor and Nitschke, 2017,Shorten

and Khoshgoftaar, 2019]. The simple temporal data augmentation mechanism, that

we introduced in BSUV-Net to handle illumination differences between videos, re-

sulted in a significant performance improvement. Motivated by this, we propose a

comprehensive suite of spatio-temporal data augmentation methods and adapt them

to BSUV-Net. The proposed augmentations address some key BGS challenges, such
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(a) Scene-optimized (also referred as video- or video-group-optimized) training

(b) Video-agnostic training via cross-validation

Figure 1·1: Scene-optimized and video-agnostic training/testing
regimes illustrated using 4 videos from CDNet-2014 [Goyette et al.,
2014].
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as pan-tilt-zoom (PTZ) operation, camera jitter and presence of intermittently-static

objects. We conduct a video-agnostic performance analysis of the new BSUV-Net

2.0 and show that these data augmentations significantly increase algorithm’s per-

formance for targeted categories without any significant loss of performance in other

categories. In extensive experiments on the CDNet-2014 dataset [Goyette et al.,

2014], we show that both BSUV-Net and the improved BSUV-Net 2.0 outperform

state-of-the-art BGS algorithms evaluated on unseen videos.

Furthermore, to demonstrate the versatility of the proposed methodology we apply

our best-performing BGS algorithm, BSUV-Net 2.0, to several video clips recorded

at different times of the day by a live high-resolution surveillance camera. The cap-

tured scene is of a very busy street intersection in Tokyo, Japan, with a multitude

of people and motor vehicles either in motion or intermittently stopped. Since no

ground-truth annotations are available for these clips, we only provide visual results

demonstrating that BSUV-Net 2.0 is a very promising BGS algorithm suitable for

real-life applications.

The main contributions of this part of the dissertation can be summarized as

follows:

1. Supervised BGS algorithms for unseen videos: Although supervised al-

gorithms, especially neural networks, have significantly improved BGS perfor-

mance, most of them are tuned to a specific video and thus their performance

on unseen videos deteriorates dramatically. We introduce two BGS algorithms

that are both truly generalizable to unseen videos.

2. Leveraging multiple-time-scale and semantic information: The pro-

posed BGS algorithms improve foreground-background segmentation accuracy

by using the current frame (to be segmented) and two background frames from

different time scales. While one background frame, based on distant history,
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helps with the discovery of intermittently-static objects, the other frame, based

on recent history, is key for handling dynamic factors such as illumination

changes. Each of these inputs is complemented by its semantic segmentation

that helps shape the foreground regions as typical objects. This is unlike in an

earlier BGS method [Braham et al., 2017] which used semantic information as

a post-processing step.

3. Fair evaluation strategy for CDNet-2014: Although CDNet-2014 is an

extensive BGS dataset, it lacks a training/testing split for consistent evaluation

of supervised learning approaches. We introduce a split of CDNet-2014 videos

into 4 groups to be used for cross-validation. In this way, one can easily evaluate

any supervised BGS algorithm on all CDNet-2014 videos in a video-agnostic

manner. This will simplify algorithm performance comparisons in the future.

4. Spatio-temporal data augmentation: We introduce spatio-temporal data

augmentation methods for BSUV-Net to mimic challenging BGS scenarios,

such as PTZ operation, camera jitter, illumination variations and presence of

intermittently-static objects (e.g., cars stopped at a streetlight). Our experi-

mental results show that these augmentations significantly improve the perfor-

mance on unseen videos of corresponding categories.

1.2 People Detection From Overhead Fisheye Cameras

People detection is a key first step in many video-analysis tasks, such as people

counting and tracking, action recognition, etc. To date, most of the research related to

people detection has been focused on side-view standard-lens (SVS) images [Enzweiler

and Gavrila, 2009,Nguyen et al., 2016,Brunetti et al., 2018]. Typically, a wide-angle,

standard-lens camera is side-mounted above the scene. The main challenges in using
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SVS cameras are: significant occlusions, potential blind spots and the need to use

multiple cameras to fully cover a large space.

In the last decade, interest has grown in detecting and tracking people from

overhead fisheye (OHF) images and videos [Saito et al., 2011, Chiang and Wang,

2014, Wang et al., 2017, Krams and Kiryati, 2017, Tamura et al., 2019]. As shown

in Figure 1·2, a single high-resolution, overhead, fisheye camera with a 360◦ horizon-

tal field of view (FOV) can monitor a much larger space than a single SVS camera

and, owing to its viewpoint, captures images with vastly reduced occlusions. How-

ever, people detection algorithms developed for side-view, standard-lens images do

not perform well on overhead, fisheye images due to their unique radial geometry

and barrel distortions. In this thesis, we propose three different solutions to these

challenges:

• a rotating-window approach based on a state-of-the-art deep-learning object-

detection algorithm developed for SVS images and augmented by novel pre-

and post-processing,

• a new end-to-end deep-learning approach designed specifically to tackle the

radial-geometry challenge,

• an extension of the end-to-end approach to videos by leveraging the temporal

information alongside the spatial information.

Due to the scarcity of datasets composed of OHF images or videos, we needed to

collect and annotate our own datasets to evaluate our methods. We recorded 12 videos

using overhead fisheye cameras mounted in 4 different rooms on Boston University

campus. With the help from our research-group members and several undergraduate

students, we annotated these videos by drawing bounding boxes aligned with the

body of each person (Figure 1·2b), unlike in other datasets where bounding boxes
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(a) (b)

Figure 1·2: (a) Sample frame from Penn-Fudan database for pedes-
trian detection and segmentation [Wang et al., 2007] with image-axis-
aligned bounding boxes. (b) Sample frame from one of our own datasets
for people detection from overhead fisheye cameras (CEPDOF) with
human-body-aligned bounding boxes.

are aligned with image axes [Demiröz et al., 2012, del Blanco et al., 2021, Ma et al.,

2018b]. In addition to our own videos, we also annotated a subset of the videos

collected for the Mirror Worlds Challenge [Ma et al., 2018b] and 16 OHF video clips

that we collected from YouTube. In total, we annotated 47 videos with more than

50,000 frames.

In SVS images, standing people usually appear in an upright position and algo-

rithms that detect bounding boxes aligned with image axes, such as You Only Look

Once (YOLO) [Redmon et al., 2016,Redmon and Farhadi, 2017,Redmon and Farhadi,

2018], Single Shot MultiBox Detector (SSD) [Liu et al., 2016] and Regions with CNN

Features (R-CNN) [Ren et al., 2015], work well. However, these algorithms perform

poorly on OHF images, usually missing non-upright bodies. In such images, standing

people appear along image radius (Figure 1·2b), due to the overhead placement of the

camera, so bounding-box rotations must be allowed. To accommodate such rotations,
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we introduce a rotating-window approach that leverages a state-of-the-art object de-

tection algorithm. Among the object-detection algorithms for SVS images, YOLO

v3 [Redmon and Farhadi, 2018] achieves a very competitive performance in real time

(using a desktop GPU). Therefore, we propose two methods to leverage YOLO v3

for people detection from OHF images. In one approach, we apply YOLO v3 only to

a window extracted from the upper central part of a fisheye image where the orien-

tation of people should be close to upright. To cover the whole image, we create 24

rotations of the image and apply YOLO v3 to the same window after each rotation.

Then, we rotate the results back to the original angles and apply post-processing to

prune multiple detections of the same person (the results from neighboring rotations

may overlap). In an alternative approach, we first identify regions of interest (ROIs)

where activity takes place and then we rotate each ROI to the upper central part of

the image and apply YOLO v3. In order to identify areas of activity, we apply a sim-

ple background subtraction algorithm. Experimental results demonstrate that both

rotating-window approaches significantly improve the people detection performance

over state-of-the-art.

However, the proposed algorithms’ inference speed is sub-par due to the multiple

applications of YOLO v3 to a single image. Therefore, we introduce Rotation-Aware

People Detection (RAPiD), an end-to-end supervised algorithm for people detection

from OHF images. RAPiD is a single-stage convolutional neural network that pre-

dicts arbitrarily-rotated bounding boxes around people in a fisheye image. It extends

the model proposed in YOLO v3 [Redmon and Farhadi, 2018]. In addition to pre-

dicting the center and size of a bounding box, RAPiD also predicts its angle. This

is accomplished by a periodic loss function based on an extension of a common re-

gression loss. This allows us to predict the exact rotation of each bounding box in

an image without any assumptions and additional computational complexity. Since
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RAPiD is an end-to-end algorithm, we can train or fine-tune its weights on anno-

tated fisheye images. Indeed, we show that such fine-tuning of a model trained on

standard images significantly increases the method’s performance. An additional as-

pect of this work, motivated by its focus on people detection, is the replacement of

the common regression-based loss function used in multi-class object detection algo-

rithms [Girshick, 2015, Ren et al., 2015, Redmon et al., 2016, Liu et al., 2016] with

single-class object detection. The inference speed of RAPiD is nearly identical to that

of YOLO v3 since it is applied to each image only once without the need for pre- or

post-processing.

Both the rotating-window approach and RAPiD perform people detection inde-

pendently in each frame. However, if a camera’s acquisition frame rate is sufficiently

high, the locations of people in consecutive frames do not change much. This tem-

poral coherence has been well-known and used in video processing and computer

vision for decades. Recently, temporal information has been successfully leveraged

in deep-learning methods for video-object detection [Zhu et al., 2017, Zhang et al.,

2018, Wu et al., 2019, Lin et al., 2019, Liu et al., 2019, Han et al., 2020, Sabater

et al., 2020, Chen et al., 2020]. Inspired by these methods, we introduce 3 exten-

sions of RAPiD that combine temporal information with spatial information to im-

prove people-detection performance. Our approach combines RAPiD, with some of

the best-performing video-object detection algorithms, Robust and Efficient Post-

Processing for video object detection (REPP) [Sabater et al., 2020] and Flow-Guided

Feature Aggregation (FGFA) [Zhu et al., 2017]. We show that the improved versions

of RAPiD achieve significantly better performance on our most challenging dataset

collected from YouTube. However, due to additional post-processing steps and in-

creased complexity of the network, the inference speed of the improved versions is

reduced compared to that of RAPiD.
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The main contributions of this part of the dissertation can be summarized as

follows:

1. Extensive datasets for training and evaluation: We introduce 3 staged

datasets and 1 in-the-wild dataset for people detection from overhead fisheye

cameras. All off our datasets are labeled with rotated-bounding boxes and they

include various challenging scenarios.

2. Algorithms for people detection from overhead fisheye cameras: We

develop 6 algorithms that significantly outperform the state of the art. We

discuss the trade-offs of these algorithms in detail using multiple evaluation

metrics and performance trade-off plots.

3. Angle-aware loss function and end-to-end algorithm: We propose a con-

tinuous, periodic loss function for bounding-box angle that, unlike in previous

methods, facilitates arbitrarily-oriented bounding boxes capable of handling a

wide range of human-body poses. Using this loss function, we introduce a new

end-to-end people detection algorithm from overhead fisheye cameras that out-

performs the state-of-the-art algorithms.

4. Leveraging spatio-temporal information: We introduce extensions to our

end-to-end algorithm by leveraging spatial and temporal information simultane-

ously. The proposed extensions outperform the spatial-only version significantly.

1.3 Organization

This dissertation is organized as follows. In Chapter 2, we discuss the related work

on background subtraction and people detection from overhead fisheye cameras. In

Chapters 3 and 4, we introduce our supervised background subtraction algorithms

designed for unseen videos. We show the effectiveness and generalizability of our



13

proposed models by extensive quantitative and qualitative analysis. In Chapter 5,

we introduce four people-detection datasets from overhead fisheye cameras that we

annotated with the help of our lab members and undergraduate students. In Chap-

ters 6-8, we introduce novel people-detection algorithms that we developed for OHF

images and videos via different design paradigms. We show the effectiveness of the in-

troduced algorithms on the datasets introduced in Chapter 5. Chapter 9 summarizes

the contributions of this dissertation, draws conclusions and offers new directions to

explore in the future.
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Chapter 2

Related Work

2.1 Background Subtraction

A wide range of BGS algorithms have been developed in the past, each having some

advantages and disadvantages over others. In this section, we divide these algo-

rithms into 4 categories: (i) unsupervised BGS algorithms, (ii) video- or video-group-

optimized supervised BGS algorithms (iii) video-agnostic supervised BGS algorithms

and (iv) post-processing methods that improve the results of BGS algorithms.

2.1.1 Unsupervised BGS Algorithms

Nearly all traditional BGS algorithms first compute a background model, and then

use it to predict the foreground. While a simple model based on the mean or median

of a subset of preceding frames offers only a single background value per pixel, a

probabilistic Gaussian Mixture Model (GMM) [Stauffer and Grimson, 1999] allows a

range of background values. This idea was improved by creating an online procedure

for the update of GMM parameters in a pixel-wise manner [Zivkovic, 2004]. Kernel

Density Estimation (KDE) was introduced into BGS [Elgammal et al., 2002] as a

non-parametric alternative to GMMs and was subsequently improved [Mittal and

Paragios, 2004]. The probabilistic methods achieve better performance compared to

single-value models for dynamic scenes and scenes with small background changes.

Barnich and Droogenbroeck introduced a sample-based background model [Bar-

nich and Van Droogenbroeck, 2011]. Instead of implementing a probabilistic model,
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they modeled the background by a set of sample values per pixel and used a distance-

based model to decide whether a pixel should be classified as background or fore-

ground. Since color information alone is not sufficient for complex cases, such as

illumination changes, Bilodeau et al. introduced Local Binary Similarity Patterns

(LBSP) to compare the current frame and background using spatio-temporal features

instead of color [Bilodeau et al., 2013]. St-Charles et al. combined color and tex-

ture information, and introduced a word-based approach, PAWCS [St-Charles et al.,

2015a]. They considered pixels as background words and updated each word’s reliabil-

ity by its persistence. Similarly, Self-Balanced SENsitivity SEgmenter (SuBSENSE)

by St-Charles et al. [St-Charles et al., 2015b] combines LBSP and color features, and

employs pixel-level feedback to improve the background model.

Recently, Isik et al. introduced SWCD, a pixel-wise, sliding-window approach

leveraging a dynamic control system to update the background model [Işık et al.,

2018], while Lee et al. introduced WisenetMD, a multi-step algorithm to eliminate

false positives in dynamic backgrounds [Lee et al., 2018]. In another approach, Sul-

tana et al. introduced an unsupervised background estimation method based on a

generative adversarial network (GAN) [Sultana et al., 2019]. They used optical flow

to create a motion mask and then in-painted the pixels with significant motion with

background values estimated by a GAN. The foreground is then computed by sub-

tracting the estimated background from the current frame followed by morphological

operations. They, however, did not achieve state-of-the-art results. Zeng et al. intro-

duced real-time semantic segmentation (RTSS) [Zeng et al., 2019a] which uses deep

learning-based semantic segmentation predictions to improve the background model

used in SubSENSE [St-Charles et al., 2015b].
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2.1.2 Video- or Video-Group-Optimized Supervised BGS Algorithms

A supervised BGS algorithm estimates the foreground in two steps. First, it learns the

parameters (e.g., neural-network weights) of a complex function through minimization

of a loss function dependent on labeled training frames. Then, using the learned

parameters, it is applied to a separate set of test frames to assess its performance.

Several recently-developed algorithms use some frames from a test video for training

and all frames of the same video for evaluating performance on that video. In such

algorithms, parameter values are optimized separately for each video. We will refer

to this class of algorithms as video-optimized BGS algorithms. In another family of

algorithms, randomly-selected frames from a group of test videos are used for training

and all the frames of the same videos are used for testing. Since some frames from

all test videos are used for training, we will refer this class of algorithms as video-

group-optimized algorithms. Note that, in both of these scenarios the algorithms are

neither optimized for nor evaluated on unseen videos.

In recent years, supervised learning algorithms based on CNNs have been widely

applied to BGS. The first CNN-based BGS algorithm was introduced in [Braham and

Van Droogenbroeck, 2016]. This is a video-optimized algorithm which produces a

single foreground probability for the center of each 27×27 patch of pixels. A method

proposed in [Wang et al., 2017] uses a similar approach, but with a modified CNN

which operates on patches of size 31× 31 pixels.

Instead of using a patch-wise algorithm, Zeng and Zhu introduced the Multiscale

Fully-Convolutional Neural Network (MFCN) which can predict the foreground of the

entire input image frame in one step [Zeng and Zhu, 2018]. Lim and Keles proposed

Foreground Segmentation Network (FgSegNet), a triplet CNN which uses Siamese

networks to create features at three resolution scales and combines these features

within a transposed CNN [Lim and Keles, 2018a]. In a follow-up work, they removed
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the triplet networks and used dilated convolutions to capture the multiscale infor-

mation [Lim and Keles, 2018b]. Bakkay et al. used generative adversarial networks

for BGS [Bakkay et al., 2018]. The generator performs the BGS task, whereas the

discriminator tries to classify the BGS map as real or fake. Although all these algo-

rithms perform very well on various BGS datasets, it is important to note that they

are all video-optimized, thus they will suffer a performance loss when tested on unseen

videos.

Babae et al. designed a video-group-optimized CNN for BGS [Babaee et al., 2018].

They randomly selected 5% of CDNet-2014 frames [Goyette et al., 2014] as a training

set and developed a single network for all of the videos in this dataset. Sakkos et

al. used a 3D CNN to capture the temporal information in addition to the color

information [Sakkos et al., 2018]. Similarly to [Babaee et al., 2018], they trained

a single algorithm using 70% of frames in CDNet-2014 and then used it to predict

the foreground in all videos of the dataset. Note that even these approaches do not

generalize to other videos since some ground-truth data from each video exists in the

training set.

2.1.3 Video-Agnostic Supervised BGS Algorithms

In the last two years, several supervised background-subtraction algorithms have been

developed with the goal of improving their performance on unseen videos. Such video-

agnostic algorithms, use frames from a set of training videos to learn the network

parameters, but a completely different set of videos – for evaluation. The idea of

video-agnostic or scene-independent background subtraction was simultaneously, but

independently, developed in 2019 by us and by Mandal et al. We introduced BSUV-

Net in 2019 [Tezcan et al., 2019,Tezcan et al., 2020] and BSUV-Net 2.0 in 2021 [Tezcan

et al., 2021b]. On the other hand Mandal et al. introduced 3D Feature Reductionist

framework (3DFR) in 2019 [Mandal et al., 2019], as well as ChangeDet [Mandal
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and Vipparthi, 2020] and 3D-CNN based Change Detection network (3DCD) in 2020

[Mandal et al., 2021]. These are end-to-end convolutional neural networks for BGS

that use both spatial and temporal information based on previous frames and a simple

median-based background model.

Similarly, Kim et al. [Kim and Ha, 2020] introduced a U-Net-based [Ronneberger

et al., 2015] neural network that uses a concatenation of the current frame and several

background models generated at different time scales as the input.

During evaluation, the methods developed by Mandal et al. and by Kim et al.

divide videos of a popular BGS dataset, CDNet-2014 [Goyette et al., 2014], into a

training set and a testing set, and report results for the test videos, unseen by the

algorithm during training. Although all of these algorithms outperform unsupervised

algorithms on their own test sets, their true performance is unknown since no results

were reported for the full dataset. Furthermore, these algorithms cannot be compared

with each other since each used a different train/test split. Table 2.1 compares and

summarizes the landscape of supervised BGS algorithms and the methodology used

for training and evaluation.

A more detailed comparison of the video-optimized, video-group-optimized and

video-agnostic supervised BGS algorithms can be found in a recent survey paper

from Mandal et al. [Mandal and Vipparthi, 2021].

2.1.4 Post-Processing Methods

Over the last few years, many deep-learning-based algorithms were developed for the

problem of semantic segmentation and they achieved state-of-the-art performance.

Braham and Droogenbroeck introduced a post-processing step for BGS algorithms

based on semantic segmentation predictions [Braham et al., 2017]. Given an input

frame, they predicted a segmentation map using Pyramid Scene Parsing Network

(PSPNet) [Zhao et al., 2017] and obtained pixel-wise probability predictions for se-



19

T
a
b
le

2
.1

:
T

ra
in

in
g

an
d

ev
al

u
at

io
n

m
et

h
o
d
s

of
su

p
er

v
is

ed
B

G
S

al
go

ri
th

m
s

te
st

ed
on

C
D

N
et

-2
01

4.

A
lg

o
ri

th
m

A
re

so
m

e
fr

a
m

e
s

fr
o
m

te
st

v
id

e
o
s

u
se

d
in

tr
a
in

in
g
?

T
ra

in
in

g
a
n

d
e
v
a
lu

a
ti

o
n

m
e
th

o
d

o
lo

g
y

[B
ra

h
am

an
d

V
an

D
ro

og
en

b
ro

ec
k
,

20
16

]
Y

es
F

ir
st

h
al

f
of

th
e

la
b

el
ed

fr
am

es
of

th
e

te
st

v
id

eo
vi

de
o-

op
ti

m
iz

ed

[Z
en

g
an

d
Z

h
u

,
20

18
]

Y
es

R
an

d
om

ly
se

le
ct

ed
20

0
fr

am
es

fr
om

th
e

fi
rs

t
30

00
la

b
el

ed
fr

am
es

of
th

e
te

st
v
id

eo
vi

de
o-

op
ti

m
iz

ed

[W
an

g
et

al
.,

20
17

]
[L

im
an

d
K

el
es

,
20

18
a]

[L
im

an
d

K
el

es
,

20
18

b
]

[B
ak

ka
y

et
al

.,
20

18
]

Y
es

H
an

d
p

ic
ke

d
20

0
la

b
el

ed
fr

am
es

of
th

e
te

st
v
id

eo
vi

de
o-

op
ti

m
iz

ed

[B
ab

ae
e

et
al

.,
20

18
]

Y
es

5%
of

th
e

la
b

el
ed

fr
am

es
of

al
l

v
id

eo
s

vi
de

o-
gr

ou
p-

op
ti

m
iz

ed

[B
ab

ae
e

et
al

.,
20

18
]

Y
es

70
%

of
th

e
la

b
el

ed
fr

am
es

of
al

l
v
id

eo
s

vi
de

o-
gr

ou
p-

op
ti

m
iz

ed

[T
ez

ca
n

et
al

.,
20

19
]

[M
an

d
al

et
al

.,
20

19
]

[T
ez

ca
n

et
al

.,
20

20
]

[M
an

d
al

an
d

V
ip

p
ar

th
i,

20
20

]
[M

an
d

al
et

al
.,

20
21

]
[K

im
an

d
H

a,
20

20
]

[T
ez

ca
n

et
al

.,
20

21
b

]

N
o

N
o

fr
am

e
fr

om
te

st
v
id

eo
s

is
u

se
d

in
tr

ai
n

in
g

vi
de

o-
ag

n
os

ti
c



20

mantic labels such as person, car, animal, house etc. Then, they manually grouped

these labels into two sets – foreground and background labels, and used this informa-

tion to improve any BGS algorithm’s output in a post-processing step. They obtained

very competitive results by using SubSENSE [St-Charles et al., 2015b] as the BGS

algorithm.

Bianco et al. introduced an algorithm called In Unity There Is Strength (IUTIS)

which combines the results produced by several BGS algorithms [Bianco et al., 2017].

They used genetic programming to determine how to combine several BGS algorithms’

outputs using a sequence of basic binary operations, such as logical “and/or”, majority

voting and median filtering. Their best result was achieved by using 5 top-performing

BGS algorithms on the CDNet-2014 dataset at the time of publication. Zeng et al.

followed the same idea, but instead of genetic programming, used a fully-convolutional

neural network to fuse several BGS results into a single output [Zeng et al., 2019b],

and outperformed IUTIS on CDNet-2014.

2.2 People Detection Using Fisheye Cameras

2.2.1 People Detection in Images from Side-View, Standard-Lens Cam-

eras

Among traditional people-detection algorithms for standard cameras, the most pop-

ular ones are based on the histogram of oriented gradients (HOG) [Dalal and Triggs,

2005] and aggregate channel features (ACF) [Dollár et al., 2014]. Recently, deep

learning algorithms have achieved outstanding performance in object and people de-

tection [Girshick, 2015,Ren et al., 2015,Redmon et al., 2016,Liu et al., 2016,Fu et al.,

2017,He et al., 2017]. These algorithms can be divided into two categories: two-stage

methods and one-stage methods. The two-stage methods, such as R-CNN and its

variants [Girshick, 2015, Ren et al., 2015, He et al., 2017], consist of a Region Pro-
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posal Network (RPN) which predicts regions of interest (RoIs) and a network head

that refines them to produce the final bounding boxes. One-stage methods, such as

variants of SSD [Liu et al., 2016,Fu et al., 2017] and YOLO [Redmon et al., 2016,Red-

mon and Farhadi, 2017,Redmon and Farhadi, 2018], could be viewed as independent

RPNs. Given an input image, one-stage methods directly regress bounding boxes

through CNNs. Recently, attention has focused on fast one-stage detectors [Zhao

et al., 2019,Tan et al., 2020] and anchor-free detectors [Tian et al., 2019,Zhang et al.,

2020].

2.2.2 Object Detection Using Rotated Bounding Boxes

Detection of rotated bounding boxes has been widely studied in text detection and

aerial image analysis [Ma et al., 2018a,Ding et al., 2019,Yang et al., 2019b,Qian et al.,

2019]. Rotation Region Proposal Network (RRPN) is a two-stage object detection

algorithm which uses rotated anchor boxes and a rotated region-of-interest (RRoI)

layer. RoI-Transformer [Ding et al., 2019] extended this idea by first computing a

horizontal region of interest (HRoI) and then learning the warping from HRoI to RRoI.

Refined Rotation RetinaNet (R3Det) [Yang et al., 2019b] proposed a single-stage

rotated bounding box detector by using a feature refinement layer to solve feature

misalignment occurring between the region of interest and the feature, a common

issue in single-stage methods. In an alternative approach, Nosaka et al. [Nosaka

et al., 2018] used orientation-aware convolutional layers [Zhou et al., 2017b] to handle

the bounding box orientation and a smooth L1 loss for angle regression. All of

these methods use a 5-component vector for rotated bounding boxes (coordinates

of the center, width, height and rotation angle) with the angle defined in [−π
2
, 0]

range and a traditional regression loss. Due to symmetry, a rectangular bounding

box having width bw, height bh and angle θ is indistinguishable from one having

width bh, height bw and angle (θ − π/2). Hence, a standard regression loss, which
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does not account for this, may incur a large cost even when the prediction is close

to the ground truth, e.g., if the ground-truth annotation is (bx, by, bh, bw,−4π/10), a

prediction (bx, by, bw, bh, 0) may seem far from the ground truth, but it is not so since

the ground truth is equivalent to (bx, by, bw, bh, π/10). Rotation Sensitive Detector

(RSDet) [Qian et al., 2019] addresses this by introducing a modulated rotation loss.

2.2.3 People Detection in Images from Overhead, Fisheye Cameras

People detection using overhead, fisheye cameras is an emerging area with sparse

literature. In some approaches, traditional people-detection algorithms such as HOG

and ACF have been applied to fisheye images with slight modifications to account for

fisheye geometry [Saito et al., 2011,Chiang and Wang, 2014,Wang et al., 2017,Krams

and Kiryati, 2017]. For example, Chiang and Wang [Chiang and Wang, 2014] rotated

each fisheye image in small angular steps and extracted HOG features from the top-

center part of the image. Subsequently, they applied Support Vector Machines (SVM)

classifier to detect people. In another algorithm, Krams and Kiryati [Krams and

Kiryati, 2017] trained an ACF classifer on side-view images and dewarped the ACF

features extracted from the fisheye image for person detection.

Recently, CNN-based algorithms have been applied to this problem as well.

Tamura et al. introduced a rotation-invariant version of YOLO [Redmon et al., 2016]

by training the network on a rotated version of the Common Objects in Context

(COCO) dataset [Lin et al., 2014]. The inference stage in their method relies on the

assumption that bounding boxes in a fisheye image are aligned with the image ra-

dius. Another YOLO-based algorithm [Seidel et al., 2018] applies YOLO to dewarped

versions of overlapping windows extracted from a fisheye image.

In this dissertation, we introduce two YOLO-based rotating-window approaches

for people detection from OHF cameras [Li et al., 2019] that apply geometric pre- and

post-processing to realize significant performance gains. In follow-up work, we intro-
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duce Rotation-Aware People Detection (RAPiD) – an end-to-end algorithm. RAPiD

uses a novel angle-aware loss function to predict the exact angle of bounding boxes

without any additional assumptions. We also change the commonly-used represen-

tation of rotated bounding boxes to overcome the symmetry problem [Duan et al.,

2020].

2.2.4 Video Object Detection

With the introduction of ImageNet VID challenge for object detection from video

[Russakovsky et al., 2015], new algorithms leveraging both spatial and temporal in-

formation have been developed. Several algorithms apply post-processing to the out-

put of object detection algorithms, which consider video frames as still images [Han

et al., 2016,Belhassen et al., 2019,Sabater et al., 2020]. For example, Robust and Ef-

ficient Post-Processing for video object detection (REPP) [Sabater et al., 2020] links

the bounding box predictions between consecutive frames using a learning-based ap-

proach. Then, it creates and re-scores bounding box tubelets in temporal dimension.

Another approach is to design an end-to-end video object detection algorithm that

leverages both the temporal and spatial information [Zhu et al., 2017, Zhang et al.,

2018,Wu et al., 2019,Lin et al., 2019,Liu et al., 2019,Chen et al., 2020]. For example,

Flow-Guided Feature Aggregation (FGFA) [Zhu et al., 2017] uses optical flow to warp

the feature maps of past and future frames and then aggregates the warped feature

maps to detect objects in the current frame. Similarly, SELSA [Wu et al., 2019]

aggregates the feature maps of frames from the whole video based on their semantic

similarities with the current frame.

We adapt the feature map warping and feature aggregation ideas introduced in

FGFA and the post-processing method introduced in REPP into RAPiD to improve

its performance.
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Chapter 3

Background Subtraction for Unseen

Videos Using Deep Learning

In Section 2.1, we proposed to group BGS algorithms into 4 categories:

• unsupervised BGS algorithms,

• video- or video-group-optimized supervised BGS algorithms,

• video-agnostic supervised BGS algorithms,

• post-processing methods that improve the results of BGS algorithms.

Prior to 2019, all of the supervised BGS algorithms were either video-optimized or

video-group-optimized and their performance on unseen videos was unknown. In July

2019, we introduced Background Subtraction for Unseen Videos (BSUV-Net) [Tezcan

et al., 2019, Tezcan et al., 2020], the first supervised video-agnostic BGS algorithm.

In this chapter1, we describe BSUV-Net2 in detail and analyze its performance on

a widely-used BGS dataset, CDNet-2014 [Goyette et al., 2014]. Furthermore, we

present a detailed ablation study which demonstrates the effectiveness of individual

components of BSUV-Net. BSUV-Net is a fully-convolutional neural network for

predicting foreground of an unseen video. A key feature of this approach is that

the training and test sets are composed of frames originating from different videos.

1This work was published in the 2020 IEEE Winter Conference on Applications of Computer
Vision (WACV) [Tezcan et al., 2020].

2The source code of BSUV-Net is publicly available at github.com/ozantezcan/

BSUV-Net-inference

https://github.com/ozantezcan/BSUV-Net-inference
https://github.com/ozantezcan/BSUV-Net-inference
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This guarantees that no ground-truth data from the test videos have been shown

to the network in the training phase. By employing two reference backgrounds at

different time scales, BSUV-Net addresses two challenges often encountered in BGS:

varying scene illumination and intermittently-static objects that tend to get absorbed

into the background. We also propose a novel data augmentation method which

further improves BSUV-Net’s performance under varying illumination. Furthermore,

motivated by recent work on the use of semantic segmentation in BGS [Braham et al.,

2017], we improve our method’s accuracy by inputting semantic information along

with the reference backgrounds and the current frame.

3.1 Spatio-Temporal Inputs at Multiple Time Scales

Segmenting an unseen video frame into foreground and background regions without

using any information about the background would be an ill-defined problem. In

BSUV-Net, we use two reference frames to characterize the background. One frame

is an empty background frame, with no people or other objects of interest, which can

be identified manually (e.g., at camera installation), captured using side information

(e.g., door sensor in indoor scenarios) or computed (e.g., median filtering over a long

time span, such as hours). This provides an accurate reference that is very helpful for

segmenting intermittently-static objects in the foreground. However, due to dynamic

factors, such as illumination variations, this reference frame may not be valid after

some time. To counteract this, we use another reference frame that characterizes

recent background, for example by computing the median of 100 frames immediately

preceding the frame being processed. However, this frame might not as accurately

represent the background as the first reference frame since we cannot guarantee that

there will be no foreground objects in it (if such objects are present for less than 50

frames, the temporal median will suppress them). Figure 3·1 shows three examples of
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BSUV-Net input for videos from CDNet-2014: empty and recent background frames

and a current frame. In the top row, the empty-background frame is clearly a better

estimate of the true background than the recent-background frame which is distorted

by the appearance of intermittently static foreground objects (the box on the floor

and the package on the sofa). On the other hand, the empty background in the middle

row is affected by illumination change (bottom left corner), which makes the recent

background a better background estimate for the current frame. In the bottom row,

neither the empty nor recent background are free of foreground objects (the empty

background includes the moving car as parked and the recent background includes a

ghosting effect of the same car). By using two reference frames captured at different

time scales, we aim to leverage benefits of each frame type.

3.2 Leveraging Semantic Segmentation

Braham et al. [Braham et al., 2017] have shown that leveraging the results of semantic

segmentation in a post-processing step significantly improves the performance of a

BGS algorithm. In BSUV-Net, we follow a different idea and use semantic information

as an additional input channel to our neural network. In this way, we let our network

learn how to use this information. To extract semantic segmentation information, we

use a state-of-the-art CNN called DeepLabv3 [Chen et al., 2017] trained on ADE20K

[Zhou et al., 2017a], an extensive semantic-segmentation dataset with 150 different

class labels and more than 20,000 images with dense annotations.

Let us denote the set of object classes in ADE20K as C = {c0, c1, . . . , c149}.

Following the same procedure as in [Braham et al., 2017], we divide these classes

into two sets: foreground and background objects. As foreground objects, we use

person, car, cushion, box, book, boat, bus, truck, bottle, van, bag and bicycle. The

rest of the classes are used as background objects. The softmax layer of DeepLabv3
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(a) Empty background (b) Recent background (c) Current frame

Figure 3·1: Examples of spatio-temporal inputs to BSUV-Net for
three videos from CDNet-2014
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produces pixel-wise class probabilities. Let us denote DeepLabv3 as a function F :

I ∈ Rw×h×3 → S ∈ Rw×h×150 where w and h denote the width and height of the image

with 3 color channels (RGB). S[m,n, j] represents an estimate of the probability that

pixel I[m,n, :] belongs to class cj. Then, we compute a foreground probability map

(FPM) as follows:

FPM[m,n] =
∑
cj∈Fr

S[m,n, j] (3.1)

where Fr is the set of foreground classes. Figure 3·2 shows examples of semantic

segmentation and FPM for the current frames from Figure 3·1. Clearly, FPM is

very successful in extracting semantic details, but itself is not enough to estimate

foreground since some objects in Fr can appear in the background as well (e.g., a box

in the top row and parked cars in the bottom row). By using FPM as an additional

input channel, we hope to leverage semantic information for improved foreground

estimation.

3.3 Notation

Let us introduce mathematical notation for input-label pair used in BSUV-Net. The

input is denoted as X ∈ Rw×h×12 and computed as the channel-wise concatenation

of IE, IR, IC ∈ Rw×h×4 an empty background, a recent background and the current

frame, respectively, where w, h are the width and height of each image. Each image

has 4 channels: three colors (R, G, B) plus FPM discussed in Section 3.2. Similarly,

let IFG ∈ {0, 1}w×h be the corresponding foreground label field where 0 represents the

background and 1 – the foreground. We will use this notation to formulate BSUV-Net,

its loss function and a temporal data augmentation.
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(a) Current frame (b) Semantic segmentation (c) FPM

Figure 3·2: Examples of semantic segmentation and foreground prob-
ability map (FPM) for the current frames from Figure 3·1. Different
colors in (b) represent 150 object categories of ADE20K [Zhou et al.,
2017a] and the color coding in (c) is from 0 (black) to 1 (white).
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3.4 Improving Resilience to Illumination Changes by Tem-

poral Data Augmentation

Since neural networks have millions of parameters, they are very prone to overfit-

ting. A widely-used method for reducing overfitting in computer-vision problems is

to enlarge the dataset by applying several data augmentations such as random crops,

rotations and noise addition. Since we are dealing with videos in this paper, we can

also add augmentation in the temporal domain.

In real-life BGS problems, there might be a significant illumination difference be-

tween an empty-background frame acquired at an earlier time and the current frame.

However, only a small portion of videos in CDnet-2014 capture significant illumination

changes which limits BSUV-Net’s generalization performance. Therefore, we intro-

duce a new data-augmentation technique to account for global illumination changes

between the empty reference frame and the current frame. Using the notation intro-

duced in Section 3.3, an augmented version of the input images can be formulated as

follows:

Îk[i, j, c] = Ik[i, j, c] + dk[c] for k ∈ {E, R, C}, c = 1, 2, 3

where dE,dR,dC ∈ R3 represent illumination offsets applied to RGB channels of

the input images. By choosing dk randomly for each example during training (see

Section 3.8.2 for details), we can make the network resilient to illumination variations.

In our experiments we forced dR = dC since, illumination change rarely appears in a

short time window covered by the recent background. Note that, this augmentation

does not alter the FPM channels of the inputs.
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3.5 Network Architecture

We use a UNET-type [Ronneberger et al., 2015] fully-convolutional neural network

(FCNN) with residual connections. The architecture of BSUV-Net has two parts:

encoder and decoder, and is shown in Figure 3·3. In the encoder network, we use 2×2

max-pooling operators to decrease the spatial dimensions. In the decoder network,

we use up-convolutional layers (transposed convolution with a stride of 2) to increase

the dimensions back to those of the input. In all convolutional and up-convolutional

layers, we use 3 × 3 convolutions as in VGG [Simonyan and Zisserman, 2014]. The

residual connections from the encoder to the decoder help the network combine low-

level visual information gained in the initial layers with high-level visual information

gained in the deeper layers. Since our aim is to increase the performance on unseen

videos, we use strong batch normalization (BN) [Ioffe and Szegedy, 2015] and spatial

dropout (SD) [Tompson et al., 2015] layers to increase the generalization capacity.

Specifically, we use a BN layer after each convolutional and up-convolutional layer,

and an SD layer before each max-pooling layer. Since our task can be viewed as

a binary segmentation, we use a sigmoid layer as the last layer in BSUV-Net. The

operation of the overall network can be defined as a nonlinear map G(W) : X→ ÎFG

where X is defined in Section 3.3, W represents the parameters of neural network G,

and ÎFG ∈ [0, 1]w×h is a pixel-wise foreground probability prediction. Note that since

this is a fully-convolutional neural network, it does not require fixed input size; any

frame size can be used, but some padding may be needed to account for max-pooling

operations.

3.6 Loss Function

In most BGS datasets, the number of background pixels is much larger than the

number of foreground pixels. Due to this class imbalance, the commonly-used loss
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functions, such as cross-entropy and mean-squared error tend to favor the dominant

class. A good alternative for unbalanced binary datasets is the Jaccard index. Since

the network output is a probability map, we used a relaxed form of the Jaccard index

in the loss function, defined as follows:

JR(IFG, ÎFG)=

T +
∑
m,n

(IFG[m,n]̂IFG[m,n])

T+
∑
m,n

(
IFG[m,n]+ÎFG[m,n]−IFG[m,n]̂IFG[m,n]

) (3.2)

where T is a smoothing parameter and m, n are the spatial locations. The loss

function is computed as 1 − JR. Since JR is a region-based similarity metric, it will

not be affected by the data imbalance. The numerator of JR forces BSUV-Net to

increase the number of true positives, whereas the denominator forces it to produce

as few false positives as possible.

3.7 Video-Agnostic Evaluation Strategy for Supervised Al-

gorithms

The most commonly used BGS datasets with a variety of scenarios and pixel-wise

ground-truth annotations are CDNet-2014 [Goyette et al., 2014], LASIESTA [Cuevas

et al., 2016] and SBMI2015 [Maddalena and Petrosino, 2015]. Among these 3 datasets,

only CDNet-2014 has a well-maintained evaluation server, that keeps a cumulative

performance record of the uploaded algorithms. Moreover, it has been the most

widely-used dataset for BGS in recent years with publicly-available evaluation results

for nearly all of the published BGS algorithms.

Since one of our aims is to compare the performance of BSUV-Net with state-

of-the-art video-agnostic BGS algorithms on unseen videos, the availability of public

results for these algorithms is critical. Therefore, we use CDNet-2014 as our eval-

uation dataset. Unfortunately, CDNet-2014 [Goyette et al., 2014] does not provide
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different videos for training and testing. Instead, it provides some frames from each

video as training data and the remaining ones – as test data. However, this type of

division is not useful for evaluating the performance on unseen videos.

For comparing the performance of different models on unseen videos, we split the

dataset into 18 different sets of training/testing videos as shown in Tables 3.1. The

splits are structured in such a manner that every video appears in the test set of

exactly one split, but when it does so, it does not appear in the training set for that

split. When training a supervised algorithm, the main assumption is that the training

set is diverse enough to cover a wide range of test scenarios. For example, if there

are no examples that include shadow in the training set, then it is impossible for the

network to learn how to classify shadow regions. Therefore, we designed the splits so

that the training set for each split contains some videos from the same category as

the test videos. We did not perform a full “leave-k-videos-out” cross-validation due

to prohibitive time needed to train BSUV-Net. In all of the tests, we used videos

from “baseline”, “bad weather”, “intermittent object motion”, “low frame rate” and

“shadow” categories during training since they span most of the common scenarios.

For videos from more difficult scenarios, we progressively added additional categories

into the training set. In particular, we considered “PTZ”, “thermal” and “turbulence”

categories as the most difficult ones since they have substantially different data char-

acteristics from other categories. “PTZ” is the only category with significant camera

movement and zoom in/out, while “thermal” and “turbulence” categories capture

different scene properties than the remaining categories (far- and near-infrared spec-

trum instead of RGB, respectively). For these 3 categories, we used more videos in

the training set, than in the other categories.
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3.8 Experimental Results

3.8.1 Dataset and Evaluation Metrics

In order to evaluate the performance of BSUV-Net, we used CDNet-2014 [Goyette

et al., 2014], the largest BGS dataset with 53 natural videos from 11 categories

including challenging scenarios such as shadows, night videos, dynamic background,

etc. The spatial resolution of videos varies from 320× 240 to 720× 526 pixels. Each

video has a region of interest labelled as either 1) foreground, 2) background, 3)

hard shadow or 4) unknown motion. When measuring an algorithm’s performance,

we ignored pixels with unknown motion label and considered hard-shadow pixels

as background. Our treatment of hard shadows is consistent with what is done in

CDNet-2014 for the change-detection task.

In CDNet-2014 [Goyette et al., 2014], the authors proposed seven binary perfor-

mance metrics to cover a wide range of BGS cases: Recall (Re), specificity (Sp), false

positive rate (FPR), false negative rate (FNR), percentage of wrong classifications

(PWC), Precision (Pr) and F-score (F1). They also introduced two ranking-based

metrics namely “average ranking” (R) and “average ranking accross categories” (Rcat)

which combine all 7 metrics into ranking scores. The details of these rankings can

be found on the dataset website at changedetection.net. In our evaluations, we

omitted FPR and FNR since they are equal to (1− Sp) and (1−Re) respectively.

3.8.2 Training and Evaluation Details

As discussed in Section 3.7, we applied a video-agnostic evaluation methodology in

all experiments using 18 different combinations of training/testing video sets. During

training on each set, we used 200 frames suggested in [Zeng and Zhu, 2018] for each

video in that training set.

When training BSUV-Net on different sets, we used exactly the same hyperpa-

http:\www.changedetection.net
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rameter values across all sets to make sure that we are not tuning our network to

specific videos. In all of our experiments, we used ADAM optimizer with a learning

rate of 10−4, β1 = 0.9, and β2 = 0.99. The minibatch size was 8 and we trained for 50

epochs. As the empty background frame, we used the median of all foreground-free

frames within the first 100 frames. In a few videos containing highway traffic, the

first 100 frames did not contain a single foreground-free frame. For these videos,

we hand-picked empty frames (e.g., in groups) and used their median as the empty

reference. Although this may seem like a limitation, in practice one can randomly

sample several hundred frames at the same time of the day across several days (sim-

ilar illumination) and median filter them to obtain an empty background frame (due

to random selection, a moving object is unlikely to occupy the same location in more

than 50% of frames). Since there is no single empty background frame in videos from

the pan-tilt-zoom (PTZ) category, we slightly changed the inputs. Instead of “empty

background + recent background” pair we used “recent background + more recent

background” pair, where the recent background is computed as the median of 100

preceding frames and the more recent background is computed as the median of 30

preceding frames.

Although BSUV-Net can accept frames of any spatial dimension, we used a fixed

size of 224×224 pixels (randomly cropped from the input frame) so as to leverage par-

allel GPU processing in the training process. We applied random data augmentation

at the beginning of each epoch. For illumination resilience, we used the data aug-

mentation method of Section 3.4 with dR[k] = dC[k] = I + Ik where I ∼ N (0, 0.12)

and Ik ∼ N (0, 0.042) for k ∈ {1, 2, 3}. Similarly, dE[k] = dC[k] + IE + IEk where

IE ∼ N (0, 0.12) and IEk ∼ N (0, 0.042) for k ∈ {1, 2, 3}. We also added random

Gaussian noise from N (0, 0.012) to each pixel in each color channel. For pixel values,

we used double precision numbers that lie between 0 and 1.
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In the evaluation step, we did not apply any scaling or cropping to the inputs. To

obtain binary maps, we applied thresholding with threshold θ = 0.5 to the output of

the sigmoid layer of BSUV-Net.

3.8.3 Quantitative Results

Table 3.2 compares BSUV-Net against state-of-the-art BGS algorithms in terms of

the five metrics and two rankings discussed in Section 3.8.1. All quantitative results

shown are computed by the CDNet-2014 evaluation server at changedetection.net

to reflect the real performance on test data. Since BSUV-Net is video-agnostic, com-

paring it with video-optimized or video-group-optimized algorithms would not be fair

and we omit them here. Instead, we compare BSUV-Net with state-of-the-art unsu-

pervised algorithms, namely SWCD [Işık et al., 2018], WisenetMD [Lee et al., 2018]

and PAWCS [St-Charles et al., 2015a] which, by definition, are video-agnostic. In

Table 3.2, we group these algorithms under self-contained algorithms category. We

exclude RTSS [Zeng et al., 2019a] and 3DFR [Mandal et al., 2019] from Table 3.2

since their results are not available at changedetection.net for the test frames.

However, we include the results of IUTIS-5 [Bianco et al., 2017] and SemanticBGS

[Braham et al., 2017], but we list them separately because these are post-processing

algorithms. Note that, both IUTIS-5 and SemanticBGS can be applied to any BGS

algorithm from Table 3.2, including BSUV-Net, to improve its performance. To show

this, we report the result of BSUV-Net post-processed by SemanticBGS.

We include FgSegNet v2 [Lim and Keles, 2018b] in the self-contained algorithms

category since it is currently the best performing algorithm on CDNet-2014. How-

ever, since FGSegNet v2’s performance reported at changedetection.net has been

obtained in a video-optimized manner, we trained it anew in a video-agnostic manner

using the same methodology that we used for BSUV-Net. As expected, this caused a

huge performance decrease of FgSegNet v2 compared to it’s video-optimized training.

http:\www.changedetection.net
http:\www.changedetection.net
http:\www.changedetection.net


41

Table 3.2: Performance comparison of BSUV-Net against state-of-
the-art methods for unseen videos on CDNet-2014. For fairness, we
separated the post-processing and self-contained algorithms.

Method R Rcat Re Sp PWC Pr F1

Post-processing algorithms
BSUV-net +
SemanticBGS∗

9.57 14.27 0.8179 0.9944 1.1326 0.8319 0.7986

IUTIS-5∗ +
SemanticBGS∗

9.71 11.91 0.7890 0.9961 1.0722 0.8305 0.7892

IUTIS-5∗ 12.14 10.91 0.7849 0.9948 1.1986 0.8087 0.7717

Self-contained algortihms

BSUV-net 9.71 14.00 0.8203 0.9946 1.1402 0.8113 0.7868

SWCD 16.43 20.00 0.7839 0.9930 1.3414 0.7527 0.7583

WisenetMD 17.29 15.82 0.8179 0.9904 1.6136 0.7535 0.7668

PAWCS 14.71 16.09 0.7718 0.9949 1.1992 0.7857 0.7403

FgSegNet v2 45.57 45.09 0.5119 0.9411 7.3507 0.4859 0.3715

As is clear from Table 3.2, BSUV-Net outperforms its competitors on almost all of

the metrics. The F-score performance demonstrates that BSUV-Net achieves excel-

lent results without compromising either Recall or Precision. Table 3.2 also shows

that the performance of BSUV-Net can be improved even further by combining it

with SemanticBGS. The combined algorithm outperforms all of the video-agnostic

algorithms that are available at changedetection.net.

Table 3.3 compares the per-category F-score performance of BSUV-Net against

state-of-the-art BGS algorithms. For RTSS [Zeng et al., 2019a], the values of perfor-

mance metrics shown in Table 3.3 are as reported in their paper. Individual columns

report the F-score for each of the 11 categories from changedetection.net, while

the last column reports the mean F-score across all categories. Similarly to Table 3.2,

we divided this table into post-processing and self-contained algorithms. It can be ob-

served that BSUV-Net achieves the best performance in 5 out of 11 categories, but it

is outperformed by RTSS in terms of the overall performance. BSUV-Net performs

http:\www.changedetection.net
http:\www.changedetection.net
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Table 3.3: Performance comparison of BSUV-Net against state-of-
the-art methods according to per-category F-score for unseen videos
on CDNet-2014.

Method
Bad

weather
Low

framerate
Night PTZ Thermal Shadow

Post-processing algorithms

BSUV-net + SemanticBGS∗ 0.8730 0.6788 0.6815 0.6562 0.8455 0.9664

IUTIS-5∗ + SemanticBGS∗ 0.8260 0.7888 0.5014 0.5673 0.8219 0.9478

IUTIS-5∗ 0.8248 0.7743 0.5290 0.4282 0.8303 0.9084

Self-contained algortihms

BSUV-net 0.8713 0.6797 0.6987 0.6282 0.8581 0.9233

RTSS 0.8662 0.6771 0.5295 0.5489 0.8510 0.9551

SWCD 0.8233 0.7374 0.5807 0.4545 0.8581 0.8779

WisenetMD 0.8616 0.6404 0.5701 0.3367 0.8152 0.8984

PAWCS 0.8152 0.6588 0.4152 0.4615 0.8324 0.89133

FgSegNet v2 0.3277 0.2482 0.2800 0.3503 0.6038 0.5295

Method
Int. obj.
motion

Camera
jitter

Dynamic
backgr.

Base-
line

Turbu-
lence

Overall

Post-processing algorithms

BSUV-net + SemanticBGS∗ 0.7601 0.7788 0.8176 0.9640 0.7631 0.7986

IUTIS-5∗ + SemanticBGS∗ 0.7878 0.8388 0.9489 0.9604 0.6921 0.7892

IUTIS-5∗ 0.7296 0.8332 0.8902 0.9567 0.7836 0.7717

Self-contained algortihms

BSUV-net 0.7499 0.7743 0.7967 0.9693 0.7051 0.7868

RTSS 0.7864 0.8396 0.9325 0.9597 0.7630 0.7917

SWCD 0.7092 0.7411 0.8645 0.9214 0.7735 0.7583

WisenetMD 0.7264 0.8228 0.8376 0.9487 0.8304 0.7535

PAWCS 0.7764 0.8137 0.8938 0.9397 0.6450 0.7403

FgSegNet v2 0.2002 0.4266 0.3634 0.6926 0.0643 0.3715
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significantly poorer than RTSS and some other algorithms in “intermittent object

motion”, “camera jitter”, “dynamic background” and “turbulence” categories. We

believe this is related to the supervised nature of BSUV-Net. Since it is a data-

based algorithm and the representation of these categories in CDNet-2014 is limited,

BSUV-Net is not able to capture the necessary details to solve these challenges. In

Chapter 4, we will introduce an improved version of BSUV-net that addresses these

challenges.

Note, that BSUV-Net has a striking performance advantage in the “night” cate-

gory. All videos in this category are traffic-related and many cars have headlights

turned on at night which causes significant local illumination variations in time.

BSUV-Net’s excellent performance in this category demonstrates that the proposed

model is indeed largely illumination-invariant.

3.8.4 Visual Results

A visual comparison of BSUV-Net with SWCD [Işık et al., 2018] and WisenetMD [Lee

et al., 2018] is shown in Figure 3·4. Each row shows a sample frame from one of the

videos in one of the 9 categories. It can be observed that BSUV-Net produces visually

the best results for almost all categories.

In the “night” category, SWCD and WisenetMD produce many false positives

because of local illumination changes. BSUV-Net produces better results since it is

designed to be illumination-invariant. In the “shadow” category, BSUV-Net performs

much better in the shadow regions. Results in the “intermittent object motion” and

“baseline” categories show that BSUV-Net can successfully detect intermittently-

static objects. It is safe to say that BSUV-Net is capable of simultaneously handling

the discovery of intermittently-static objects and also the dynamic factors such as

illumination changes.

An inspection of results in the “dynamic background” category shows that BSUV-
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Figure 3·4: Visual comparison of sample results produced by BSUV-
Net, SWCD and WisenetMD on unseen videos from CDNet-2014.
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Net has detected most of the foreground pixels but failed to detect the background

pixels around the foreground objects. We believe this is due to the blurring effect

of the median operation that we used in the computation of background frames.

Using more advanced background models as an input to BSUV-Net might improve

the performance in this category.

3.8.5 Ablation Study

One of the contributions of BSUV-Net is its multi-channel input composed of two

background frames from different time scales and a foreground probability map (FPM).

Another contribution is a temporal data augmentation tailored to handling illumina-

tion changes. In Table 3.4, we explore their impact on Precision, Recall and F-score.

Each column on the left represents one characteristic and each row represents a dif-

ferent combination of these characteristics. RGB channels of the current frame are

used in all of the combinations. “Empty BG” and “Recent BG” refer to the use

of empty and\or recent background frames, respectively, in addition to the current

frame. “Data aug.” refers to temporal data augmentation described in Section 3.4 and

“FPM” refers to the use of semantic FPM channel in addition to the RGB channels

for all input frames. It is clear that all these characteristics have a significant impact

on the overall performance. Using only the current frame as input results in very

poor metrics. The introduction of empty or/and recent background frames leads to

a significant improvement. Adding temporal data augmentation or/and FPM chan-

nels further improves the performance and the final network achieves state-of-the-art

results.

Thus far, we have proposed to add semantic FPM channel as input in order to im-

prove our algorithm’s performance. However, if the selection of background and fore-

ground object categories were optimized for each video, FPM could be used as a BGS

algorithm by itself. This optimized selection would require prior information about
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Table 3.4: Impact of background frames, data augmentation to com-
bat illumination changes and semantic information (FPM) on BSUV-
Net performance.

Current
frame

Empty
BG

Recent
BG

Data
aug.

FPM Pr Re F1

3 0.3615 0.5509 0.3476

3 3 0.6994 0.7686 0.6819

3 3 0.6976 0.7064 0.6351

3 3 3 0.7658 0.7606 0.7156

3 3 3 3 0.7574 0.8159 0.7447

3 3 3 3 0.7807 0.7747 0.7450

3 3 3 3 3 0.8113 0.8203 0.7868

objects in each video (to compute FPM) and, therefore, would not qualify as a video-

agnostic method. In our algorithm, however, we use the same background/foreground

object categories for all videos and combine the FPM channels, computed from the

current frame and reference backgrounds, with the RGB channels. In particular,

when applying DeepLabv3 [Braham et al., 2017] to compute FPM frames, we used

background/foreground object categories suggested in the paper, which are likely in-

correct for some videos. To demonstrate that our algorithm is not replicating FPM

but leverages its semantic information to boost performance, we compared BSUV-Net

with thresholded FPM used as a BGS result (Table 3.5). It is clear that FPM alone

is not a powerful tool for BGS as it is significantly outperformed by BSUV-Net.

One could also modify DeepLabv3 to predict only two classes (foreground and

background) and train it on CDNet-2014. We did not perform such a test; since

DeepLabv3 is still an image-based network that does not use any temporal informa-

tion, this approach can be expected to perform similarly to other video- or video-

group-optimized algorithms (e.g., FgSegNet [Lim and Keles, 2018a]).

While in BSUV-Net we assume that the empty background frame is foreground-

free, CDNet-2014 does not provide empty background frames. Therefore, in some
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Table 3.5: Comparison of BSUV-Net with thresholded FPM used as
a BGS result (probability threshold equals 0.5).

Method Pr Re F1

FPM 0.6549 0.6654 0.5846

BSUV-net 0.8113 0.8203 0.7868

Table 3.6: Comparison of manual and automatic selection of empty
background frames in BSUV-Net.

Empty background selection Pr Re F1

Automatic 0.8207 0.7812 0.7639

Manual 0.8113 0.8203 0.7868

videos, we manually selected empty background frames from among the initial frames

as explained in Section 3.8.2. In Table 3.6, we show the impact of this manual process

by comparing the manual selection strategy with an automatic one, that is using the

median of all frames in the test video as an empty background frame. Clearly, the

automatic selection slightly improves Precision while significantly decreasing Recall .

We believe this is due to the increase of false negatives caused by the appearance of

some of the foreground objects in the empty background. Since videos in CDnet-2014

are rather short (at most 10 minutes), in some cases the median of all frames does

not accurately represent an empty background. However, for stationary surveillance

cameras in a real-life scenario it is often possible to compute an empty background,

for example by taking the median of frames at the same time of the day (when it is

expected to be empty) over many days.

3.9 Discussion

We introduced a novel deep-learning algorithm for background subtraction on un-

seen videos and proposed a video-agnostic evaluation methodology that treats each

video in a dataset as unseen. The input to BSUV-Net consists of the current frame
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and two reference frames from different time-scales, along with semantic informa-

tion for all three frames (computed using Deeplabv3 [Chen et al., 2017]). To in-

crease the generalization capacity of BSUV-Net, we formulated a simple, yet effective,

illumination-change model. Experimental results on CDNet-2014 show that BSUV-

Net outperforms state-of-the-art video-agnostic BGS algorithms in terms of 6 out of

7 performance metrics (see Table 3.2). Its performance can be further improved by

adding SemanticBGS [Braham et al., 2017] as a post-processing layer. This shows

great potential for deep-learning BGS algorithms designed for unseen or unlabeled

videos.

Although the overall performance of BSUV-Net is very promising, Table 3.3 shows

that it suffers in certain challenging scenarios, such as “intermittent object motion”,

‘dynamic background”, “camera jitter” or “turbulence”. As discussed in Section 3.8.3,

we believe this is due to the limited number of such videos in CDNet-2014. Since

BSUV-Net is a supervised learning algorithm, its performance is limited by the va-

riety of scenarios in the dataset that it is trained on. In the next chapter, we will

introduce spatio-temporal data augmentations to increase the robustness of BSUV-

Net to challenging scenarios such as moving cameras, camera jitter and intermittently

static objects.
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Chapter 4

Spatio-Temporal Data Augmentations for

Supervised Background Subtraction

In Chapter 3, we introduced BSUV-Net, a novel supervised background subtraction

algorithm designed for unseen videos that showed superior performance compared

to its competitors. As discussed in Section 3.2, one of the key elements behind the

success of BSUV-Net is its use of a temporal data augmentation to mimic illumination

variations that might happen in real-world applications. However, as discussed in

Section 3.8.3, BSUV-Net does not perform well on some of the challenging categories

(e.g. “intermittent object motion” and “camera jitter”) of CDNet-2104 that have

limited number of examples. In this chapter1, we address this by introducing spatio-

temporal data augmentations designed to mimic such challenges and increase the

robustness of BSUV-Net.

We introduce BSUV-Net 2.02 which outperforms BSUV-Net and other state-

of-the-art BGS algorithms [Mandal et al., 2019, Mandal et al., 2021, Kim and Ha,

2020,Mandal and Vipparthi, 2020] with the help of several spatio-temporal data aug-

mentations. We also introduce a real-time version of BSUV-Net 2.0 which still per-

forms better than state-of-the-art methods and we propose a 4-fold cross-validation

data split for CDNet-2014 for easier comparison of future algorithms. Finally, we

demonstrate a strong generalization capacity of BSUV-Net 2.0 using cross-dataset

1This work was published in IEEE Access [Tezcan et al., 2021b]
2The source code of BSUV-Net 2.0 is publicly available at github.com/ozantezcan/

BSUV-Net-2.0

https://github.com/ozantezcan/BSUV-Net-2.0
https://github.com/ozantezcan/BSUV-Net-2.0
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evaluation on LASIESTA [Cuevas et al., 2016] in which the proposed model sig-

nificantly outperforms the current state-of-the-art methods on a completely unseen

dataset.

4.1 Spatio-Temporal Data Augmentations

In this section, we first introduce mathematical notation and then propose new spatio-

temporal augmentations. For completeness, we include the illumination-difference

augmentation proposed in BSUV-Net (Chapter 3). Figure 4·1 shows one example of

each of the proposed augmentations.

4.1.1 Notation

We will use the notation for input-label pair used in BSUV-Net and introduced in

Section 3.3. The input consists of IE, IR, IC ∈ Rw×h×4 and the corresponding label is

denoted as IFG ∈ {0, 1}w×h. Although the resolution of input images varies from video

to video, it is beneficial to use a single resolution during training in order to leverage

parallel processing of GPUs. Therefore, the first augmentation step we propose is

spatio-temporal cropping that maps each video to the same spatial resolution. In the

second step, we propose two additional augmentations that modify the video content

but not the size.

In our two-step process, in the first step we use different cropping functions to

compute ĨE, ĨR, ĨC ∈Rw̃×h̃×4 and ĨFG∈{0, 1}w̃×h̃ from IE, IR, IC and IFG where w̃, h̃

are the desired width and height after cropping. In the second step, we apply post-

crop augmentations to compute ÎE, ÎR, ÎC∈Rw̃×h̃×4 and ÎFG∈{0, 1}w̃×h̃ from ĨE, ĨR, ĨC

and ĨFG. Below, we explain these two steps in detail.
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Figure 4·1: Image augmentation examples. Each row shows an ex-
ample for one of the augmentations: (a) original input, (b) spatially-
aligned crop, (c) randomly-shifted crop, (d) PTZ camera crop, (e) illu-
mination difference, (f) intermittent-object addition.
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4.1.2 Spatio-Temporal Crops

Here we describe 3 augmentation techniques to compute ĨE, ĨR, ĨC, ĨFG from IE, IR,

IC, IFG, each addressing a different BGS challenge. We begin by defining a cropping

function, to be used in this section, as follows:

C(I, i, j, h, w) = I
[⌈
i− h

2

⌉
:
⌈
i+ h

2

⌉
,
⌈
j − w

2

⌉
:
⌈
j + w

2

⌉
, 1 : 4

]
where i, j are the center coordinates, h,w are the height and width of the crop, d·e

denotes the ceiling function and a : b denotes the range of integer indices a, a +

1, . . . , b− 1.

Spatially-Aligned Crop

This is an extension of the widely-used spatial cropping for individual images. Al-

though this is straightforward, we provide a precise definition in order to clearly define

steps in the subsequent sections.

The output of a spatially-aligned crop is defined follows:

Ĩk = C(Ik, i, j, h̃, w̃) for all k ∈ {E, R, C, FG},

where i, j are randomly-selected spatial indices of the center of the crop. This for-

mulation allows us to obtain a fixed-size, spatially-aligned crop from the input-label

pair.

Randomly-Shifted Crop

One of the most challenging scenarios for BGS algorithms is camera jitter which

results in random spatial shifts between consecutive video frames. However, since

the variety of such videos is limited in public datasets, it is not trivial to learn the

behavior of camera jitter using a data-driven algorithm. In order to address this, we
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introduce a new data augmentation method by simulating camera jitter. As a result,

spatially-aligned inputs become randomly shifted. This is formulated as follows:

Ĩk = C(Ik, ik, jk, h̃, w̃) for all k ∈ {E, R, C, FG},

where ik, jk are randomly-selected, but such that iC = iFG and jC = jFG to make sure

that the current frame and foreground labels are aligned. By using different center

spatial indices for background images and the current frame, we emulate camera jitter

effect in the input.

PTZ Camera Crop

Another challenging BGS scenario is PTZ camera operation. While such videos are

very common in surveillance, they form only a small fraction of public datasets.

Therefore, we introduce another data augmentation technique specific to this chal-

lenge.

Since PTZ videos do not have a static empty background frame, BSUV-Net han-

dled them differently than other categories (Section 3.8.2). Instead of empty and

recent backgrounds, we proposed to use recent and more recent background, where

the recent background was computed as the median of 100 preceding frames and the

more recent background was computed as the median of 30 such frames. To simu-

late this kind of behavior, we introduce two types of PTZ camera crops: (i) zooming

camera crop, (ii) moving camera crop.

The zooming camera crop is defined as follows:

Ĩk = C(Ik, i, j, h̃, w̃) for all k ∈ {C, FG},

Ĩk =
1

N z

Nz−1∑
n=0

Ĩnk for all k ∈ {E, R}, where

Ĩnk = R
(
C
(
Ik, i, j, h̃(1 + nzk), w̃(1 + nzk)

)
, h̃, w̃

)
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where zE, zR represent zoom factors for empty and recent backgrounds and N z rep-

resents the number of zoomed in/out frames to use in averaging. In our experiments,

we use −0.1<zE, zR< 0.1 and 5<N z < 15 to simulate real-world camera zooming.

R(I, h̃, w̃) is an image resizing function that changes the resolution of I to (w̃, h̃) using

bilinear interpolation. Note, that using positive values for zk simulates zooming-in

whereas using negative values simulates zooming-out. Figure 4·1(d) shows an example

of zoom-in.

Similarly, the moving camera crop is defined as follows:

Ĩk = C(Ik, i, j, h̃, w̃) for all k ∈ {C, FG},

Ĩk =
1

Nm
k

Nm
k −1∑
n=0

Ĩnk for all k ∈ {E, R}, where

Ĩnk = C(Ik, i+ np, j + nq, h̃, w̃)

where p, q are the vertical and horizontal shift amounts per frame and Nm
E , N

m
R repre-

sent the number of empty and recent moving background crops to use for averaging.

This simulates camera pan and tilt. In our experiments, we use −5 < p, q < 5 and

5 < Nm
E , N

m
R < 15 to simulate real-world camera movements.

4.1.3 Post-Crop Augmentations

In this section, we propose several content-modifying augmentation techniques to

compute ÎE, ÎR, ÎC, ÎFG from ĨE, ĨR, ĨC, ĨFG. These augmentations can be applied

after any one of the spatio-temporal crop augmentations.

Illumination Difference

Illumination variations are common, especially in long videos, for example due to

changes in natural light or lights being turned on/off. We introduced a temporal data

augmentation technique in BSUV-Net to handle illumination changes with the goal
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of increasing the network’s generalization capacity for unseen videos (see Section 3.4).

We use this augmentation here as well, formulated in the current notation as follows:

Îk[i, j, c] = Ĩk[i, j, c] + dk[c] for k ∈ {E, R, C}, c = 1, 2, 3

where dE,dR,dC ∈ R3 represent illumination offsets applied to RGB channels of the

input images. This augmentation does not take the scene context into account and,

therefore, can produce non-realistic results. For example, we keep the shadows intact

although they strongly depend on illumination. Since the aim of data augmentations

is to increase the robustness of the network to challenging scenarios, we do not attempt

to make the augmented examples realistic.

Intermittent-Object Addition

Another challenge for BGS are scenarios when objects enter a scene but then stop

and remain static for a long time. Even very successful BGS algorithms, after some

time, predict these objects as part of the background for they rely on recent frames

to estimate the background model. BSUV-Net overcomes this challenge by using

inputs from multiple time scales, however it still underperforms on videos with

intermittently-static objects. To address this, we propose another spatio-temporal

data augmentation specific to this challenge.

We use a masking-based approach for intermittently-static objects as follows.

In addition to the cropped inputs ĨE, ĨR, ĨC, ĨFG, we also use cropped inputs from

videos with intermittently-static objects defined as ĨIOE , ĨIOR , ĨIOC ∈ Rw̃×h̃×4 and

ĨIOFG ∈ {0, 1}w̃×h̃. We copy foreground pixels from the intermittently-static input

and paste them into the original input to synthetically create an intermittent object.
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This can be formulated as follows:

ÎE = ĨE

Îk = ĨIOFG � ĨIOk + (1− ĨIOFG)� Ĩk for k ∈ {C,R},

ÎFG = ĨIOFG + (1− ĨIOFG)� ĨFG

where � denotes Hadamard (element-wise) product. Figure 4·1(f) shows an exam-

ple of intermittent object addition. This augmentation pastes the foreground-object

pixels from “intermittent object motion” videos into the original inputs without at-

tempting to create a realistic frame (e.g., oversized cars can appear on top of the

buildings). We believe this can still help the network focus on intermittently-static

motion without focusing on the scene context. Also, note that this augmentation

requires prior knowledge of examples with intermittently-static objects which can be

found in some public datasets.

4.1.4 Combining Spatio-Temporal Augmentations

While the augmentations defined above can all be used by themselves to improve

the BGS performance on related categories, combining multiple or even all of them

might result in a better algorithm for a general unseen video of which the category

is unknown. However, combining the crop algorithms is not trivial since it is not

practical to apply more than one crop function to a single input. Thus, we use online

augmentation, where we randomly augment every input while forming mini-batches.

The augmentation steps are as follows:

1. randomly select one of the spatial crop augmentations and apply it to the input,

2. apply illumination-change augmentation using randomized illumination values,

3. apply intermittent object addition to p% of the inputs.
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Clearly, a different combination of augmentations will be applied to the same input

in different epochs. We hope this will significantly increase the variety of training

examples and, consequently, the generalization capacity of our network.

4.2 Video-Agnostic Evaluation Strategy for Supervised Al-

gorithms

In Chapter 3, we used a complicated cross-validation scheme to evaluate the perfor-

mance of BSUV-Net on CDNet-2014 [Goyette et al., 2014] (see Section 3.7). In this

chapter, we introduce a simpler and more intuitive 4-fold cross-validation strategy for

CDNet-2014. We grouped all videos in the dataset and each category into 4 folds as

evenly as possible (Table 4.1). The proposed video-agnostic evaluation strategy is to

train any supervised BGS algorithm on three of the folds and test on the remaining

fold and replicate the same process for all 4 combinations. This approach will pro-

vide results on the full CDNet-2014 dataset which can be uploaded to the evaluation

server to compare against state-of-the-art algorithms. We believe this cross-validation

strategy will be very beneficial for the evaluation of future BGS algorithms.

4.3 Experimental Results

4.3.1 Dataset and Evaluation Details

We evaluate the performance of our algorithm on CDNet-2014 [Goyette et al., 2014]

using the evaluation strategy described in Section 4.2. In order to better understand

the performance of BSUV-Net 2.0 on unseen videos, we also performed a cross-dataset

evaluation by training our model on CDNet-2014 and testing it on a completely

different dataset, LASIESTA [Cuevas et al., 2016]. LASIESTA is an extensive BGS

dataset which includes 24 different videos from various indoor and outdoor scenarios.

It includes a “Simulated Motion” category that is comprised of fixed-camera videos
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Table 4.1: Proposed sets for 4-fold cross-validation on CDNet-2014.

Category Video S1 S2 S3 S4

Baseline

highway 3

pedestrians 3

office 3

PETS2006 3

Bad
weather

blizzard 3

skating 3

wetSnow 3

snowFall 3

Intermittent
object
motion

sofa 3

winterDriveway 3

parking 3

abandonedBox 3

streetLight 3

tramstop 3

Low
framerate

port 0.17fps 3

tramCrossroad 1fps 3

tunnelExit 0.35fps 3

turnpike 0.5fps 3

PTZ

continuousPan 3

intermittentPan 3

zoomInZoomOut 3

twoPositionPTZCam 3

Thermal

corridor 3

lakeSide 3

library 3

diningRoom 3

park 3
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Category Video S1 S2 S3 S4

Camera
jitter

badminton 3

traffic 3

boulevard 3

sidewalk 3

Shadow

copyMachine 3

busStation 3

cubicle 3

peopleInShade 3

bungalows 3

backdoor 3

Dynamic
background

overpass 3

fountain02 3

fountain01 3

boats 3

canoe 3

fall 3

Night
videos

bridgeEntry 3

busyBoulvard 3

tramStation 3

winterStreet 3

fluidHighway 3

streetCornerAtNight 3

Turbulence

turbulence0 3

turbulence1 3

turbulence2 3

turbulence3 3
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that are post-processed to mimic camera pan, tilt and jitter [Cuevas et al., 2016].

4.3.2 Training Details

In order to train BSUV-Net 2.0, we use similar parameters to the ones we used for

BSUV-Net. We use ADAM optimizer with a learning rate of 10−4, β1 = 0.9, and

β2 = 0.99, and the mini-batch size of 8 and 200 epochs. These parameters are the

same for each of the four cross-validation folds. As the empty background frame,

we use manually-selected frames and as the recent background – the median of the

preceding 100 frames.

In terms of spatio-temporal data augmentations, we use an online approach to

randomly change the parameters under the following constraints. The random pixel

shift between inputs is sampled from U(0, 5) where U(a, b) denotes uniform random

variable between a to b. The zoom-in ratios are sampled from U(0, 0.02) and U(0, 0.04)

for the recent and empty backgrounds, respectively, while the zoom-out ratios are

sampled from U(−0.02, 0) and U(−0.04, 0). We use N z = 10. The horizontal pixel

shift for the moving-camera augmentation is sampled from U(0, 5) with Nm
E = 20 and

Nm
R = 10. We perform no vertical-shift augmentation since CDNet-2014 does not

include any videos with vertical camera movement. For illumination change, assuming

[0, 1] as the range of pixel values, we use dR[k] = dC[k] = I+Ik where I ∼ N (0, 0.12)

and Ik ∼ N (0, 0.042) for k ∈ {1, 2, 3}. Similarly, dE[k] = dC[k] + IE + IEk where

IE ∼ N (0, 0.12) and IEk ∼ N (0, 0.042) for k ∈ {1, 2, 3}. Lastly, for intermittent

object addition, we always use the “intermittent object motion” inputs from the

current training set and apply this augmentation to p = 10% of the inputs only.

During inference, binary maps are obtained by thresholding the network output at

θ = 0.5.
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Table 4.2: Comparison of different spatio-temporal augmentations
on CDNet-2014 based on F-score. SAC: spatialy-aligned crop, RSC:
randomly-shifted crop, PTZ: PTZ camera crop, ID: illumination differ-
ence, IOA: intermittent object addition. The values in boldface font
show the best performance for each category.

SAC RSC PTZ ID IOA
Bad

weather
Low

framerate
Night PTZ Thermal Shadow

3 0.9442 0.7886 0.6982 0.6564 0.8960 0.9848

3 3 0.9439 0.8217 0.6941 0.6304 0.8854 0.9818

3 3 0.9315 0.7961 0.6557 0.6815 0.8905 0.9795

3 3 0.9489 0.7606 0.7605 0.6579 0.9024 0.9855

3 3 0.9456 0.7550 0.7233 0.6383 0.8997 0.9836

3 3 3 3 3 0.9272 0.8114 0.6841 0.6725 0.8960 0.9811

SAC RSC PTZ ID IOA
Int. obj.
motion

Camera
jitter

Dynamic
backgr.

Base-
line

Turbu-
lence

Overall

3 0.7732 0.8237 0.8517 0.9878 0.7285 0.8303

3 3 0.7620 0.9043 0.8745 0.9865 0.7354 0.8382

3 3 0.7458 0.8999 0.8674 0.9838 0.7409 0.8339

3 3 0.7503 0.8270 0.8364 0.9874 0.7341 0.8319

3 3 0.9312 0.8359 0.8709 0.9883 0.7023 0.8431

3 3 3 3 3 0.8489 0.9163 0.8848 0.9834 0.8056 0.8556
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4.3.3 Ablation Study

We assess the impact of each spatio-temporal data augmentation method defined in

Section 4.1. As the baseline network, we use BSUV-Net with spatially-aligned crop

augmentation and random Gaussian noise sampled from N (0, 0.012), but without the

“illumination difference” augmentation. We evaluate the proposed spatio-temporal

augmentations against this baseline by including the spatially-aligned crop among

spatial crop augmentations, as explained in Section 4.1.4. In PTZ camera crop,

for each input, we randomly select one of the following: zooming in, zooming out,

moving right or moving left. Table 4.2 shows F-scores for each category of CDNet-

2014 computed locally3 for frames with publicly-available ground truth. We report

the median of results for every 5th epoch between 150th and 200th epochs to disregard

small fluctuations in the learning process. We perform this across all four splits

proposed in Table 4.1.

Figure 4·2 presents visual impact of these augmentations on 5 videos. It can be

observed that each augmentation type significantly improves the performance on the

related categories (randomly shifted crop – on “Camera jitter”, PTZ camera crop –

on “PTZ”, illumination difference – on “Shadow”, intermittent object addition – on

“Intermittent object motion”), but combining all augmentations decreases the perfor-

mance significantly on some categories (e.g., “Night videos” and “Intermittent object

motion”). We believe this is due to trade-offs between the effects of different augmen-

tations. For example, when a static background object starts moving it should be

labeled as foreground, but a network trained with a randomly-shifted crop augmen-

tation can confuse this input with an input from the “Camera jitter” category and

continue labeling the object as background. Still, the overall performance (last col-

3We provide only locally-computed results because if the results of the ablation study were
uploaded to the CDNet-2014 evaluation server, they would have not been made public since they all
come from the same algorithm. Moreover, this simplifies corroboration of our results by independent
parties by not requiring uploads to the evaluation server.
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umn in Table 4.2) of BSUV-Net 2.0 that uses all augmentations handily outperforms

the overall performance for individual augmentations.

4.3.4 Fast BSUV-Net 2.0

Since BGS is often applied as a pre-processing step in real-time video processing appli-

cations, computation speed is critical. As discussed in Section 3.8.5, one of the main

bottlenecks of BSUV-Net is the computation of FPM for each channel – it decreases

the overall computation speed significantly. On the other hand, either removing the

FPM channel or predicting BGS by thresholding the FPM channel alone decreases

the performance to values that are lower than that of some unsupervised algorithms.

In this work, we show that the performance of our model, even without the FPM

channel but with the proposed augmentations, is better than the current state-of-

the-art. We call this version of BSUV-Net 2.0, which uses 9 instead of 12 channels on

input, Fast BSUV-Net 2.0. Table 4.3 shows a speed and performance comparison of

the two versions. Clearly, while Fast BSUV-Net 2.0 has lower performance, it can be

used in real-time applications at 320× 240 spatial resolution, which is very similar to

the resolution used in training. For higher-resolution videos, one can easily feed deci-

mated frames into Fast BSUV-Net 2.0 and interpolate the resulting BGS predictions

to the original resolution.

Table 4.3: Efficiency vs performance trade-off for BSUV-Net 2.0 on
CDNet-2014. FPS is calculated using PyTorch 1.3 implementation on
a node with single Nvidia Tesla P100 GPU.

Re Pr F1
FPS

320× 240 640× 480
BSUV-Net 2.0 0.85 0.89 0.86 ∼ 6 ∼ 2.5

Fast BSUV-Net 2.0 0.84 0.84 0.81 ∼ 29 ∼ 13
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şı

k
et

al
.,

20
18

]
16

.4
3

20
.0

0
0.

78
39

0.
99

30
1.

34
14

0.
75

27
0.

75
83

W
is

en
et

M
D

[L
ee

et
al

.,
20

18
]

17
.2

9
15

.8
2

0.
81

79
0.

99
04

1.
61

36
0.

75
35

0.
76

68

P
A

W
C

S
[S

t-
C

h
ar

le
s

et
al

.,
20

15
a]

14
.7

1
16

.0
9

0.
77

18
0.

99
49

1.
19

92
0.

78
57

0.
74

03

F
gS

eg
N

et
v
2

[L
im

an
d

K
el

es
,

20
18

a]
45

.5
7

45
.0

9
0.

51
19

0.
94

11
7.

35
07

0.
48

59
0.

37
15



66

Table 4.5: Official comparison of top BGS algorithms according to
the per-category F-score on unseen videos from CDNet-2014.

Method
Bad

weather
Low

framerate
Night PTZ Thermal Shadow

BSUV-Net 2.0 0.8844 0.7902 0.5857 0.7037 0.8932 0.9562

Fast BSUV-Net 2.0 0.8909 0.7824 0.6551 0.5014 0.8379 0.8890
BSUV-Net +
SemanticBGS

0.8730 0.6788 0.6815 0.6562 0.8455 0.9664

IUTIS-5 +
SemanticBGS

0.8260 0.7888 0.5014 0.5673 0.8219 0.9478

IUTIS-5 0.8248 0.7743 0.5290 0.4282 0.8303 0.9084

BSUV-Net 0.8713 0.6797 0.6987 0.6282 0.8581 0.9233

RTSS 0.8662 0.6771 0.5295 0.5489 0.8510 0.9551

WisenetMD 0.8616 0.6404 0.5701 0.3367 0.8152 0.8984

FgSegNet v2 0.3277 0.2482 0.2800 0.3503 0.6038 0.5295

Method
Int. obj.
motion

Camera
jitter

Dynamic
backgr.

Base-
line

Turbu-
lence

Overall

BSUV-Net 2.0 0.8263 0.9004 0.9057 0.9620 0.8174 0.8387

Fast BSUV-Net 2.0 0.9016 0.8828 0.7320 0.9694 0.7998 0.8039
BSUV-Net +
SemanticBGS

0.7601 0.7788 0.8176 0.9640 0.7631 0.7986

IUTIS-5 +
SemanticBGS

0.7878 0.8388 0.9489 0.9604 0.6921 0.7892

IUTIS-5 0.7296 0.8332 0.8902 0.9567 0.7836 0.7717

BSUV-Net 0.7499 0.7743 0.7967 0.9693 0.7051 0.7868

RTSS 0.7864 0.8396 0.9325 0.9597 0.7630 0.7917

WisenetMD 0.7264 0.8228 0.8376 0.9487 0.8304 0.7535

FgSegNet v2 0.2002 0.4266 0.3634 0.6926 0.0643 0.3715
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4.3.5 Comparison with State of the Art

Table 4.4 shows the performance of BSUV-Net 2.0 and Fast BSUV-Net 2.0 compared

to state-of-the-art BGS algorithms that are designed for and tested on unseen videos.

We did not include the results of video- or video-group-optimized algorithms since it is

not fair to compare them against video-agnostic algorithms. This table shows official

results computed by CDNet-2014 evaluation server4, so the results of our models

slightly differ from those in Tables 4.2 and 4.3 (different ground-truth frames). We

compare BSUV-Net 2.0 with some of the top-performing video-agnostic algorithms

reported by this server. RTSS [Zeng et al., 2019a], 3DCD [Mandal et al., 2021],

3DFR [Mandal et al., 2019], ChangeDet [Mandal and Vipparthi, 2020] and Kim et

al. [Kim and Ha, 2020] are not included in this table since their results are not

reported. BSUV-Net 2.0 outperforms all state-of-the-art algorithms by at least ∼5%

in terms of F-score (0.8387 versus 0.7986 in Tables 4.4, 4.5). Fast BSUV-Net 2.0 also

outperforms all state-of-the-art algorithms while being ∼5 times faster than BSUV-

Net 2.0 during inference (Table 4.3). Table 4.5 shows the comparison of F1 results

for each category. This table includes RTSS using results reported in the paper [Zeng

et al., 2019a]. In 7 out of 11 categories, either BSUV-Net 2.0 or Fast BSUV-Net 2.0

achieve the best performance, including most of the categories that we designed the

augmentations for (an exception is the “Night videos” category). However, note that

the best-performing algorithm in the “Night videos” category is BSUV-Net which

uses only the illumination-difference augmentation. Thus, it focuses on videos with

illumination differences such as night videos.

Figure 4·3 qualitatively compares the performance of BSUV-Net 2.0 with state-of-

the-art video-agnostic BGS algorithms on several videos from CDNet-2014. BSUV-

Net 2.0 clearly produces the best visual results in a variety of scenarios. Results for

4http://changedetection.net/

http://changedetection.net/
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Table 4.6: F-score comparison of BSUV-Net 2.0 with video-
agnostic supervised BGS algorithms that are not reported in
changedetection.net. Each column shows test performance of the
algorithm by using the training/testing split provided in the respective
paper.

Training/Testing Split

Method 3DCD 3DFR ChangeDet Kim

BSUV-Net 2.0 0.89 0.89 0.90 0.88

Fast BSUV-Net 2.0 0.84 0.84 0.86 0.88

3DCD [Mandal et al., 2021] 0.86 - - -

3DFR [Mandal et al., 2019] - 0.86 - -

ChangeDet [Mandal and Vipparthi, 2020] - - 0.84 -

Kim [Kim and Ha, 2020] - - - 0.86

“Camera jitter” and “PTZ” categories show the effectiveness of BSUV-Net 2.0 in

removing false positives resulting from camera motion. In the example from “Inter-

mittent object motion” category, the car on the left is starting to back-up from the

driveway and most of the algorithms produce false positives at the location where the

car was parked whereas BSUV-Net 2.0 successfully eliminates these false positives.

Results for the “Dynamic background” category show that BSUV-Net 2.0 is very

effective in accurately delineating the boundary between foreground objects and the

background.

As discussed in Section 2.1.3, 3DCD [Mandal et al., 2021], 3DFR [Mandal et al.,

2019], ChangeDet [Mandal and Vipparthi, 2020] and Kim et al. [Kim and Ha, 2020]

are also among the best video-agnostic supervised algorithms, however each reports

performance on a different subset of CDNet-2014, with the algorithm trained on

the remaining videos. Table 4.6 shows the comparison of BSUV-Net 2.0 with these

algorithms using the training/testing splits provided in respective papers in each

column. BSUV-Net 2.0 clearly outperforms all four competitors, while Fast BSUV-

Net 2.0 beats 2 out of 4, and does so with real-time performance.

changedetection.net


69

F
ig

u
re

4
·3

:
Q

u
al

it
at

iv
e

co
m

p
ar

is
on

of
to

p
B

G
S

al
go

ri
th

m
s

on
sa

m
p
le

fr
am

es
fr

om
d
iff

er
en

t
ca

te
go

ri
es

of
C

D
N

et
-2

01
4.



70

4.3.6 Cross-Dataset Evaluation

In this section, we perform a cross-dataset evaluation to show the generalization

capacity of BSUV-Net 2.0. We train BSUV-Net 2.0 using CDNet-2014 videos from

S2, S3, S4 sets shown in Table 4.1 and use S1 as a validation set to select the best

performing epoch. Then, we evaluate the results on a completely different dataset,

LASIESTA [Cuevas et al., 2016]5. Table 4.7 shows the comparison of BSUV-Net

2.0 with top-performing unsupervised algorithms reported in [Cuevas et al., 2016].

Since the authors reported results only for categories of LASIESTA recorded with

static cameras, we report results only on these categories. Clearly, BSUV-Net 2.0

outperforms its competitors on a completely unseen dataset by a significant margin.

In [Mandal et al., 2021], Mandal et al. performed a video-agnostic evaluation

of some supervised learning algorithms by training with 10 of the LASIESTA videos

and evaluating on 10 unseen videos from LASIESTA. Table 4.8 shows a comparison of

BSUV-Net 2.0 with unseen video performance of the algorithms reported in [Mandal

et al., 2021]. We show the results of BSUV-Net 2.0 trained with two different datasets.

BSUV-Net 2.0 row shows the results of cross-dataset training whereas BSUV-Net 2.0∗

row shows the results of using the same training set as used in [Mandal et al., 2021],

for a fair comparison. BSUV-Net 2.0 achieves significantly better results than state

of the art even if the training set does not include any videos from LASIESTA. Since

we train BSUV-Net 2.0∗ with videos from LASIESTA, it performs even better than

BSUV-Net 2.0. This shows that the proposed spatio-temporal data augmentations

are not specific to CDNet-2014 and can be very effective on other datasets as well.

Note that the performance of BSUV-Net 2.0 is significantly better than that of BSUV-

Net 2.0∗ on OSN-2, an outdoor video recorded in heavy snow. This is due to the fact

5The empty backgrounds of LASIESTA videos are computed automatically as the median of all
frames in the video. The recent backgrounds are computed similarly to CDNet-2014, as the median
of previous 100 frames.



71

T
a
b

le
4
.7

:
P

er
-c

at
eg

or
y

F
-s

co
re

co
m

p
ar

is
on

of
th

e
cr

os
s-

d
at

as
et

p
er

fo
rm

an
ce

of
B

S
U

V
-N

et
2.

0
w

it
h

th
e

to
p
-p

er
fo

rm
in

g
u
n
su

p
er

v
is

ed
B

G
S

al
go

ri
th

m
s

on
L

A
S
IE

S
T

A

M
et

h
o
d

IS
I

IC
A

IO
C

II
L

IM
B

IB
S

O
C

L
O

R
A

O
S

N
O

S
U

O
ve

ra
ll

B
S

U
V

-N
e
t

2
.0

0.
92

0.
68

0
.9

6
0
.8

8
0.

81
0
.7

7
0.

93
0
.9

4
0
.8

4
0.

79
0
.8

5
C

u
ev

as
[B

er
jó
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that the training videos of LASIESTA do not include a heavy-snow video, however

the training set of CDNet-2014 does. This also shows the importance of scene variety

in the training dataset. Both Tables 4.7 and 4.8 clearly show that BSUV-Net 2.0 is

not specific to a dataset that it was trained on, but can successfully predict BGS of

an unseen video.

In addition to the videos reported in Table 4.7, LASIESTA includes several videos

that are either recorded with a moving camera or post-proccessed to look like they

were recorded with a moving camera. We group these videos under 4 categories:

1. Indoor pan & tilt videos (IMC-1, ISM-1, ISM-2, ISM-3),

2. Outdoor pan & tilt videos (OMC-1, OSM-1, OSM-2, OSM-3),

3. Indoor jitter videos (IMC-2, ISM-4, ..., ISM-12),

4. Outdoor jitter videos (OMC-2, OSM-4, ..., OSM-12).

Table 4.9 shows the F-score comparison of BSUV-Net 2.0 trained with different com-

binations of spatio-temporal data augmentations on these 4 categories. As expected,

the randomly shifted crop augmentation achieves the best performance for videos

with camera jitter whereas the PTZ augmentation achieves the best results for PTZ

category. This further shows that the impact of spatio-temporal data augmentations

is generalizable to different datasets.

4.3.7 In-the-Wild Results

In Sections 4.3.5 and 4.3.6, we showed that BSUV-Net 2.0 significantly outperforms

its competitors on two of the largest BGS datasets, CDNet-2014 and LASIESTA.

Although these datasets cover a wide range of challenging scenarios such as moving

cameras, thermal videos, dynamic background, etc., their video clips are generally

short (typically, less than 5 minutes) and each clip focuses on a single challenge.
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Table 4.9: F-score comparison of cross-dataset performance of dif-
ferent spatio-temporal augmentations on Moving camera and Simu-
lated motion videos of LASIESTA. SAC: spatialy-aligned crop, RSC:
randomly-shifted crop, PTZ: PTZ camera crop.

SAC RSC PTZ
Indoor

pan & tilt
Outdoor

pan & tilt
Indoor
jitter

Outdoor
jitter

3 0.48 0.56 0.81 0.75

3 3 0.52 0.42 0.88 0.85

3 3 0.58 0.58 0.84 0.50

In most real-world applications (e.g., city-traffic surveillance), BGS predictions need

to be computed continuously (24/7). Since the scene composition (e.g., background

objects) is likely to change over time, an application of BSUV-Net 2.0 would require

a periodic update of the empty-background frame. Furthermore, the algorithm’s

performance “in the wild” will be affected by camouflage, crowded scenes and presence

of small objects, all insufficiently represented in public BGS datasets.

In order to evaluate BSUV-Net 2.0 performance in the wild, we used a live record-

ing of street crossing in Tokyo, Japan (publicly available on YouTube6). We applied

BSUV-Net 2.0 to long clips (several hours) taken from that live recording either dur-

ing the day or at night. The empty background and recent background frames were

computed for each current frame as follows:

• the empty background is updated hourly by using the average of all frames

captured during the preceding 5 minutes,

• the recent background is updated continuously using the average of the preced-

ing 100 frames.

Since, obviously, no ground-truth BGS annotations are available in this case,

we only show visual results (Figure 4·4). Clearly, the performance of BSUV-Net

6youtu.be/RQA5RcIZlAM

https://youtu.be/RQA5RcIZlAM
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(a) Day-time frame

(b) Night-time frame

Figure 4·4: Sample results of in-the-wild application of BSUV-Net 2.0.
The videos have been captured by a live camera during the day and
at night to test different illumination conditions. Shown are the input
frame (left column), foreground predictions computed by BSUV-Net 2.0
(middle column) and a combination of the input frame and foreground
predictions (right column) – darker pixels represent the background
while brighter ones show the foreground.

2.0 is promising. In the day-time example (Figure 4·4a), it is able to successfully

detect almost all people and cars. Although this video has several challenges, such

as intermittently-static objects (some of the cars at the top are waiting to turn),

small objects (people on the left side of the frame who are crossing the street) and

dynamic background (electronic billboards on the buildings), BSUV-Net 2.0 handles

them well. One exception is the detection of extremely small people. While the

detection of people in the right part of the frame is nearly perfect, some people on

the left are sometimes missed due to their very small size and/or camouflage. The

performance of BSUV-Net 2.0 drops slightly at night (foreground detections for some

cars have holes in Figure 4·4b), however overall it is still solid as most of the cars

are detected either in full or partially. Note, that we have used exactly the same

weights while computing the day-time and night-time predictions and updated the
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empty and recent background frames as described above. These results show that

BSUV-Net 2.0 can automatically adapt to different illumination conditions and can

be used in real-world applications with a reasonably good performance.

4.4 Discussion

While background subtraction algorithms achieve remarkable performance to-

day, they still often fail in challenging scenarios such as shaking or pan-

ning/tilting/zooming cameras, or when moving objects stop for an extended period of

time. In the case of supervised algorithms, this is largely due to the limited availability

of labeled videos recorded in such scenarios – it is difficult to train end-to-end deep-

learning algorithms for unseen videos. To address this, we introduced several spatio-

temporal data augmentation methods to synthetically increase the number of inputs

in such scenarios. Specifically, we introduced new augmentations for PTZ, camera

jitter and intermittent object motion scenarios, and achieved significant performance

improvements in these categories and, consequently, a better overall performance on

the CDNet-2014 dataset. We also introduced a real-time version of BSUV-Net 2.0

which still performs better than state-of-the-art methods and we proposed a 4-fold

cross-validation data split for CDNet-2014 for easier comparison of future algorithms.

Furthermore, we demonstrated a strong generalization capacity of BSUV-Net 2.0 us-

ing cross-dataset evaluation on LASIESTA in which the proposed model significantly

outperforms the current state-of-the-art methods on a completely unseen dataset.

Finally, we discussed how BSUV-Net 2.0 can be used in real-life applications that

require 24/7 operation and provided examples of real-life results that show promise.
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Chapter 5

Datasets for People Detection from

Fisheye Cameras

In the second part of this thesis, we focus on another video-analytics task, namely

people detection in images captured by overhead fisheye (OHF) cameras. When

we started working on the topic, there were just a few existing OHF datasets for

people detection and they were all annotated either by point location of a person’s

head [del Blanco et al., 2016, del Blanco et al., 2021] or by a bounding box aligned

with image boundaries [Demiröz et al., 2012,Ma et al., 2018b]. However, due to the

overhead vantage point and unique lens geometry, a standing person captured by

an OHF camera appears radially oriented in the field of view of the camera. This is

clearly visible in Figure 5·1. Therefore, bounding boxes aligned with image boundaries

cannot capture these varying body orientations.

In order to address this limitation, we collected three new datasets of overhead

fisheye videos and annotated them with rotated bounding boxes tightly drawn around

each person and re-annotated a subset of the Mirror Worlds dataset [Ma et al., 2018b]

with rotated bounding boxes:

• Human-Aligned Bounding Boxes from Overhead Fisheye cameras

(HABBOF) [Li et al., 2019]

• Mirror Worlds-Rotated (MW-R) [Ma et al., 2018b,Duan et al., 2020]

• Challenging Events for Person Detection from Overhead Fisheye cameras
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(CEPDOF) [Duan et al., 2020]

• In-the-Wild People Detection from Overhead Fisheye cameras (WEPDOF)

[Tezcan et al., 2021a]

Table 5.1 shows the statistics of these datasets. We report an approximate number

of distinct people for MW-R since the exact number is not provided [Ma et al., 2018b].

Table 5.1: Statistics of 4 new datasets for people detection from over-
head fisheye cameras. “people” refers to the annotated people and “#
of people” refers to the number of annotated people in a single frame.

Dataset
# of
video
clips

# of
scenes

# of
identities

# of
people per

frame

# of
frames

Resolution
(MP)

HABBOF 4 2 9 2-5 5,837 ∼4.2

MW-R 19 7 ∼15 1-6 8,752 1.1 to 2.2

CEPDOF 8 1 17 1-13 25,504 1.1 to 4.2

WEPDOF 16 14 188 1-35 10,544 0.6 to 5

5.1 HABBOF

Our first dataset, Human-Aligned Bounding Boxes from Overhead Fisheye cameras

(HABBOF) [Li et al., 2019], includes 4 videos captured in 2 different rooms. Ta-

ble 5.2 provides scenario and quantitative details for each video in HABBOF, while

Figure 5·1 shows sample frames from all videos with superimposed bounding-box

annotations. “Meeting1” and “Meeting2” videos were recorded by an AXIS M3057-

PLVE camera whereas “Lab1” and “Lab2” videos – by a Geovision GV-FER12203

camera. Videos in the dataset capture some challenging scenarios, such as spatial and

temporal illumination variations, occlusions, and occupant presence in the center and

at the periphery of the fisheye field of view. Capturing occupants at the field-of-view

periphery is important in the case of fisheye cameras due the challenge it introduces

– a severe geometric distortion for far-away objects. However, since HABBOF is the
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Figure 5·1: Sample frames with rotated bounding-box annotations
from all 4 videos in HABBOF.
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first benchmark dataset with rotated bounding boxes it is somewhat limited in terms

of the number of people, videos and challenging scenarios.

We made the videos and annotations of HABBOF publicly available1 for research

purposes. To date, it has been downloaded 264 times.

5.2 MW-R

Mirror Worlds (MW) [Ma et al., 2018b] is another dataset developed for people de-

tection from OHF cameras. It includes 30 videos at two resolutions: 1, 056× 960 or

1, 488×1, 360. However, all person objects in the videos are annotated with bounding

boxes aligned with image boundaries.

In order to evaluate our algorithms on the MW dataset and to provide more

resources for the research community, we manually annotated a subset of MW videos

with rotated bounding-box labels from scratch. We refer to this new dataset as

Mirror Worlds – Rotated (MW-R). In MW-R, bounding boxes of the same person

carry the same ID in consecutive frames, and thus can be also used for additional

vision tasks using overhead, fisheye images, such as video-object tracking and person

re-identification.

MW-R consists of training-set videos of the original MW dataset, 19 videos in

total. Table 5.3 provides scenario and quantitative details for each video in MW-R,

while Figure 5·2 shows sample frames with superimposed bounding-box annotations.

More detailed information about the videos and frames can be found on the original

Mirror Worlds website2.

We made the annotations of MW-R publicly available3 for research purposes. To

date, it has been downloaded 78 times.

1vip.bu.edu/habbof
2www2.icat.vt.edu/mirrorworlds/challenge/index.html
3vip.bu.edu/mw-r

http://vip.bu.edu/habbof
http://www2.icat.vt.edu/mirrorworlds/challenge/index.html
http://vip.bu.edu/mw-r


82

T
a
b
le

5
.3

:
D

es
cr

ip
ti

on
an

d
st

at
is

ti
cs

of
in

d
iv

id
u
al

v
id

eo
s

in
M

W
-R

.

V
id

e
o

N
a
m

e
D

e
sc

ri
p
ti

o
n

D
u
ra

ti
o
n

(s
e
c)

R
e
so

lu
ti

o
n

(W
×
H

)
F

P
S

M
W

-1
8M

ar
-2

1
p

er
so

n
w

al
k

in
ob

se
rv

at
io

n
ro

om
30

14
88
×

13
60

15

M
W

-1
8M

ar
-3

1
p

er
so

n
w

al
k

in
ob

se
rv

at
io

n
ro

om
52

14
88
×

13
60

15

M
W

-1
8M

ar
-7

2
p

er
so

n
in

ob
se

rv
at

io
n

ro
om

30
10

56
×

96
0

15

M
W

-1
8M

ar
-8

2
p

er
so

n
in

ob
se

rv
at

io
n

ro
om

30
10

56
×

96
0

15

M
W

-1
8M

ar
-1

0
4

p
er

so
n

w
al

k
in

ob
se

rv
at

io
n

ro
om

30
10

56
×

96
0

15

M
W

-1
8M

ar
-1

2
4

p
er

so
n

p
os

e
ch

an
ge

in
ob

se
rv

at
io

n
ro

om
30

10
56
×

96
0

15

M
W

-1
8M

ar
-1

3
4

p
er

so
n

p
os

e
ch

an
ge

in
ob

se
rv

at
io

n
ro

om
30

10
56
×

96
0

15

M
W

-1
8M

ar
-1

4
4

p
er

so
n

w
al

k
in

ob
se

rv
at

io
n

ro
om

30
10

56
×

96
0

15

M
W

-1
8M

ar
-1

7
4

p
er

so
n

p
os

e
ch

an
ge

in
ob

se
rv

at
io

n
ro

om
30

10
56
×

96
0

15

M
W

-1
8M

ar
-1

8
4

p
er

so
n

w
al

k
in

ob
se

rv
at

io
n

ro
om

30
10

56
×

96
0

15

M
W

-1
8M

ar
-1

9
3

p
er

so
n

in
h

al
lw

ay
30

10
56
×

96
0

15

M
W

-1
8M

ar
-2

1
3

p
er

so
n

in
h

al
lw

ay
30

10
56
×

96
0

15

M
W

-1
8M

ar
-2

2
3

p
er

so
n

in
h

al
lw

ay
30

10
56
×

96
0

15

M
W

-1
8M

ar
-2

3
3

p
er

so
n

in
h

al
lw

ay
30

10
56
×

96
0

15

M
W

-1
8M

ar
-2

4
2

p
er

so
n

in
h

al
lw

ay
30

10
56
×

96
0

15

M
W

-1
8M

ar
-2

5
5

p
er

so
n

in
h

al
lw

ay
30

10
56
×

96
0

15

M
W

-1
8M

ar
-2

6
2

p
er

so
n

in
h

al
lw

ay
30

10
56
×

96
0

15

M
W

-1
8M

ar
-2

7
5

p
er

so
n

in
h

al
lw

ay
30

10
56
×

96
0

15

M
W

-1
8M

ar
-3

1
3

p
er

so
n

in
h

al
lw

ay
30

10
56
×

96
0

15



83

Figure 5·2: Sample frames with rotated bounding-box annotations
from MW-R.
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5.3 CEPDOF

After publishing HABBOF and MW-R, we collected and labeled another dataset that

we named Challenging Events for Person Detection from Overhead Fisheye cameras

(CEPDOF) [Duan et al., 2020]. Table 5.4 provides scenario and quantitative details

for each video in CEPDOF and Figure 5·3 shows sample frames from all videos with

superimposed bounding-box annotations. Clearly, CEPDOF contains many more

frames and human objects than HABBOF, and also includes challenging scenarios

such as a crowded room, various body poses, and low-light conditions. Similarly to

MW-R, CEPDOF is also annotated spatio-temporally, i.e., the same person carries

the same ID across frames. All of the videos in CEPDOF were recorded by an AXIS

M3057-PLVE camera.

We made the videos and annotations of CEPDOF publicly available4 for research

purposes. To date, it has been downloaded 229 times.

Although HABBOF, CEPDOF and MW-R include some challenging scenarios,

the recorded videos have been staged, that is people move according to predefined

test scenarios (e.g., everyone starts moving at the same time and performs similar

actions). Furthermore, the variety of scenes and person identities are limited in these

datasets (see Table 5.1). Thus, they are not sufficient to evaluate the performance of

people detection algorithms for unplanned, natural scenarios that can be expected to

occur in real life. This exposes the need for a more challenging dataset recorded in

the wild with a large variety of different scenes, actions and people.

5.4 WEPDOF

Our most recent, yet unpublished, dataset, In-the-Wild Events for People Detection

from Overhead Fisheye cameras (WEPDOF) [Tezcan et al., 2021a], consists of videos

4vip.bu.edu/cepdof

http://vip.bu.edu/cepdof
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Figure 5·3: Sample frames with rotated bounding-box annotations
from all 8 videos in CEPDOF.
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recorded in the wild with diverse scenes, actions, people, imaging hardware, etc. Such

a dataset is crucial for a fair and extensive evaluation of people detection algorithms

from OHF images and videos. Table 5.5 provides scenario and quantitative details for

each video in WEPDOF, while Figure 5·4 shows sample frames from all videos with

superimposed bounding-box annotations. The unique characteristics of WEPDOF

are discussed below.

• In-the-wild videos: Unlike the previous datasets for people detection from

OHF cameras that have been recorded in staged scenarios, all of the videos

in WEPDOF have been collected from YouTube (mostly via security cameras)

and represent natural human behavior. This is important for assessing an algo-

rithm’s performance in real-world scenarios.

• Variety: As shown in Table 5.1, WEPDOF includes 14 different videos5

recorded in completely different scenes (e.g., open office, cubicles, exhibition

center, kindergarten and shopping mall). The number of people appearing in a

single frame, spatial resolution and length of the videos in WEPDOF all vary

significantly. Furthermore, since the videos in WEPDOF come from different

sources, they have been captured by different camera hardware (e.g., sensor and

lens) installed at different heights working under different illumination condi-

tions.

• Real-life Challenges: As shown in Figure 5·4, WEPDOF captures real-world

challenges such as camouflage, severe occlusions and geometric distortions. For

example, in the frame from “Exhibition Setup” in Figure 5·4 it is very diffi-

cult to find some people since the color of their clothing is very similar to the

background, an effect known as camouflage that is frequently encountered in

5Two of WEPDOF videos have been divided into two segments, thus overall there are 16 video
clips in the dataset.
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practice. On the other hand, severe occlusions are clearly visible in “Call Cen-

ter”. Finally, geometric distortions manifest themselves either as a distorted

aspect ratio of the images, such as in “Street Grocery”, or as a dramatically

reduced size of a person at the field-of-view periphery (the person is far away) as

seen in “IT Office”. The challenge of geometric distortions was not significantly

captured in any of the previous datasets.

• Region-of-Interest Maps: In the annotations of WEPDOF, we exclude some

of the areas that are close to the field-of-view periphery since people appear very

small and close to each other making it nearly impossible to annotate accurately.

These excluded regions are identified by means of a binary region of interest

(ROI) map for each video. Figure 5·5 shows an example of ROI for “IT Office”.

• Spatio-Temporal Annotations: Similar to CEPDOF, WEPDOF is anno-

tated spatio-temporally, so it can be used for additional tasks such as person

tracking and re-identification.

(a) (b) (c)

Figure 5·5: (a) Sample frame from WEPDOF’s “IT Office”, (b) its
ROI map, (c) its ROI map overlayed on top of the frame.

We made the videos and annotations of WEPDOF publicly available6 for re-

search purposes and believe that WEPDOF will be beneficial for the development

6vip.bu.edu/wepdof

http://vip.bu.edu/wepdof
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and evaluation of future algorithms for real-world people detection, tracking and re-

identification.

5.5 Evaluation Methodologies

In order to fairly compare various supervised people detection algorithms, it is essen-

tial to apply several metrics on multiple datasets. Also, since some of the algorithms

that we will introduce in the next two chapters use OHF videos for training, a clear

separation of training and test sets is important. In this section, we propose two

evaluation methodologies to compare people detection algorithms from OHF camera

recordings.

5.5.1 Evaluation metrics for Staged-Scenario Datasets

For the staged-scenario datasets with a limited data diversity (HABBOF, CEPDOF

and MW-R), we follow the MS COCO challenge [Lin et al., 2014] and adopt Average

Precision (AP50), i.e., the area under the Precision-Recall curve for the intersection

over union (IoU) of 0.5, as one of our evaluation metrics. In addition to AP, we

also adopt F-score at a fixed confidence threshold b̂conf = 0.3 as another performance

metric. Note that the F-score for a given value of b̂conf corresponds to a particular

point on the Precision-Recall curve. For the algorithms that are trained on OHF

images and/or videos (algorithms that will be introduced in Chapter 8 use multiple

consecutive frames), we report the cross-validation results on MW-R, HABBOF and

CEPDOF datasets, i.e., two datasets are used for training and the remaining one for

testing, and this is repeated so that each dataset is used once as the test set.

5.5.2 Evaluation Metric for In-the-Wild Dataset

We compare in-the-wild performance of algorithms on WEPDOF and use AP50 as

the main evaluation metric as well. Since WEPDOF is more extensive than the other
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datasets in terms of the variety of scenes and bounding box sizes, we introduce several

data-specific metrics for WEPDOF in addition to AP50.

Similarly to the MS COCO challenge [Lin et al., 2014], we use AP50 for small,

medium and large bounding boxes denoted as APS
50, APM

50 and APL
50 respectively.

Figure 5·6 shows the histogram of bounding-box areas in WEPDOF. We divide the

bounding boxes into three groups: small (area ≤ 1200), medium (1200 < area ≤ 8000)

and large (8000 < area) based on their areas normalized to image size of 1024×1024.

Then, APS
50 is calculated as AP50 between the small bounding-box annotations and

small bounding-box detections. APM
50 and APL

50 are calculated similarly for medium

and large bounding boxes. Table 5.6 shows the number of bounding-box annotations

from these 3 categories for each video of WEPDOF. For APS
50, APM

50 and APL
50 scores,

we compute the macro-average of the per-video results for the videos with at least

100 annotations in that category (e.g., “Street Grocery” is not used for APM
50).

small medium large

T
=
1
2
0
0

T
=
8
0
0
0

Figure 5·6: Histogram of bounding-box areas of the annotations in
WEPDOF. All areas are normalized to image size of 1024× 1024.

Although AP50 and its variants are very useful for summarizing the performance of

an algorithm with a single number, in real-life applications the confidence threshold

must be fixed. An optimal confidence threshold can be chosen as the one which
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Table 5.6: The number of bounding boxes assigned to small, medium
and large class (see text for the definition) for all WEPDOF videos.

Box
size

Empty
Store

Exhibition
Setup

Convenience
Store

Large
Office

Ware-
house

Exhibi-
tion

Call
Center

Small 4 4472 8 1444 599 746 6622

Medium 334 6268 5241 3615 3634 7699 9829

Large 20 262 1314 200 0 3952 4312

Box
size

Tech
Store

Jewelry
Store

Street
Grocery

Printing
Store

Repair
Store

IT
Office

Kinder-
garten

Total

Small 1122 2466 4 735 0 2308 1195 21725

Medium 1270 1900 41 6751 4862 3197 8486 63127

Large 51 1218 1272 65 3696 641 765 17768

results in the best F-score on a validation set. We report Precision, Recall and

F-score metrics of the algorithms using this optimal confidence threshold.

For in-the-wild evaluation of supervised learning algorithms, we use the combina-

tion of MS COCO [Lin et al., 2014], MW-R , HABBOF and CEPDOF during training

and evaluate the trained algorithms on WEPDOF using 2-fold cross-validation (see

Table 5.7). In cross-validation, we use one of the sets as a validation set to find

the best set of hyper-parameters and the other set for reporting the performance on

unseen videos.

Table 5.7: Proposed sets for 2-fold cross-validation on WEPDOF

Set-1 Set-2

Empty Store Tech Store

Exhibition Setup Jewelry Store

Convenience Store Street Grocery

Large Office Printing Store

Warehouse Repair Store

Exhibition IT Office

Call Center Kindergarten

In Chapters 6-8 we introduce people-detection algorithms for overhead fisheye

cameras and use the described datasets for performance evaluation and comparisons.
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Chapter 6

People Detection from Overhead Fisheye

Cameras Using Rotating Windows

As we discussed in Section 2.2, most of the people-detection algorithms to date have

been developed for side-view standard-lens (SVS) cameras; very few algorithms exist

for overhead fisheye (OHF) cameras. Among the people-detection algorithms for SVS

cameras, the best performance to date has been achieved by deep-learning algorithms.

In particular, YOLO v3 [Redmon and Farhadi, 2018] achieves a very competitive

performance in real time (using a desktop GPU).

However, YOLO v3 is trained on SVS images, where people usually appear up-

right, and its application to OHF images is not straightforward. A possible solution

is to dewarp OHF frames using azimuthal-to-cylindrical projection so that people

become upright-oriented (Figure 6·1). However, this transformation significantly dis-

torts body shape right under the camera as shown in the first example in Figure 6·1

(dewarped image in the second row). Furthermore, depending on the start/end points

of the transformation, it may split a body into two parts as shown in the second

example (dewarped image in the third row). Moreover, YOLO v3 and other object-

detection algorithms for SVS cameras do not support such panoramic images on input,

so the dewarped images must be significantly padded from the top and bottom thus

making people appear very small and decreasing the chances of detection.

In this chapter1, we leverage YOLO v3, designed for a variety of objects includ-

1This chapter describes joint work with Shengye Li. It was published in the 2019 IEEE Interna-
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Figure 6·1: Examples of overhead fisheye images (top row) and their
dewarped versions (last 3 rows).
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ing upright-oriented people, to develop people-detection algorithms for OHF images

where people appear at arbitrary orientations. We design two methods2 leveraging

YOLO v3. In one approach, we apply YOLO v3 only to a window extracted from

the top-center part of a fisheye image where the orientation of people should be close

to upright. To cover the whole image, we create 24 rotations of the image and ap-

ply YOLO v3 to the same window after each rotation. Then, we rotate the results

back to the original angles and apply post-processing to prune multiple detections

of the same person (the results from neighboring rotations may overlap). In an al-

ternative approach, we first identify regions of interest (ROIs), where activity takes

place, then we rotate each ROI to the top-center part of the image and apply YOLO

v3. To identify areas of activity, we apply our own variant of classical background

subtraction.

Note, that our aim in this section is to leverage high-performing object detection

algorithms, designed for SVS images, to develop people-detection algorithms from

OHF images. In particular, we use YOLO v3 pretrained on MS COCO dataset

[Lin et al., 2014] and do not perform any additional training or fine-tuning. In this

framework, YOLO v3 can be substituted by other object-detection methods such as

R-CNN [Ren et al., 2015], RetinaNet [Lin et al., 2017b] and EfficentDet [Tan et al.,

2020].

6.1 Activity-Blind Application of YOLO v3

Our first approach leverages the observation that the appearance of people in the

top-center region of OHF images is similar to that in images from SVS cameras.

In this approach, we first extract a rectangular window, which we shall call a focus

tional Conference on Advanced Video and Signal-based Surveillance (AVSS) [Li et al., 2019].
2The source code of the algorithms presented in this chapter is publicly available at

vip.bu.edu/habbof

http://vip.bu.edu/projects/vsns/cossy/datasets/habbof/
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Figure 6·2: Block diagram of the proposed activity-blind (AB) people
detection method.

window, at the top-center of an OHF image. In the next step, we rotate the image by

a small angle, and extract the same window with new data. The rotation and window

extraction steps are repeated until focus windows are extracted from all parts of the

image. Then, we apply YOLO v3, trained on MS COCO dataset [Lin et al., 2014],

as a person detector to each of the focus windows that we extracted, and perform

a series of post-processing steps to generate reliable people detection results within

each focus window. Subsequently, all detections are mapped from each focus window

onto the complete fisheye image. Finally, multiple detections from neighboring focus

windows are merged and verified to produce the final people detections. Since this

approach does not utilize any activity information, we call it the activity-blind (AB)

method. Its block diagram is shown in Fig. 6·2 and algorithm’s details are provided

next.

6.1.1 Focus Window and Image Rotation

Since YOLO v3 is designed for full-size images, we can use a focus window that is

large enough to capture human bodies in an upright or almost upright position in

the upper half of the image. We use a focus window whose height and width equal



99

about 65% and 40% of the height and width of the full image, respectively, and the

window’s top is aligned with the upper boundary of the image. We applied image

rotation in 15◦ increments as a trade-off between the overall complexity and precision.

Figure 6·3 illustrates the selected window size and rotation angle.

(a) (b)

Figure 6·3: (a) Placement of the 1,300×800-pixel focus window in a
2,048×2,048 image. The faint green area is the margin area defined in
Section 6.1.2. (b) Focus window after reverse rotations.

6.1.2 Initial People Detection and Post-Processing

The YOLO v3 detector that we apply to every focus window is a Fully Convolutional

Network (FCN) trained on the COCO dataset with 80 object classes. Since our focus

is on people detection, we only retain those bounding boxes produced by YOLO v3

for which the confidence of the “people class” is high. Specifically, we only retain

detections with an “objectness” score above a threshold of 0.3. Then, out of the

retained object detections only those are kept whose person-class score is the highest

among all object classes. YOLO v3 may detect a person with several bounding boxes

that significantly overlap each other within a single focus window. In order to avoid
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over-counting people, only one representative box among the overlapping detections

should be retained. To this end, we apply Non-Maximum Suppression (NMS) to the

detections. Finally, people who are situated very close to the left, right, or bottom

boundaries of the focus window may not be fully visible and might create bounding

boxes that do not cover the whole body of the person. This could deteriorate the

performance of people detection when we merge results across different focus windows

as described in Section 6.1.4.

Therefore, we apply Spatial Outlier Rejection (SOR) to remove bounding boxes

that intersect a ∆-wide margin inside the focus window along the right, left, and

bottom boundaries of each focus window (Figure 6·3(a)). We set ∆ to 6.25% of the

focus window width.

6.1.3 Reverse Mapping of Detections

People detection results (bounding boxes) need to be mapped from the relative po-

sition within each extracted focus window to the absolute position in the full fisheye

image. A näıve approach is to rotate the bounding box by reverse angle used in image

rotation. However, the bounding boxes generated by YOLO v3 in any focus window

are aligned to the focus window axes and need not be radially oriented with respect

to the center of the fisheye image. We, therefore, reverse-rotate only the center of

a bounding box and then form a new bounding box of the same size as the original

one, but oriented radially. This process is illustrated in Figure 6·4.

6.1.4 NMS, Verification, and Final People Detection

Despite the bounding box suppression within each focus window during post-

processing, typically there will be multiple overlapping bounding boxes after the

reverse mapping. This is because neighboring focus windows have a large overlap

with each other and a person can be detected within several focus windows without
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(a) (b)

Figure 6·4: Comparison of the two reverse mapping approaches: (a)
näıve approach here reverse-rotated bounding boxes are not radially
oriented, and (b) improved approach where reverse-rotated bounding
boxes are radially oriented and are better aligned with human bodies.

intersecting their boundaries. In order to assure accurate people detections, duplicate

person detections need to be eliminated so that one person is associated with only

one bounding box. Therefore, we implement NMS on the detections after the reverse

mapping.

In order to reduce false positives resulting from erroneous detections by YOLO

v3 that have not been eliminated by the preceding steps, we implement a final per-

son detection verification step. Around each remaining bounding box, we extract

a rectangular window that encompasses the box with a 30 pixel border. This new

window is first rotated to the upright position as described in Section 6.1.3, but in the

opposite direction. To account for potential angular misalignment, we apply addi-

tional rotations by ±15◦ to extract three windows that are passed to YOLO v3. The

detection results then undergo the confidence thresholding and NMS post processing

steps as detailed in Section 6.1.2. If at least 2 results confirm this is a person, then
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the original bounding box is accepted; otherwise it is rejected.

6.2 Activity-Aware Application of YOLO v3

The activity-blind approach is computationally intense since all the steps described

in Section 6.1 need to be applied to each of the 24 focus windows, even if there

is no person present. Therefore, we develop an activity-aware method (AA) to re-

duce the computational complexity. The main idea is to identify regions of interest

(RoIs) where people are likely to be present, and apply a people detector to only win-

dows containing these regions. We extract ROIs by means of background subtraction

(BGS), i.e., by detecting changes in the field of view of the camera.

As we discussed in the earlier chapters, the best BGS algorithms are mostly super-

vised, learning-based ones (e.g., BSUV-Net, BSUV-Net 2.0). However, all of the ex-

isting background-subtraction datasets have been recorded with SVS cameras. Based

on our experiments, the performance of supervised BGS algorithms trained on these

datasets deteriorates significantly when applied to fisheye videos. Thus, in this work

we opt for a simple model-based background subtraction algorithm.

The block diagram of our AA algorithm is shown in Figure 6·5 where the steps in

the right blue box are exactly the same as those in our AB algorithm.

6.2.1 Background Subtraction

Let I t(x, y) = [IRt , I
G
t , I

B
t ] and Bt(x, y) = [BR

t , B
G
t , B

B
t ] denote the RGB color com-

ponents of the observed image and a reference background image, respectively, at

time t and pixel spatial coordinates (x, y). We will describe in Section 6.2.2 how the

reference background Bt is obtained.

In the first step, the following thresholding is applied to produce an initial mask
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of changes St(x, y):

St(x, y) =


1, if

∑
A∈{R,G,B} |IAt (x, y)−BA

t−1(x, y)| > θ

0, otherwise

(6.1)

where θ is a threshold.

An example of reference background and input frame is shown in Figure 6·6(a–

b). Subsequently, two morphological operations are applied to the mask St(x, y).

First, opening with a 3 × 3 rectangular structuring element is applied to remove

tiny patches that are likely to arise due to noise. Then, dilation operation with a

25× 25 elliptical structuring element is applied to expand the remaining areas of the

detected changes. A connected-component analysis is then performed and small-area

components (having fewer than 3,600 pixels) are removed. This leads to the final RoI

mask shown in Figure 6·6(d).

6.2.2 Background Model

A variety of background models have been studied in the literature. A simple static

background model is usually a fixed “empty” frame but it cannot reflect changes

in the background, such as those due to illumination variations. Also, it may lead

to unnecessarily large RoIs. Dynamic background models utilize recent frames to

update model parameters, but they may produce false negatives if moving objects

become nearly stationary for longer than the time period at which model parameters

get updated. Instead, we use the following simple dynamic background model which

leverages people detection results from previous time instants:

Bt(x, y) = γt(x, y) ·Bt−1(x, y) + (1− γt(x, y)) · I t(x, y),
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(a) (b)

(c) (d)

Figure 6·6: Examples of: (a) reference background; (b) current frame;
(c) focus windows for the current frame overlaid on the RGB image;
and (d) the same focus windows overlaid on the connected components
of the final RoI.
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where γt(x, y) equals 1 if (x, y) belongs to a bounding box associated with a detected

person and is zero otherwise.

We note that at time t, people detection is performed first (so that γt is known)

and then the background is updated. Our background update mechanism uses the

indicator γt to decide at each location (x, y) whether to use the current image value

at time t as the new background (pixel belongs to the background) or to use the

background value from previous time (pixel belongs to a bounding box associated

with a person). This reduces background contamination which affects many dynamic

background models. Since background locations outside of a person’s bounding box

get immediately updated by the current image value, the model is robust to illumina-

tion changes that are challenging for static background models. The proposed update

mechanism therefore offers benefits of both static and dynamic background models.

We set the initial background to zero, i.e., B0(x, y) = 0, ∀(x, y).

6.2.3 Focus Window Selection

We use a subset of the 24 rotated windows proposed in the AB method, and apply

the same methodology to each selected window. In order to ensure full coverage of

a connected component by rotated windows of width W and height H, the centroid

C of a connected component is calculated first. Let O denote the center of camera’s

FOV and Ri, i = 1, ...24 the center of each of the 24 rotated windows. First, window

number k = arg mini∠( ~OC, ~ORi) is selected as the focus window for this connected

component. If the connected component exceeds the left boundary of the focus win-

dow, the next window in counterclockwise direction is added. Then, the same check

is performed for the newly-added window. The process is repeated until the con-

nected component does not exceed the left boundary of the recently-added window.

A similar procedure is applied to the right boundary and neighboring windows in the

clockwise direction. Upon completion of this procedure, the connected component is
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fully included in the union of selected focus windows. An example of the final window

selection is shown in Figure 6·6(d).

The above steps are repeated for all remaining connected components. Then,

people detection by YOLO v3, post-processing, reverse mapping and people detection

(as detailed in Section 6.1) are applied to all focus windows selected earlier.

6.3 Experimental Results

Table 6.1: Performance comparison of people detection methods on
MW-R, HABBOF and CEPDOF datasets. P, R and F denote Preci-
sion, Recall, and F-measure, respectively.

MW-R

Algorithm AP50 P R F

[Tamura et al., 2019] 78.2 0.863 0.759 0.807

AA 88.4 0.939 0.819 0.874

AB 95.6 0.895 0.902 0.898

HABBOF

Algorithm AP50 P R F

[Tamura et al., 2019] 87.3 0.970 0.827 0.892

AA 87.7 0.922 0.867 0.892

AB 93.7 0.881 0.935 0.907

CEPDOF

Algorithm AP50 P R F

[Tamura et al., 2019] 61.0 0.884 0.526 0.634

AA 73.9 0.896 0.638 0.683

AB 76.9 0.884 0.694 0.743

The proposed AA and AB algorithms are compared against the state-of-the-art

algorithm at the time [Tamura et al., 2019] on the three staged datasets (MW-R,

HABBOF, CEPDOF) in Table 6.1 and on WEPDOF in Table 6.2. In AA and AB,

we always use input images of size 1024 × 1024 and we apply YOLO v3 trained on

608 × 608 images from MS COCO [Lin et al., 2014] to the focus windows. Since
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Table 6.2: In-the-wild comparison of people-detection algorithms on
WEPDOF. Average run-times are computed on a node with a single
NVIDIA Tesla V100 GPU.

Algorithm AP50 APS
50 APM

50 APL
50 P R F

Avg. run-time
per frame

[Tamura et al., 2019] 59.8 11.6 65.2 61.3 0.777 0.508 0.581 98 ms

AA 68.3 11.4 70.1 63.7 0.804 0.647 0.705 1477 ms

AB 69.8 15.8 71.3 63.1 0.818 0.643 0.702 1776 ms

there is no publicly available source code for [Tamura et al., 2019], we implemented

it based on our best understanding. Following the implementation details listed

in [Tamura et al., 2019], it is trained on 608 × 608 images from the rotated version

of MS COCO. During inference on MW-R, HABBOF and CEPDOF, we resized the

images to 608 × 608 to match the training resolution as suggested in their paper.

As for WEPDOF, the people at field-of-view periphery occupy just a few pixels at

608×608 resolution, thus we resized the frames to 1024×1024 during inference. Both

AA and AB methods outperform Tamura et al. [Tamura et al., 2019] on almost all

datasets for most of the metrics. In particular, the AB method outperforms Tamura

et al. by 7 − 26% in terms of AP50 and by 2 − 21% in terms of F-score. These

results clearly demonstrate that the series of pre- and post-processing steps, that we

proposed, enable YOLO to be effective in people detection from OHF images despite

the fact that YOLO is not trained on OHF images. The performance gap between

Tamura et al. and our proposed algorithms is very minimal on HABBOF which is

the least challenging dataset. This gap significantly increases on more challenging

datasets such as CEPDOF and WEPDOF. This shows the promise of AA and AB

algorithms in more challenging scenarios.

In terms of the comparison of AA and AB, there is a clear trade-off in terms of

Precision and Recall on MW-R, HABBOF and CEPDOF. The AA method success-

fully eliminates some false positives (FPs) and thus produces a better Precision. At
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Figure 6·7: Qualitative comparison of people-detection results on
sample frames from each video (one per column) in the HABBOF
dataset. Columns show the ground truth annotations as well as the
AB and AA people-detection results.
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the same time, it produces less true positives (TPs) leading to lower Recall . This is

caused by the fact that most people appear within a single focus window in the AA

method (focus window is constructed around RoI). However, even if a person is in the

window’s center, he/she may not be exactly upright and the detection by YOLOv3

may fail. In contrast, in the AB method a person appears in several neighboring focus

windows, in each at a slightly different angle and in some with a fully-visible body,

so that there are more chances for detection. Therefore, the activity-blind method

outperforms the activity-aware method in terms of true positives. An example of this

is shown in the “Lab2” row of Figure 6·7. The person standing in the upper-left part

part of the image is not detected by AA, but is successfully detected by AB thus

producing a true positive. On the other hand, the AB method produces more false

positives than the AA method, since the AA method implements YOLO only on se-

lected windows containing RoIs, and this reduces the chance of making an erroneous

detection. In the “Lab1” row of Figure 6·7, AA eliminates the false positive detection

produced by AB around the chair in the upper-left part of the image. Similarly, in the

“Lab2” row, AA eliminates the large false positive detection produced by AB in the

middle of the image and a smaller one around the chair. This trade-off between the

Precision and Recall reverses on WEPDOF as shown in Table 6.2. This suggests that

the background subtraction algorithm used in AA is not successful on the challenging

videos of WEPDOF recorded in the wild.

Both AA and AB achieve much lower AP50 scores on WEPDOF compared to

the staged datasets. This suggests that although they can handle relatively simple

situations, they are not sufficiently powerful for real-world scenarios. Table 6.2 also

shows AP50 scores of the tested algorithms for bounding boxes of different sizes, as

described in Section 5.5.2. The performance difference between AA and AB algo-

rithms is significantly larger for small objects compared to large ones. This suggests



111

that the background subtraction algorithm introduced in AA misses small foreground

objects resulting in false negatives in people detection.

Table 6.2 also shows run-times of the algorithms. Since the proposed algorithms

apply YOLO v3 multiple times and also perform several pre- and post-processing

steps, they are both much slower than Tamura et al. [Tamura et al., 2019]. As

expected, AA is faster than AB since it applies YOLO v3 only to the focus windows

centered around the regions of interest. However, this difference will diminish as the

monitored scene includes more activity.

6.4 Discussion

We proposed two novel people-detection algorithms for overhead fisheye images by

leveraging a state-of-the-art object-detection algorithm (YOLO v3) trained on stan-

dard side-captured images. In our activity-blind approach, we rotated the image 24

times to cover the entire field of view and produced detection results for the whole

image. In the activity-aware approach, we used background subtraction as a pre-

processing step to find the windows of interest in the frame and applied YOLO v3

only to these windows. Experimental results show that both AA and AB outperform

the state-of-the-art in terms of multiple metrics. The observed trade-offs between AA

and AB suggest that they can be individually leveraged for different types of appli-

cations. The main bottleneck of both AA and AB methods is the elevated processing

time.

In the next chapter, instead of leveraging an object-detection algorithm designed

for standard images, we will introduce an end-to-end approach which produces rotated

bounding boxes in a single run with a run-time that is comparable to that of Tamura

et al.
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Chapter 7

End-to-End People Detection from

Overhead Fisheye Cameras

As discussed in Chapter 2, object-detection algorithms that are designed for stan-

dard images perform poorly on OHF images, usually missing non-upright bodies

(Figure 7·1a). In such images, standing people appear along image radius (Fig-

ure 7·1b), due to the overhead placement of the camera, and rotated bounding boxes

are needed. To accommodate this rotation, in Chapter 6 we introduced YOLO-based

rotating-window approaches for people detection from OHF cameras. Although our

approaches outperformed the state-of-the-art, their computational complexity proved

to be very high due to the detection step applied to up to 24 focus windows and the

pre- and post-processing steps.

In this chapter1, we introduce Rotation-Aware People Detection (RAPiD)2, a

novel end-to-end people-detection algorithm for overhead, fisheye images. RAPiD

is a convolutional neural network that predicts arbitrarily-rotated bounding boxes

(Figure 7·1c) of people in a fisheye image. It extends the model proposed in YOLO

v3 [Redmon and Farhadi, 2018], one of the most successful object detection algorithms

for standard images. In addition to predicting the center and size of a bounding box,

RAPiD also predicts its angle. This is accomplished by a periodic loss function based

1This chapter describes joint work with Zhihao Duan. It was published in the Omnidirectional
Computer Vision Workshop within the 2020 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR) [Duan et al., 2020].

2The source code of RAPiD is publicly available at vip.bu.edu/rapid

http://vip.bu.edu/projects/vsns/cossy/fisheye/rapid/
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(a) Axis-aligned (b) Radius-aligned (c) Human-aligned

Figure 7·1: Illustration of typical people-detection results on over-
head, fisheye images (one quarter shown) for algorithms using vari-
ous bounding-box orientation constraints; the human-aligned bound-
ing boxes fit bodies most accurately. These are not outputs from any
algorithms. See the text for discussion.

on an extension of a common regression loss. This allows us to predict the exact

rotation of each bounding box in an image without any assumptions on its orientation

and additional computational complexity. Since RAPiD is an end-to-end algorithm,

we can train or fine-tune its weights on annotated fisheye images. Indeed, we show

that such fine-tuning of a model trained on standard images significantly increases

the performance. An additional aspect of this work, motivated by its focus on people

detection, is the replacement of the common regression-based loss function used in

multi-class object detection algorithms [Redmon et al., 2016,Liu et al., 2016,Girshick,

2015, Ren et al., 2015] with single-class object detection. The inference speed of

RAPiD is nearly identical to that of YOLO since it is applied to each image only

once without the need for pre-/post-processing.

We evaluate the performance of RAPiD on the OHF camera datasets that we

introduced in Chapter 5 and show that it significantly outperforms the state-of-the-

art including the AA and AB methods introduced in Chapter 6, while also running

significantly faster than both of them.
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7.1 Notation

RAPiD’s design has been largely motivated by YOLO v3 [Redmon and Farhadi,

2018]. In this section, we explain this design in detail and we highlight the concepts

we borrowed from YOLO as well as novel ideas that we proposed.

We use b = (bx, by, bw, bh, bθ) ∈ R5 to denote a ground-truth bounding box, where

bx, by are the coordinates of the bounding box center; bw, bh are the width and height

and bθ is the angle by which the bounding box is rotated clockwise. Similarly b̂ =

(̂bx, b̂y, b̂w, b̂h, b̂θ, b̂conf) ∈ R6 denotes a predicted bounding box, where the additional

element b̂conf denotes the confidence score of the prediction. All the angles used in

the paper are in radians.

7.2 Network Architecture

Our object-detection network, illustrated in Figure 7·2, can be divided into three

stages: backbone network, feature pyramid network (FPN) [Lin et al., 2017a], and

bounding-box regression network, also known as the detection head:

P1, P2, P3 = Backbone(I)

P fpn
1 , P fpn

2 , P fpn
3 = FPN(P1, P2, P3)

T̂k = Headk(P
fpn
k ) ∀k = 1, 2, 3

(7.1)

where I ∈ [0, 1]3×h×w is the input image, {Pk}3k=1 denotes a multi-dimensional feature

matrix and {T̂k}3k=1 denotes a list of predicted bounding boxes in transformed notation

(the relationship between T̂ and b̂ will be defined soon – see equation (7.2)) at three

levels of resolution. Below, we describe each stage in depth. For additional details,

interested readers are referred to [Redmon and Farhadi, 2018].
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7.2.1 Backbone

The backbone network, also known as the feature extractor, takes an input image I

and outputs a list of features (P1, P2, P3) from different parts of the network. The

main goal is to extract features at different spatial resolutions (P1 being the highest

and P3 being the lowest). By using this multi-resolution pyramid, we expect to

leverage both the low-level and high-level information extracted from the image.

7.2.2 Feature Pyramid Network (FPN)

The multi-resolution features computed by the backbone are fed into FPN in order

to extract features relevant for object detection, denoted (P fpn
1 , P fpn

2 , P fpn
3 ). We expect

P fpn
1 to contain information about small objects and P fpn

3 – about large objects.

7.2.3 Detection Head

After FPN, a separate CNN is applied to each feature vector PFPN
k , k ∈ {1, 2, 3}

to produce a transformed version of bounding-box predictions, denoted T̂k – a 4-

dimensional matrix with 〈3, h/sk, w/sk, 6〉 dimensions. The first dimension indicates

that there are three anchor boxes being used in T̂k, the second and third dimensions

denote the prediction grid, where h × w is the resolution of the input image and

sk is the stride at resolution level k as shown in Figure 7·2, and the last dimen-

sion denotes a transformed version of the predicted bounding box for each grid cell.

We denote the nth transformed bounding-box prediction of Headk in grid cell (i, j)

as T̂ k[n, i, j] = (t̂x, t̂y, t̂w, t̂h, t̂θ, t̂conf) from which a bounding-box prediction can be

computed as follows:

b̂x = sk
(
j + Sig(t̂x)

)
, b̂w = wanchor

k,n et̂w

b̂y = sk
(
i+ Sig(t̂y)

)
, b̂h = hanchork,n et̂h

b̂θ = α Sig(t̂θ)− β, b̂conf = Sig(t̂conf)

(7.2)
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where Sig(·) is the logistic (sigmoid) activation function and wanchor
k,n and hanchork,n are

the width and height of the nth anchor box for Headk. Note, that angle prediction b̂θ

is limited to range [−β, α− β] (7.2). In Section 7.3.2 below, we discuss the selection

of α and β values.

7.3 Angle-Aware Loss Function

Our loss function is inspired by that used in YOLOv3 [Redmon and Farhadi, 2018],

with an additional bounding-box rotation-angle loss:

L =
∑

t̂∈T̂pos

BCE(Sig(t̂x), tx) + BCE(Sig(t̂y), ty)

+
∑

t̂∈T̂pos

(Sig(t̂w)− tw)2 + (Sig(t̂h)− th)2

+
∑

t̂∈T̂pos

`angle(̂bθ, bθ)

+
∑

t̂∈T̂pos

BCE(Sig(t̂conf), 1) +
∑

t̂∈T̂neg

BCE(Sig(t̂conf), 0)

(7.3)

where BCE denotes binary cross-entropy, `angle is a new angle loss function that we

propose in the next section, T̂ pos and T̂ neg are positive and negative samples from the

predictions, respectively, as described in YOLOv3, b̂θ is calculated in equation (7.2)

and tx, ty, tw, th are calculated from the ground truth as follows:

tx =
bx
sk
−

⌊
bx
sk

⌋
, tw = ln

(
bw

wanchor
k,n

)

ty =
by
sk
−

⌊
by
sk

⌋
, th = ln

(
bh

hanchork,n

) (7.4)

Note, that we do not use the category-classification loss since we use only one class

(person) in our problem. For the confidence score (t̂conf), we use BCE loss instead of

the focal loss [Lin et al., 2017b] commonly used in object-detection algorithms, since
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the technical report of YOLO v3 states that focal loss decreases the performance of

their network [Redmon and Farhadi, 2018].

Traditionally, regression functions based on L1 or L2 distance are used for angle

prediction [Ma et al., 2018a, Ding et al., 2019, Yang et al., 2019b]. However, these

metrics do not consider the periodicity of the angle and might result in misleading

cost values due to symmetry in the parameterization of rotated bounding boxes. We

solve these issues by using a periodic loss function and changing the parameterization,

respectively.

7.3.1 Periodic Loss for Angle Prediction

Since a bounding box remains identical after rotation by π, the angle loss function

must satisfy `angle(θ̂, θ) = `angle(θ̂ + π, θ), i.e., must be a π-periodic function with

respect to θ̂.

We propose a new, periodic angle loss function:

`angle(θ̂, θ) = f(mod(θ̂ − θ − π

2
, π)− π

2
) (7.5)

where mod(·) denotes the modulo operation and f is any symmetric regression func-

tion such as L1 or L2 norm. Since ∂
∂x

mod(x, ·) = 1, the derivative of this loss function

with respect to θ̂ can be calculated as follows,

`′angle(θ̂, θ) = f ′(mod(θ̂ − θ − π

2
, π)− π

2
) (7.6)

except for angles such that θ̂ − θ = (kπ + π/2) for integer k, where `angle is non-

differentiable. However, we can ignore these angles during backpropagation as is

commonly done for other non-smooth functions, such as L1 distance. Figure 7·3

shows an example plot of `angle(θ̂, θ) with L2 distance as well as its derivative with

respect to ∆θ = θ̂ − θ.
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Figure 7·3: Periodic loss function with L2 norm as regressor and its
derivative

7.3.2 Parameterization of Rotated Bounding Boxes

In most of the previous work on rotated bounding-box (RBB) detection, [−π
2
, 0] range

is used for angle representation. This ensures that all RBBs can be uniquely expressed

as (bx, by, bw, bh, bθ) where bθ ∈ [−π
2
, 0]. However, as discussed in Chapter 2 and

also in [Qian et al., 2019], this approach might lead to a large cost even when the

prediction is close to the ground truth due to the symmetry of the representation, i.e.,

(bx, by, bw, bh, bθ) = (bx, by, bh, bw, bθ−π/2). We address this by enforcing the following

rule in our ground-truth annotations: bw < bh and extending the ground-truth angle

range to [−π
2
, π
2
) to be able represent all possible RBBs. For bounding boxes that are

exact squares, a rare situation, we simply decrease a random side by 1 pixel. Under

this rule, each bounding box will correspond to a unique 5-D vector representation.

Given the fact that the ground-truth angle θ is defined in [−π
2
, π
2
) range, it seems

logical to force the predicted angle θ̂ to be in the same range by assigning (α, β) =
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Figure 7·4: Illustration of the necessity to expand the predicted-angle
value range. Gradient descent applied to the predicted angle θ̂ (red
arrow) may rotate it clockwise and away from the ground truth angle θ
(green arrow). Since a bounding box at angle θ + π is the same as the
one at θ, we need to extend the angle range to include θ + π (dashed

green arrow) otherwise θ̂, pushed by the gradient, will stop at π/2.

(π, π/2) in equation (7.2). However, this creates a problem for gradient descent when

π/2 < θ̂ − θ < π since the derivative of angle loss (7.6) will be negative (Figure 7·3).

In this case, gradient descent will tend to increase θ̂ which will move it further away

from the actual angle θ. Clearly, the network should learn to estimate the angle as

θ + π instead of θ (Figure 7·4). To allow this kind of behavior, we extend the range

of allowed angle predictions to [−π, π) by assigning (α, β) = (2π, π).

Note that our new RBB parameterization will not have the symmetry problem

explained above if the network eventually learns to predict the parametrization rule,

b̂w ≤ b̂h, which is very likely considering the fact that all ground-truth RBBs satisfy

bw ≤ bh. Indeed, based on our experiments in Section 7.5.1, we show that nearly all
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RBBs predicted by RAPiD satisfy b̂w ≤ b̂h.

In summary, by 1) defining [−π
2
, π
2
) as the ground truth angle range and forc-

ing ground truth bw < bh, 2) using our proposed periodic angle loss function, and

3) setting predicted angle range to be (−π, π), our network can learn to predict

arbitrarily-oriented RBBs without problems experienced by previous RBB methods.

Based on the experimental results in Section 7.5.1, we choose periodic L1 to be our

angle loss function `angle.

7.4 Inference

During inference, an image I ∈ R3×h×w is fed into the network, and three groups of

bounding boxes (from three feature resolutions) are obtained. A confidence threshold

is applied to select the best bounding-box predictions. After that, non-maximum

suppression (NMS) is applied to remove redundant detections of the same person.

7.5 Experimental Results

A performance comparison of RAPiD against state-of-the-art algorithms is shown in

Table 7.1 for the three staged datasets and in Table 7.2 for WEPDOF. Similarly to

Section 6.3, RAPiD was trained using 608× 608 images and tested on 608× 608 im-

ages from MW-R, HABBOF and CEPDOF. However, in the case of WEPDOF it was

trained using 608×608 images and tested on 1, 024×1, 024 images3. Clearly, RAPiD

outperforms the other algorithms in nearly all of the evaluations while running just

slightly slower than the fastest algorithm by Tamura et al. We note that RAPiD’s

performance is slightly better, in terms of AP50, than that of the AB algorithm on

MW-R dataset in which most human objects appear in an upright pose (walking).

3Training the spatio-temporal models from Chapter 8 using 1, 024 × 1, 024 images could not be
supported by the memory of GPUs at our disposal and, consequently, we could not compare RAPiD
with its extensions at this training-image resolution.
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Table 7.1: Performance comparison of people-detection algorithms on
three staged test datasets (MW-R, HABBOF, CEPDOF). P, R, and F
denote Precision, Recall, and F-measure, respectively.

MW-R

Algorithm AP50 P R F

[Tamura et al., 2019] 78.2 0.863 0.759 0.807

AA 88.4 0.939 0.819 0.874

AB 95.6 0.895 0.902 0.898

RAPiD 96.6 0.951 0.931 0.941

HABBOF

Algorithm AP50 P R F

[Tamura et al., 2019] 87.3 0.970 0.827 0.892

AA 87.7 0.922 0.867 0.892

AB 93.7 0.881 0.935 0.907

RAPiD 97.3 0.984 0.935 0.958

CEPDOF

Algorithm AP50 P R F

[Tamura et al., 2019] 61.0 0.884 0.526 0.634

AA 73.9 0.896 0.638 0.683

AB 76.9 0.884 0.694 0.743

RAPiD 82.4 0.921 0.719 0.793
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Table 7.2: In-the-wild comparison of people-detection algorithms on
WEPDOF. The average runtimes are computed on a node with a single
NVIDIA Tesla V100 GPU.

Algorithm AP50 APS
50 APM

50 APL
50 P R F

avg. runtime
per frame

[Tamura et al., 2019] 59.8 11.6 65.2 61.3 0.777 0.508 0.581 98 ms

AA 68.3 11.4 70.1 63.7 0.804 0.647 0.705 1477 ms

AB 69.8 15.8 71.3 63.1 0.818 0.643 0.702 1776 ms

RAPiD 72.0 18.4 72.8 67.9 0.731 0.676 0.668 118 ms

This is encouraging since people walking or standing appear radially oriented in OHF

images, a scenario for which AA, AB and Tamura et al.’s algorithm have been de-

signed. However, RAPiD outperforms the other algorithms by a large margin on

HABBOF, which is relatively easy, and CEPDOF, which includes challenging sce-

narios, such as various body poses and occlusions. We conclude that RAPiD works

well in both simple and challenging cases while maintaining high computational ef-

ficiency. Note, that among the algorithms reported in Table 7.1 RAPiD is the only

one which allows training with overhead fisheye images which significantly improves

performance (see Section 7.5.1 for a detailed discussion).

On WEPDOF, RAPiD outperforms the other algorithms in terms of AP50 but is

outperformed by AA and AB in terms of Precision and F-score. In order to better

understand this trade-off, we compare AA, AB and RAPiD using Precision-Recall

plots in Figure 7·5a and F-score versus confidence threshold plots in Figure 7·5b.

Although RAPiD produces a higher area under the PR curve, AA and AB perform

better than RAPiD for high confidence-score thresholds suggesting that RAPiD pro-

duces bounding boxes with lower confidence. This might be due to the fact that AA

and AB compute bounding-box predictions from overlapped crops of the same image

and combine these results in a post-processing step. Thus, they can analyze the same

person from different angles which boosts the confidence score of the bounding box
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for that person. Note that RAPiD is more than 10 times faster than AA and AB.

Figure 7·6 shows sample results produced by RAPiD on several videos; the detec-

tions are accurate in a range of scenarios, such as various body poses, orientations,

and diverse background scenes. However, some scenarios, such as people’s images on a

projection screen (Figure 7·6g), low-light conditions, hard shadows, severe camouflage

and very small people remain challenging.

7.5.1 Design Evaluation

We conducted a number of experiments to better understand the impact of the novel

elements we introduced in RAPiD on performance. Specifically, we conducted an

ablation study and compared different angle loss functions. Due to limited GPU

resources at our disposal, we did not run all of the evaluations for these experiments.

Instead, we trained these algorithms on COCO and then fine-tuned them on MW-

R using the same optimization parameters as reported in Section 7.5, unless stated

otherwise. Then, we tested each algorithm on every video in the HABBOF and

CEPDOF datasets at 1, 024×1, 024 resolution. The resulting AP values were averaged

across all videos.

Ablation Experiments

We present various ablation experiments to analyze how each element of RAPiD indi-

vidually contributes to the overall performance. As the baseline, we use the Tamura et

al. algorithm [Tamura et al., 2019] with NMS and analyze the differences between this

baseline and RAPiD one element at a time. Tamura et al. use standard YOLO [Red-

mon and Farhadi, 2018] trained on 80-classes of COCO with rotation-invariant train-

ing [Tamura et al., 2019] in which the object’s angle is uniquely determined by its

location. The first row of Table 7.3 shows the result of this baseline algorithm. Note

that, the baseline algorithm is not trained or fine-tuned on overhead, fisheye frames.
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Figure 7·5: Comparison of AA, AB and RAPiD on WEPDOF in terms
of: (a) F-score versus confidence-score threshold; and (b) Precision-
Recall curves.
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(a) Different poses. (b) Under camera. (c) Various angles.

(d) Occlusions. (e) People on the screen. (f) Low-light scenario.

(g) Severe camouflage. (h) Tiny-moving people.

Figure 7·6: Qualitative results of RAPiD on videos from MW-R (a, b),
CEPDOF (c–f) and WEPDOF (g, h). Green boxes are true positives,
red boxes are false positives, and yellow boxes are false negatives.
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Table 7.3: Ablation study of RAPiD. The first row corresponds to the
baseline algorithm. Fine-tuning is applied using the MW-R dataset.

No. of classes Angle prediction Fine- tuning AP50

80 Rotation-invariant 81.4

1 Rotation-invariant 81.2

1 Rotation-invariant X 85.9

1 Rotation-aware X 88.9

Multi-Class versus Single-Class: In RAPiD, we remove the category classi-

fication part of YOLO since we are dealing with a single object category, namely,

a person (see Section 7.3). As can be seen from the second row of Table 7.3, this

results in a slight performance drop, which was to be expected since training on

80 classes of objects can benefit from multi-task learning. However, removing the

category-classification branch reduces the number of parameters by 0.5M.

Fine-Tuning with Overhead, Fisheye Images: To analyze this effect, we

fine-tuned the single-class algorithm trained on COCO with images from MW-R. As

shown in the third row of Table 7.3, this results in a significant performance increase.

Recall that the test set used in Table 7.3 does not include any frames from the MW-R

dataset.

Rotation-Aware People Detection: As discussed in Section 7.3, we introduced

a novel loss function to make RAPiD rotation-aware. Instead of setting the object’s

angle to be along the FOV radius, we added a parameter, b̂θ, to each predicted

bounding box and trained the network using periodic L1 loss. As shown in the last

row of Table 7.3, the angle prediction further improves the performance of RAPiD.

Comparison of Different Angle Loss Functions

To analyze the impact of the loss function on angle predictions, we ablate the an-

gle value range and angle loss function in RAPiD while keeping the other elements

unchanged. We compare our proposed periodic loss with two baselines: standard
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unbounded regression loss and bounded regression loss. We perform the same ex-

periment for both L1 and L2 loss. As can be seen in Table 7.4, the periodic L1

loss achieves the best performance, and both the periodic L1 and periodic L2 losses

outperform their non-periodic counterparts.

Table 7.4: Comparison of RAPiD’s performance for different angle
ranges and loss functions.

Prediction range Angle loss AP50

(−∞,∞) L1 86.0

(−π, π) L1 87.0

(−π, π) Periodic L1 88.9

(−∞,∞) L2 86.1

(−π, π) L2 86.1

(−π, π) Periodic L2 88.1

Analysis of Prediction Aspect Ratio

As discussed in Section 7.3.2, we relax the angle range to be inside [−π/2, π/2) and

force bw < bh in ground-truth annotations so that every bounding box corresponds

to a unique representation. In the same section, in order to handle the bounding-

box symmetry problem we assumed that the network can learn to predict bounding

boxes such that b̂w < b̂h. To demonstrate that this is indeed the case, we analyze the

output of our network on both HABBOF and CEPDOF datasets. Figure 7·7 shows

the histogram of b̂h/b̂w. We observe that nearly all predicted bounding boxes satisfy

b̂w < b̂h (i.e., b̂h/b̂w > 1), which validates our assumption.

7.5.2 Performance of RAPiD on Real-World Challenges

It is clear from Figures 7·6g and 7·6h, that RAPiD misses people under challenging

real-world scenarios such as severe camouflage and very small projected body size. In

order to better understand the performance of RAPiD on real-world challenges, we

provide the results from Table 7.2 individually for each video in WEPDOF.
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Figure 7·7: Histogram of the height-to-width ratio of the predicted
bounding boxes.

Table 7.5 shows a per-video performance comparison of RAPiD with state-of-the-

art algorithms on WEPDOF. RAPiD outperforms the other algorithms on 7 out of

14 videos. The performance improvement of RAPiD over state-of-the-art algorithms

is most significant for “Street Grocery” and “Large Office”. “Street Grocery” has

a non-circular FOV and, therefore, people appear not aligned with the FOV radius.

However, the Tamura et al. [Tamura et al., 2019], AA and AB algorithms all assume

radially-aligned bounding boxes and cannot handle such misalignments. In “Large

Office”, people appear directly under the camera during a significant portion of the

video. Since, the Tamura et al. [Tamura et al., 2019], AA and AB algorithms are

trained on SVS images, their training sets do not include such examples and they fail

during inference if a person appears directly under the camera.

All the algorithms attain the lowest performance on videos with tiny projected

bodies at field-of-view periphery (e.g., “Exhibition Setup”), distorted image aspect

ratio (e.g., “Street Grocery”), or strong camouflage (e.g., “Printing Store”). Note,
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that none of these algorithms leverages temporal information. Using a single frame,

the detection of people under severe camouflage or when they are tiny is extremely

challenging even for humans (see Figures 7·6g and 7·6h). However, when objects

move human vision is capable of recognizing objects in motion even in challenging

scenarios. We believe that using temporal information for people detection from OHF

cameras should improve RAPiD’s performance under challenging circumstances.

7.6 Discussion

In this chapter, we proposed RAPiD, a novel people-detection algorithm for over-

head, fisheye images. Our algorithm extends object-detection algorithms which use

axis-aligned bounding boxes, such as YOLO, to the case of person detection using

human-aligned bounding boxes. We show that our proposed periodic loss function

outperforms traditional regression loss functions in bounding-box angle prediction.

RAPiD outperforms previous state-of-the-art methods by a large margin without

introducing additional computational complexity. As shown in Table 7.1 and Fig-

ure 7·6, the performance of RAPiD in staged scenarios with normal-light conditions

is nearly perfect. Unsurprisingly, RAPiD’s performance drops significantly for videos

captured in extremely low-light scenarios, where people are barely distinguishable

from the background and also in some of the real-world challenges such as “cropped

view”, “tiny people”, “camouflage” and “distorted aspect ratio”. The performance

of RAPiD on some of these challenges can be improved by leveraging the temporal

dimension in addition to the spatial information. In the next chapter, we propose

three improved versions of RAPiD that combine temporal information with spatial

information to enhance the people-detection performance from OHF videos.
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Chapter 8

Leveraging Temporal Information for

People Detection From Overhead Fisheye

Cameras

In Chapters 6 and 7, we introduced three novel people-detection algorithms for over-

head fisheye cameras that outperform state of the art. As discussed in Section 7.6, the

performance of our best-performing algorithm, RAPiD, in staged scenarios recorded

under normal-light conditions is extremely good. However, its performance signifi-

cantly decreases on WEPDOF videos recorded in the wild even under normal-light

conditions. By evaluating its performance in detail (Section 7.5.2), we realized that

one of the deficiencies of RAPiD is the independent inference applied to individual

video frames rather than a group of consecutive frames.

Recent research on video-object detection demonstrates that that an algorithm’s

performance can be significantly improved by leveraging temporal information [Zhu

et al., 2017,Zhang et al., 2018,Lin et al., 2019,Liu et al., 2019,Wu et al., 2019,Sabater

et al., 2020, Han et al., 2020, Chen et al., 2020]. We adopt this approach and intro-

duce 3 extensions to RAPiD that combine spatial and temporal information to boost

algorithm’s performance. In one approach, we apply RAPiD to the individual frames

and use the temporal information in a post-processing step called Robust and Effi-

cient Post-Processing (REPP) [Sabater et al., 2020]. In an alternative approach, we

slightly change the network architecture of RAPiD to combine the spatial and tempo-

ral information in an end-to-end method. We apply feature aggregation with adaptive
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weights, introduced in [Zhu et al., 2017], which combines feature maps derived from

past, current and future frames to detect people in the current frame. In yet another

approach, we combine RAPiD with Flow-Guided Feature Aggregation (FGFA) [Zhu

et al., 2017], which extends our second approach, by warping the feature maps derived

from past and future frames using optical flow.

8.1 RAPiD+REPP

REPP [Sabater et al., 2020] is a post-processing methodology designed for object-

detection algorithms that produces regular bounding boxes (aligned with image axes).

It uses a learning-based similarity function to link bounding boxes in consecutive

frames and produce the so-called object tubelets (known earlier as object tunnels [Ris-

tivojevic and Konrad, 2006]). This is followed by a refinement step which smooths

the confidence score, location and size of the bounding boxes within tubelets. This,

effectively, increases the confidence scores of weaker detections and decreases those

of stronger ones. In this section, we introduce RAPiD+REPP which applies post-

processing similar to that of REPP to bounding boxes detected by RAPiD. The

post-processing consists of two steps explained next.

8.1.1 Construction of Bounding-Box Tubelets

Thus far, the bounding boxes and their confidence scores were computed indepen-

dently for each video frame. In order to group together the most similar bounding

boxes from consecutive frames, we define a similarity function between bounding

boxes and a greedy algorithm to perform this grouping. Let’s assume that a video

consists of N frames and the ith frame has Ki bounding boxes. We denote the kth

bounding box in the ith frame as bbki = (xki , y
k
i , w

k
i , h

k
i , α

k
i ) where xki , y

k
i represents the

spatial location of the center of the bounding box; wki , h
k
i – width and height of the

bounding box and αki – counterclockwise rotation angle of the bounding box.
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We propose a learning-based similarity function, inspired by [Sabater et al., 2020],

which uses the following features of bounding boxes bbki and bblj to compute a similarity

score in [0, 1] range:

• Euclidean distance between their centers:
√

(xki − xlj)2 + (yki − ylj)2,

• ratios of their widths and heights: wki /w
j
l and hki /h

j
l ,

• absolute difference between their angles: |αki − α
j
l |,

• Intersection over Union (IoU) ratio between them.

We use this similarity function to match bounding boxes between the consecutive

frames of a video be means of a greedy graph-matching algorithm. Figure 8·1 shows

an example of greedy matching. We start by creating a similarity matrix between

bounding box pairs in frames i and i + 1. Then, we mark the bounding box pair

with the highest similarity score as matched and eliminate the corresponding row

and column from the similarity matrix. This process is repeated until there are

no more bounding boxes left in one of the frames. To account for occlusions, false

positive detections, misses etc., we remove the matched bounding-box pairs with low

similarity scores from the set of matches. As a similarity threshold we use 0.1 in our

experiments.

Using the bounding-box matching algorithm described above, bounding-box

tubelets of a video are formed as follows:

1. intitialize a set of tubelets as an empty set and frame number i as 1,

2. apply the greedy matching algorithm (example shown in Figure 8·1) to find

matching bounding-box pairs between frames i and i+ 1,
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Figure 8·1: An example of greedy bounding-box matching. Frame i
has 3 bounding boxes and frame i+ 1 has 2. Similarity scores between
the rotated bounding boxes of frame i and frame i+ 1 are given in the
matrix on the left. The greedy algorithm will match bb2i with bb1i+1 since
they have the largest similarity score. Then, the first column and the
second row will be eliminated and the similarity matrix will be reduced
to a 2 × 1 matrix as shown on the right. Finally, bb3i will be matched
with bb2i+1 and the matching algorithm will terminate since there are
no more boxes left in frame i+ 1.

3. for each matched bounding-box pair, (bbki , bb
l
i+1), if bbki exists in one of the

tubelets, add bbli+1 to that tubelet as well; otherwise, start a new tubelet with

bbki and bbli+1,

4. increase i and return to step 2 until there are no more frames in the video.

Training of the Similarity Function

In order to train the similarity function described above, we need a set of matched

and unmatched bounding box pairs. We use bounding boxes from CEPDOF to form

our training set. We randomly select 10, 000 positive and 10, 000 negative bounding

box pairs. A positive bounding-box pair is defined as two bounding boxes of the same

person taken from the same video that are at most 5 frames apart. All of the other

bounding-box pairs are considered as negative examples. We train the similarity
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function using logistic regression.

8.1.2 Refinement Network

After forming tubelets, we post-process the bounding boxes within each tubelet to

improve robustness. We replace the confidence score of all bounding boxes within

each tubelet by the average of their confidence scores. We also smooth out the center

coordinates and sizes of all bounding boxes within each tubelet using a 1D Gaussian

filter with a standard deviation of 0.6 as suggested in [Sabater et al., 2020].

8.2 RAPiD+FGFA

FGFA is an end-to-end video object-detection algorithm which aggregates feature

maps computed from past, current and future frames for inference in the current

frame. It consists of three parts. The first part is a “feature extraction network”

which computes a feature map for each video frame. The second part is a “flow-guided

feature aggregation” block. It uses optical flow to warp feature maps of several past

and future frames into a single aggregate feature map. Finally, a “detection network”

predicts bounding boxes for the current frame based on the output of the aggregation

step.

FGFA uses backward motion compensation to warp the feature map of the jth

frame (fj) to the ith frame as follows:

fj→i =W(fj,Mi→j) (8.1)

where W(.) is a warping function with bilinear interpolation, Mi→j is the predicted

optical flow field from frame i to j and fj→i represents fj warped to frame i. For

computing Mi→j, a neural network called FlowNet [Dosovitskiy et al., 2015] is used.
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Then, an aggregate of the warped features is computed as follows:

f̄i =
∑i+K

j=i−K
wj→ifj→i (8.2)

where K represents the number of past and future frames to be aggregated and wj→i

are adaptive weights. In order to compute weights wj→i, feature maps fi and fj→i are

fed into a shallow neural network to produce outputs f εi and f εj→i, respectively. Then,

at each spatial location p, wj→i(p) is computed as the cosine similarity between f εi (p)

and f εj→i(p) followed by SoftMax function to normalize the weights as follows:

w̄j→i(p) = exp
( f εi (p) · f εj→i(p)
‖f εi (p)‖‖f εj→i(p)‖

)
, wj→i(p) =

w̄j→i(p)∑i+K
j′=i−K(w̄j′→i(p))

(8.3)

In the last step, f̄i (8.2) is fed into the “detection network” to predict bounding

boxes in the ith frame.

Following the ideas introduced in FGFA [Zhu et al., 2017] and summarized above,

we introduce RAPiD+FGFA which applies temporal aggregation to each of the 3

feature maps generated by the “backbone” network of RAPiD (P1, P2 and P3 in

Figure 7·2). We use the Farnebäck optical-flow algorithm [Farnebäck, 2003] since we

found that it performs better than FlowNet for OHF videos (FlowNet was trained on

standard videos).

We also introduce RAPiD+FA, which applies feature aggregation with adaptive

weights, but without feature warping, i.e., fj→i = fj.

8.3 Experimental Results

Table 8.1 compares the performance of algorithms proposed in this chapter with

state-of-the-art algorithms on WEPDOF. The proposed extensions of RAPiD achieve

2−6% better AP50 score than the original version. This demonstrates the importance

of temporal information for people detection.
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Table 8.1: In-the-wild comparison of people-detection algorithms on
WEPDOF. The average run-times are computed on a node with a single
NVIDIA Tesla V100 GPU.

Algorithm AP50 APS
50 APM

50 APL
50 P R F

Avg. run-time
per frame

[Tamura et al., 2019] 59.8 11.6 65.2 61.3 0.777 0.508 0.581 98 ms

AA 68.3 11.4 70.1 63.7 0.804 0.647 0.705 1477 ms

AB 69.8 15.8 71.3 63.1 0.818 0.643 0.702 1776 ms

RAPiD 72.0 18.4 72.8 67.9 0.731 0.676 0.668 118 ms

RAPiD + REPP 73.7 19.8 74.2 70.2 0.794 0.679 0.703 1667 ms

RAPiD + FA 75.6 19.6 77.5 71.8 0.784 0.672 0.689 269 ms

RAPiD + FGFA 76.6 20.9 77.9 72.0 0.803 0.691 0.725 300 ms

In particular, REPP improves the bounding boxes produced by RAPiD by chang-

ing their confidence scores, locations and sizes, but does not introduce new detections

that are not produced by RAPiD. Thus, its performance gain is limited.

RAPiD+FA outperforms RAPID+REPP by using an end-to-end integration of

the temporal information and RAPiD+FGFA performs even better with the help of

optical flow. Figure 8·2 shows that spatio-temporal extensions of RAPiD outperform

RAPiD for nearly all confidence score thresholds. In Section 7.5, we discussed the

F-score versus AP50 trade-off between RAPiD and our rotating-window approaches,

AA and AB. Although RAPiD achieves a higher AP50 score, it is outperfromed by

the rotating-window approaches in terms of F-score. Figure 8·2a shows that the best

F-score achieved by RAPiD+FGFA outperforms the one achieved by AA and AB.

However, AA and AB still outperform the spatio-temporal extensions of RAPiD for

high confidence-score thresholds (see Section 7.5 for the explanation).

Performance gains of the proposed extensions come with a trade-off in terms of

efficiency (see Table 8.1). When applied to regular bounding boxes, REPP is proven

to be very efficient with just a few of milliseconds of extra computation time per

frame [Sabater et al., 2020]. During inference, REPP computes IoU between all pairs

of bounding-box predictions in consecutive frames. This computation can be done
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Figure 8·2: Comparison of people-detection algorithms on WEPDOF
in terms of: (a) F-score versus confidence-score thresholds; and (b)
Precision versus Recall . Tamura et al. [Tamura et al., 2019] is omitted
since its performance is significantly lower.
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very efficiently for regular bounding boxes but requires computationally expensive

geometric libraries for rotated bounding boxes making it inefficient.

For all of the reported algorithms, APS
50 is 5-6 times lower than APM

50 and APL
50.

Both MS COCO and fisheye people-detection datasets used for training are very

limited in terms of small bounding boxes and this makes it challenging for learning-

based algorithms to predict small bounding boxes. Clearly, this is an open research

direction for people-detection algorithms from overhead fisheye cameras.

Figure 8·3 shows sample results produced by RAPiD and its spatio-temporal ex-

tensions applied to video frames from WEPDOF. Clearly, leveraging temporal infor-

mation improves the performance on some of the real-life challenges such as severe

camouflage (“Exhibition Setup”) and very small body projections (“Tech Store” and

“Warehouse”). In the result from “Tech Store”, RAPiD produced two false detec-

tions in the center of the frame. One of them was corrected by all three proposed

extensions and the other by two of them. Usually, this kind of a false detection hap-

pens in RAPiD with a low confidence score. In most frames, the score is below a set

threshold and no person detection occurs. However, in some frames the confidence

score exceeds the set threshold resulting in intermittent false detections. The spatio-

temporal versions of RAPiD help smooth out the confidence score temporally thus

reducing a chance of a false detection. An analogous observation can be made with

respect to missed detections (false negatives) in “Exhibition Setup” and “Warehouse”

in Figure 8·3.

In Table 8.2, we report per-video AP50 scores of the reported algorithms on

WEPDOF. Although spatio-temporal algorithms outperform the spatial-only algo-

rithms for most of the videos, there is no single best algorithm for all the videos. Even

the improved scores of the reported algorithms are not satisfactory for videos with

tiny projected bodies at field-of-view periphery (e.g., “Exhibition Setup”), distorted
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Figure 8·3: Qualitative results of RAPiD and its spatio-temporal
extensions on videos from WEPDOF. Green boxes are true positives,
red boxes are false positives, and yellow boxes are false negatives.
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image aspect ratio (e.g., “Street Grocery”), and strong camouflage (e.g., “Printing

Store”). We believe the performance on these challenges can be further improved by

developing algorithms that address them directly (e.g., data augmentation to mimic

these challenges in the training set).

8.4 Discussion

In this chapter, we introduced the first ever spatio-temporal people-detection al-

gorithms from overhead, fisheye cameras by combining RAPiD (Chapter 7) with

state-of-the-art video-object-detection algorithms. We demonstrated that leveraging

temporal information significantly improves the people-detection performance. The

proposed extensions of RAPiD outperformed state-of-the-art algorithms on nearly all

of the evaluation metrics we have tested.

Even the best-performing algorithm, RAPiD+FGFA, is far from perfect on our

in-the-wild dataset, WEPDOF, with an AP50 score of 76.6%. We conducted a detailed

analysis of the results to pinpoint deficiencies of the tested algorithms. In terms of

people, very small body size and camouflage turned out to be the main bottlenecks.

Also, a cropped or distorted camera field of view proved challenging. In addition to

these challenges, computational efficiency is another direction for future research –

the current algorithms are far from real-time execution. Further advances in these

areas are needed before people detection from OHF cameras becomes a reliable tool

in practice.
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Chapter 9

Conclusions and Future Directions

In this dissertation, we proposed novel deep-learning algorithms for two different

applications of video analysis: (i) background subtraction and (ii) people detection

from overhead fisheye cameras.

In terms of background subtraction, we focused on supervised deep-learning algo-

rithms designed for unseen videos and we proposed video-agnostic evaluation method-

ologies that treat each video in a dataset as unseen. The first algorithm that we

introduced is called Background Subtraction for Unseen Videos (BSUV-Net). One

of the main novelties of BSUV-Net is the use of background models from different

time scales, in addition to the current frame, as an input to the network. Another

novelty is a temporal data augmentation that we introduced to mimic illumination

changes commonly occurring in real-world videos. Experimental results on CDNet-

2014 [Goyette et al., 2014] show that BSUV-Net outperforms state-of-the-art video-

agnostic BGS algorithms and its performance can be further improved by adding

SemanticBGS [Braham et al., 2017] as a post-processing layer.

In follow-up work, we introduced BSUV-Net 2.0 which improves BSUV-Net by

applying several spatio-temporal data augmentations to synthetically increase the

number of inputs mimicking real-world challenges. Specifically, we introduced new

augmentations for PTZ, camera jitter and intermittent object motion scenarios, and

achieved significant performance improvements in these categories and, consequently,

a better overall performance on CDNet-2014 dataset. We also showed that BSUV-Net
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2.0 can be simplified by skipping the semantic segmentation network which makes it

possible to run the algorithm in real-time while performing better than state-of-the-

art methods. Finally, we demonstrated a strong generalization capacity of BSUV-Net

2.0 using cross-dataset evaluation on LASIESTA in which it significantly outperforms

the current state-of-the-art methods on a completely unseen dataset.

A video-agnostic evaluation of supervised BGS algorithms requires a distinct set

of training and testing videos. However, the evaluation server of CDNet-2014 ranks

the algorithms based on their average performance on all of its videos. In order to

compare our algorithms with state of the art reported on this evaluation server in a

video-agnostic manner, we introduced a 4-fold cross-validation data split for CDNet-

2014. We hope that the introduced cross-validation strategy will provide an easy and

fair comparison mechanism for supervised BGS algorithms developed in the future.

In the second part of this dissertation (Chapters 5-8), we introduced multiple

algorithms and datasets for people detection from overhead fisheye cameras. Due

to the lack of prior datasets with rotated bounding boxes, we collected three new

datasets with overhead fisheye videos and annotated them with rotated bounding

boxes tightly drawn around each person. We also re-annotated a subset of the Mirror

Worlds dataset [Ma et al., 2018b] with rotated bounding boxes. While three of the

four datasets were recorded in staged scenarios, the fourth one consists of YouTube

videos with many real-world challenges. By reporting 7 performance metrics and

2 performance trade-off plots, we offered a detailed analysis of the strengths and

weaknesses of our people-detection algorithms.

The first two algorithms, that we introduced for people detection from OHF cam-

eras, apply blindly (Activity-Blind or AB method) or selectively (Activity-Aware or

AA method) a state-of-the-art object-detection method to overlapping rotated win-

dows. These algorithms were motivated by the observation that orientations of people
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in the top-center part of overhead fisheye images are similar to those in standard side-

view images. In AB, we applied a state-of-the-art object-detection algorithm, YOLO

v3 trained on standard images, to the top-center part of an overhead fisheye image

and rotated the image 24 times to cover the entire field of view. In AA, we used

background subtraction as a pre-processing step to find the windows of interest in

the frame and applied YOLO v3 only to these windows. Through numerous exper-

iments, we showed that both approaches outperformed state of the art at the time,

at the cost of very high computational complexity due to the multiple applications of

YOLO v3.

In follow-up work, we introduced an end-to-end algorithm by extending YOLO

v3 to predict arbitrarly-oriented bounding boxes. We proposed a novel 5-D param-

eterization of rotated bounding boxes and a novel periodic loss function. Our algo-

rithm, Rotation-Aware People Detection in overhead fisheye images (RAPiD), sig-

nificantly outperforms state of the art, including the AA and AB algorithms. We

further improved RAPiD by leveraging temporal information. We introduced three

spatio-temporal extensions of RAPiD and demonstrated their improved performance

compared to RAPiD and the state of the art.

9.1 Future Directions

In this section, based on the work introduced in this dissertation, we discuss several

research directions that are worth pursuing.

9.1.1 Background Subtraction

Video-Agnostic Benchmarking of Supervised BGS Algorithms

For video analysis tasks, such as background subtraction, a video-agnostic evaluation

of data-driven algorithms requires that datasets be split into separate training and
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test sets composed of complete videos (videos should not be divided to be used in both

sets). Ideally, the annotations of test videos should be kept private to ensure a fair

comparison. However, as discussed in Section 3.7, existing BGS datasets provide an-

notations from each video and compare the algorithms based on their performance on

the full dataset. Several researchers, including ourselves, reported video-agnostic com-

parison of their algorithms using different training/testing or cross-validation splits.

Due to inconsistencies between these evaluation schemes, a detailed comparison of

state-of-the-art BGS algorithms has not been completed to date. This issue can be

addressed by implementing and benchmarking supervised BGS algorithms using a

fixed and unbiased evaluation scheme. This will also encourage future researchers

to use the same evaluation scheme to compare their algorithms against state of the

art. Another direction is to introduce a new background subtraction dataset, aimed

at testing supervised algorithms, with private annotations. This would enable per-

formance evaluation without allowing any training on the annotations of the test

data.

Network Architecture

In this dissertation, we kept the network design of our algorithms relatively simple

and focused on leveraging temporal information for BGS and on data augmentation

techniques to improve robustness to various challenges. The recent advances in neu-

ral network design can be explored to improve the performance or efficiency of our

approaches [Howard et al., 2017,Sandler et al., 2018,Tan and Le, 2019].

Unsolved BGS Challenges

The performance of BGS algorithms in challenging scenarios, such as night videos

and moving cameras, is still insufficient for real-world applications. Further research

is needed to accommodate such scenarios. One of the key limitations is the amount
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of labeled data with various challenges. For example, CDNet2014 has at most 6

videos for each challenge type which makes it difficult for data-driven approaches

to successfully learn these challenges. An extensive collection and annotation of

training data under various challenges would help with the development of more

robust algorithms.

Domain Adaptation

Although the publicly-available BGS datasets include hundreds of thousands of la-

beled video frames, the number of different scenes is quite limited. For example,

CDNet-2014 is comprised of videos depicting 53 different scenes. This limited vari-

ety of scene scenarios is insufficient to train a generalizable supervised algorithm. In

this dissertation, we addressed this problem by extending the dataset using spatio-

temporal data augmentations. Another approach is to apply domain adaption (DA)

[Wang and Deng, 2018, Zhuang et al., 2021]. Given the target domain of a problem

of interest (e.g., background subtraction), the basic idea in DA is to find a source

domain of another problem with a large labeled dataset that in some way is similar

to the problem of interest and to leverage this similarity. In the case of background

subtraction, there exist similar but more extensive and diverse datasets. For example,

YouTube - Video Instance Segmentation (VIS) [Yang et al., 2019a] dataset consists

of labeled frames from 2,883 different videos. In VIS, the goal is to detect, segment

and track every object instance in a given video, so it is very similar to BGS which

aims to detect foreground pixels. In this case, one could consider YouTube-VIS as a

labeled source domain and CDNet-2014 as a labeled target domain, and leverage the

similarity between the two datasets/problems to improve background subtraction.

One could also consider unsupervised domain adaption. The basic idea is that

every time a security camera is mounted at a new location, the scene will be different

than those used during training. In this case, one could perform a scene-specific



149

calibration as follows. After the camera is mounted, unlabeled frames can be collected

during the first few hours or days, and these data might be used to tackle the domain

shift between the new scene and the scenes in the training dataset via unsupervised

domain adaptation. For example, a common methodology used in both supervised

and unsupervised domain adaption is to reduce the difference between the training

and test domain distributions by using a domain discrepancy loss [Long et al., 2015]

or a discriminator network [Tzeng et al., 2017].

9.1.2 People Detection from Overhead Fisheye Cameras

Fisheye-Lens Distortions

In people detection algorithms, we focused on the radial geometry of OHF images

by producing rotated bounding boxes and introducing an angle-aware loss function

(see Section 7.3). Another challenging property of OHF cameras are distortions due

to the wide-angle fisheye lens; objects appear larger in the center of the image and

are radially-compressed at field-of-view periphery. This property can be leveraged

for people detection algorithms. For example, during training false detections with

large bounding boxes produced at the field-of-view periphery and with small bound-

ing boxes produced in image center can be penalized more than other false detections.

Alternatively, these distortions can be modeled and applied during data augmenta-

tion to improve networks’ robustness. Recently, Tamura et al. used a fisheye camera

model to transform standard-lens images to fisheye-lens-like images and used these

transformed images in training [Tamura and Yoshinaga, 2021]. This idea can be ex-

tended further to augment the overhead images captured by a fisheye lens to look like

captured by a different fisheye lens (different distortion parameters) and/or installed

at different height. A supervised algorithm trained using such an augmentation would

likely be more robust to different hardware and installation heights.
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Unsolved Challenges

As discussed in Section 8.3, people who appear very small in fisheye images, severe

camouflage and cropped/distorted field of view are still challenging for even the best-

performing people-detection algorithms. Further advances in these areas are needed

before people detection from overhead fisheye cameras becomes a reliable tool in

practice. The cropped and distorted fields of view can be easily incorporated into

data augmentation to improve performance. The camouflage effects can be mimicked

to some degree by decreasing image contrast. The detection of small projections of

people is not straightforward in terms of data augmentation. An alternative approach

might be to consider small ground-truth bounding boxes as hard examples and weight

their loss values higher than those of the easier examples.

Domain Adaptation

The domain adaptation techniques that we discussed for BGS can be easily extended

to people detection from overhead fisheye cameras. There exist several video-object

detection datasets with significantly more videos than our OHF datasets. For ex-

ample, ImageNet VID [Russakovsky et al., 2015] consists of about 2,000 videos la-

beled with image-axis aligned bounding boxes. Also, the video-instance segmentation

datasets such as YouTube-VIS [Yang et al., 2019a] can be used to construct bounding

box annotations. These extensive datasets can be leveraged in a supervised domain

adaptation setting to improve the performance of people detection algorithms from

OHF cameras.

People Tracking and Re-Identification from Overhead Fisheye Cameras

Three of the people detection datasets that we introduced for OHF cameras (MW-

R, CEPDOF and WEPDOF) are annotated spatio-temporally and thus can be used

for people tracking and re-identification. Although these tasks have been explored
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in depth for standard cameras [Zheng et al., 2015, Milan et al., 2016, Muller et al.,

2018,Luo et al., 2020,Ye et al., 2021], to the best of our knowledge there is no recent

work on person tracking or re-identification from OHF cameras. A combination of the

people-detection algorithms introduced in this dissertation with some state-of-the-art

person tracking or re-identification networks could be a good starting point.
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Farnebäck, G. (2003). Two-frame motion estimation based on polynomial expansion.
In Scandinavian conference on Image analysis, pages 363–370. Springer.

Fu, C.-Y., Liu, W., Ranga, A., Tyagi, A., and Berg, A. C. (2017). DSSD: Deconvo-
lutional single shot detector. arXiv preprint arXiv:1701.06659.

Girshick, R. (2015). Fast R-CNN. In 2015 IEEE International Conference on Com-
puter Vision (ICCV), pages 1440–1448.

Goyette, N., Jodoin, P.-M., Porikli, F., Konrad, J., and Ishwar, P. (2014). A novel
video dataset for change detection benchmarking. IEEE Transactions on Image
Processing, 23(11):4663–4679.

Haines, T. S. and Xiang, T. (2014). Background subtraction with dirichletprocess
mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(4):670–683.

Han, M., Wang, Y., Chang, X., and Qiao, Y. (2020). Mining inter-video proposal
relations for video object detection. In Computer Vision – European Conference
on Computer Vision (ECCV) 2020, pages 431–446. Springer.

Han, W., Khorrami, P., Paine, T. L., Ramachandran, P., Babaeizadeh, M., Shi, H.,
Li, J., Yan, S., and Huang, T. S. (2016). Seq-NMS for video object detection.
arXiv preprint arXiv:1602.08465.

He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017). Mask R-CNN. In 2017
IEEE International Conference on Computer Vision (ICCV), pages 2980–2988.



155

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., and Adam, H. (2017). MobileNets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.
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