Courses

The listing of a course description here does not guarantee a course’s being offered in a particular term. Please refer to the published schedule of classes on MyBU Student Portal for confirmation a class is actually being taught and for specific course meeting dates and times.

  • MET CS 495: Directed Study
    Undergraduate Prerequisites: consent of advisor. - Independent study on special projects under faculty guidance.
  • MET CS 506: Internship in Computer Science
    This course provides graduate students with the opportunity to seek internships. The chosen internship must be related to the student's specialization of study. Students enrolled in the course will be individually supervised by a faculty member from the Department of Computer Science. This course may not be taken until the student has completed at least six courses towards their master's program. Graduate standing in MS programs offered by the MET Department of Computer Science is required. The internship credits cannot be applied toward the MS degree program.
  • MET CS 520: Information Structures with Java
    Undergraduate Prerequisites: Prerequisites: MET CS 201, Introduction to Programming (On Campus and Blended); MET CS 200, Fundamentals of Information Technology (Online O nly) - This course covers the concepts of object-oriented approach to software design and development using the Java programming language. It includes a detailed discussion of programming concepts starting with the fundamentals of data types, control structures methods, classes, applets, arrays and strings, and proceeding to advanced topics such as inheritance and polymorphism, interfaces, creating user interfaces, exceptions, and streams. Upon completion of this course the students will be able to apply software engineering criteria to design and implement Java applications that are secure, robust, and scalable. Prereq: MET CS 200 or MET CS 300 or Instructor's Consent. Not recommended for students without a programming background. For undergraduate students: This course may not be taken in conjunction with METCS232. Only one of these courses can be counted towards degree requirements.
  • MET CS 521: Information Structures with Python
    This course covers the concepts of the object-oriented approach to software design and development using Python. It includes a detailed discussion of programming concepts starting with the fundamentals of data types, control structures methods, classes, arrays and strings, and proceeding to advanced topics such as inheritance and polymorphism, creating user interfaces, exceptions and streams. Upon completion of this course students will be able to apply software engineering principles to design and implement Python applications that can be used in with analytics and big data. Effective Fall 2021, this course fulfills a single unit in each of the following BU Hub areas: Quantitative Reasoning II, Creativity/Innovation, Critical Thinking.

    Prerequisite: Programming experience in any language. Or Instructor's consent.

    • Creativity/Innovation
    • Critical Thinking
    • Quantitative Reasoning II
  • MET CS 526: Data Structures and Algorithms
    This course covers and relates fundamental components of programs. Students use various data structures to solve computational problems, and implement data structures using a high-level programming language. Algorithms are created, decomposed, and expressed as pseudocode. The running time of various algorithms and their computational complexity are analyzed. Prerequisite: MET CS300 and either MET CS520 or MET CS521, or instructor's consent.
  • MET CS 535: Computer Networks
    Undergraduate Prerequisites: (METCS575) ; Undergraduate Corequisites: Undergraduate students can not take any combination of courses from th e list: CS 425, CS 535, CS 625. Only one of these courses can be coun ted toward their requirements. - This course provides a robust understanding of networking. It teaches the fundamentals of networking systems, their architecture, function and operation and how those fundamentals are reflected in current network technologies. Students will learn the principles that underlie all networks and the application of those principles (or not) to current network protocols and systems. The course explains how layers of different scope are combined to create a network. There will be a basic introduction to Physical Media, the functions that make up protocols, such as error detection, delimiting, lost and duplicate detection; and the synchronization required for the feedback mechanisms: flow and retransmission control, etc. Students will be introduced to how these functions are used in current protocols, such as Ethernet, WiFi, VLANs, TCP/IP, wireless communication, routing, congestion management, QoS, network management, security, and the common network applications as well as some past applications with unique design solutions. Prereq: MET CS 575 and MET CS 201 or MET CS 231 or MET CS 232. Or instructor's consent. Restrictions: This course may not be taken in conjunction with MET CS 625 or MET CS 425 (undergraduate). Only one of these courses can be counted towards degree requirements.
  • MET CS 544: Foundations of Analytics and Data Visualization
    Formerly titled CS 544 Foundations of Analytics with R.
    The goal of this course is to provide students with the mathematical and practical background required in the field of data analytics. Probability and statistics concepts will be reviewed as well as the R tool for statistical computing and graphics. Different types of data are investigated along with data summarization techniques and plotting. Data populations using discrete, continuous, and multivariate distributions are explored. Errors during measurements and computations are analyzed in the course. Confidence intervals and hypothesis testing topics are also examined. The concepts covered in the course are demonstrated using R. Laboratory Course. Prereq: MET CS546 and (MET CS520 or MET CS521), or equivalent knowledge, or instructor's consent.
  • MET CS 546: Introduction to Probability and Statistics
    Undergraduate Prerequisites: Academic background that includes the material covered in a standard c ourse on college algebra. - The goal of this course is to provide students with the mathematical fundamentals required for successful quantitative analysis of problems. The first part of the course introduces the mathematical prerequisites for understanding probability and statistics. Topics include combinatorial mathematics, functions, and the fundamentals of differentiation and integration. The second part of the course concentrates on the study of elementary probability theory, discrete and continuous distributions. Prereq: Academic background that includes the material covered in a standard course on college algebra or instructor's consent. For undergraduate students: This course may not be taken in conjunction with MET MA 213, only one of these courses will count toward degree program requirements. Students who have taken MET MA 113 as well as MET MA 123 will also not be allowed to count MET CS 546 towards degree requirements.
  • MET CS 550: Computational Mathematics for Machine Learning
    Undergraduate Prerequisites: Basic knowledge of Python or R; or consent of instructor. - Mathematics is fundamental to data science and machine learning. In this course, you will review essential mathematical concepts and fundamental procedures illustrated by Python and/or R code and visualizations. Computational methods for data science presented through accessible, self-contained examples, intuitive explanations, and visualization will be discussed. Equal emphasis will be placed on both mathematics and computational methods that are at the heart of many algorithms for data analysis and machine learning. You will also advance your mathematical proficiency enabling you to effectively apply your skills to data analytics and machine learning.
  • MET CS 555: Foundations of Machine Learning
    Formerly titled CS 555 Data Analysis and Visualization with R.
    This course provides an overview of the statistical tools most commonly used to process, analyze, and visualize data. Topics include simple linear regression, multiple regression, logistic regression, analysis of variance, and survival analysis. These topics are explored using the statistical package R, with a focus on understanding how to use and interpret output from this software as well as how to visualize results. In each topic area, the methodology, including underlying assumptions and the mechanics of how it all works along with appropriate interpretation of the results, are discussed. Concepts are presented in context of real world examples. Recommended Prerequisite: MET CS 544 or equivalent knowledge, or instructor's consent.
  • MET CS 561: Financial Analytics
    This course presents financial algorithms used in applications of computer science in financial decision analysis, risk management, data mining and market analysis, and other modern business processes. The course covers theoretical background on probabilistic methods used for financial decision making and their application in number of fields such as financial modeling, venture capital decision making, operational risk measurement and investment science. Number of financial applications and algorithms are being presented for portfolio risk analysis, modeling real options, venture capital decision making, etc. The course concludes with algorithms for financial risk assessment and presents the security concepts and challenges of financial information systems.
  • MET CS 566: Analysis of Algorithms
    Undergraduate Prerequisites: (CS341 or CS342 or CS526) or instructor's consent - earn basic methods for designing and analyzing efficient computer algorithms and practice hands-on programming skills. Topics include sorting, searching, dynamic programming, greedy algorithms, advanced data structures, graph algorithms (shortest path, spanning trees, tree traversals), matrix operations, string matching, and NP-completeness.
  • MET CS 570: Biomedical Sciences and Health IT
    This course is designed for IT professionals, and those training to be IT professionals, who are preparing for careers in healthcare-related IT (Health Informatics). This course provides a high-level introduction into basic concepts of biomedicine and familiarizes students with the structure and organization of American healthcare system and the roles played by IT in that system. The course introduces medical terminology, human anatomy and physiology, disease processes, diagnostic modalities, and treatments associated with common disease processes. IT case studies demonstrate the key roles of health informatics and how IT tools and resources help medical professionals integrate multiple sources of information to make diagnostic and therapeutic decisions.
  • MET CS 575: Operating Systems
    Undergraduate Prerequisites: (METCS472) and (CS 231 or CS 232) or instructor's consent - Overview of operating system characteristics, design objectives, and structures. Topics include concurrent processes, coordination of asynchronous events, file systems, resource sharing, memory management, security, scheduling and deadlock problems. Prereq: MET CS472, and MET CS231 or MET CS232, or instructor's consent.
  • MET CS 579: Database Management
    Undergraduate Prerequisites: (METCS231 OR METCS232) or consent of instructor. ; Undergraduate Corequisites: Restrictions: This course may not be taken in conjunction with CS 669 or CS 469 (undergraduate). Only one of these courses can be counted to wards degree requirements. - This course provides a theoretical yet modern presentation of database topics ranging from Data and Object Modeling, relational algebra and normalization to advanced topics such as how to develop Web-based database applications. Other topics covered - relational data model, SQL and manipulating relational data; applications programming for relational databases; physical characteristics of databases; achieving performance and reliability with database systems; object- oriented database systems. Prereq: MET CS 231 or MET CS 232; or instructor's consent. Restrictions: This course may not be taken in conjunction with MET CS 469 (undergraduate) or MET CS 669. Refer to your Department for further details.
  • MET CS 580: Health Informatics
    Undergraduate Prerequisites: (METCS570) - This course presents the fundamental principles, concepts, and technological elements that make up the building blocks of Health Informatics. It introduces the characteristics of data, information, and knowledge in the domain, the common algorithms for health applications, and IT components in representative clinical processes. It presents the conceptual framework for handling biomedical data collection, storage, and optimal use. It covers the concepts of population health and precision medicine and the information systems that support them. It introduces basic principles of knowledge management systems in biomedicine, various aspects of Health Information Technology standards, and IT aspects of clinical process modeling. Students design a simple Health Informatics solution as a term project.
  • MET CS 581: Health Information Systems
    Health Information Systems are comprehensive application systems that automate the activities of healthcare delivery including clinical care using electronic health records (EHRs), coordination of care across providers, telehealth, management of the business of healthcare such as revenue cycle management, and population health management. The course covers the functionality of these systems, the underlying information technology they require and their successful operations. It addresses challenges in this rapidly changing field such as complex data, security, interoperability, mobile technology and distributed users. The course emphasizes applied use of health information systems through case studies, current articles, and exercises.
  • MET CS 584: Ethical and Legal Issues in Healthcare Informatics
    Laws, regulations, and ethics guide the practice of health information management (HIM) and health informatics (HI). This course introduces students to the workings of the American legal system and concepts and theories of ethics, examines the legal, ethical, and regulatory issues that impact the protection of confidentiality and integrity of patient information, and, on the other hand, the improvement of accessibility of patient information to enable healthcare providers to make informed decision based on complete patient data. We will cover laws and regulations that are central to the HIM and HI professions, including Privacy Act of 1974, the Health Insurance Portability and Accountability Act (HIPAA), the Genetic Information Nondiscrimination Act of 2008 (GINA), the Health Information Technology for Economic and Clinical Health (HITECH) Act, the Food and Drug Administration Safety and Innovation Act (FDASIA), the 21st Century Cures Act, and the Confidentiality of Alcohol and Drug Abuse Patient Records Regulations, and more. The goal is to enable HIM and HI practitioners to make effective and informed decisions that prompt patient safety and care quality improvement.
  • MET CS 593: Special Topic: Entrepreneurship in Health IT and Biotech
    Spring 2024 Course Description: The course introduces basic business concepts in biomedical, biotech and health information technology entrepreneurship and provides a hands-on experience in creating, proposing and justifying a business model for a healthcare or a biotech startup. Foundational study and research of entrepreneurship, business models, international healthcare systems and innovation compose the first three modules of the course. For the final two modules, students work in teams to propose founder roles, business ideas and analysis leading to a business plan. After providing market needs and competitive analysis of proposals, they visualize and assess overall business models, including strengths, weaknesses, opportunities and threats analysis. Finally, they present their business models including the empathy map and the canvas blocks, defending their business proposal.
  • MET CS 599: Biometrics
    In this course we will study the fundamental and design applications of various biometric systems based on fingerprints, voice, face, hand geometry, palm print, iris, retina, and other modalities. Multimodal biometric systems that use two or more of the above characteristics will be discussed. Biometric system performance and issues related to the security and privacy aspects of these systems will also be addressed.