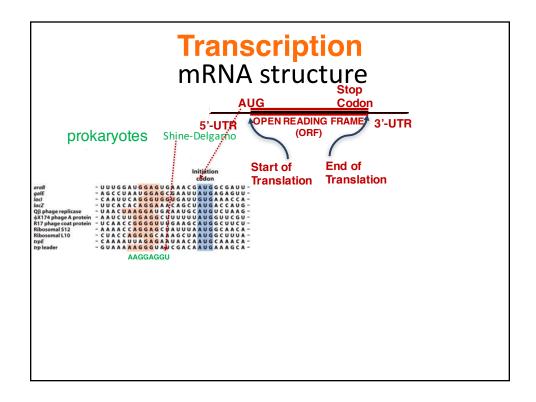
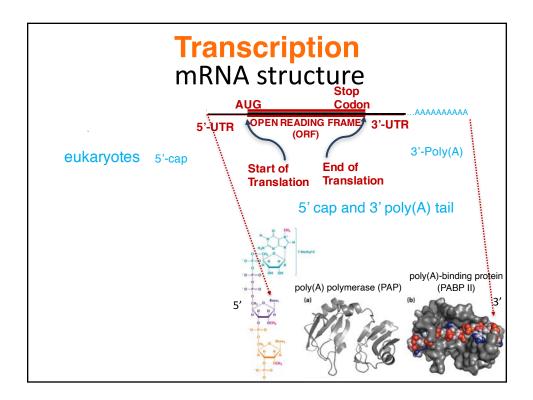
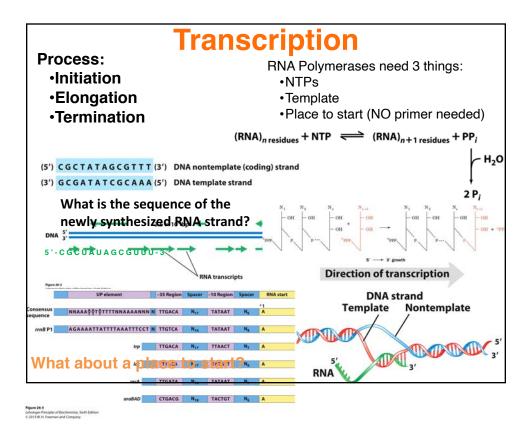
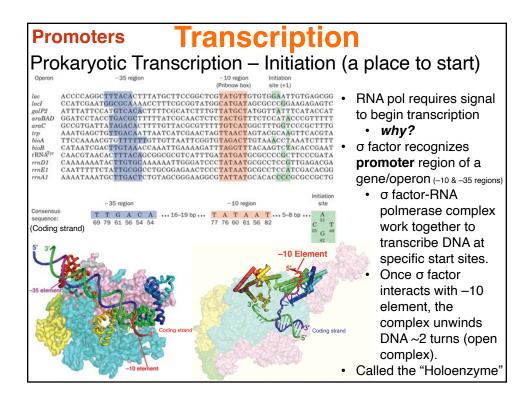
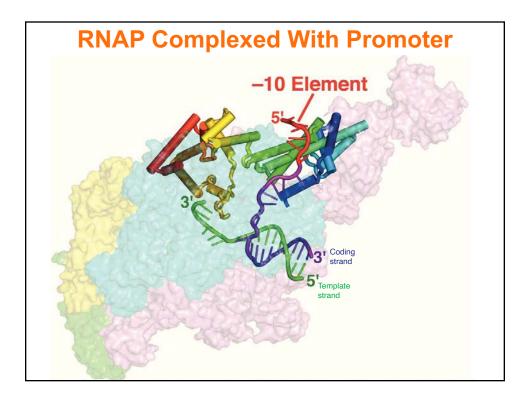

Transcription & Translation

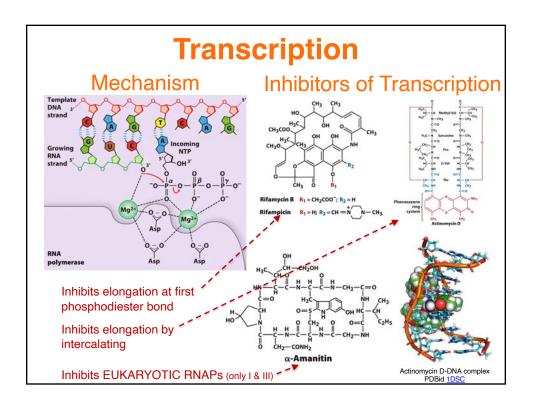

Transcription

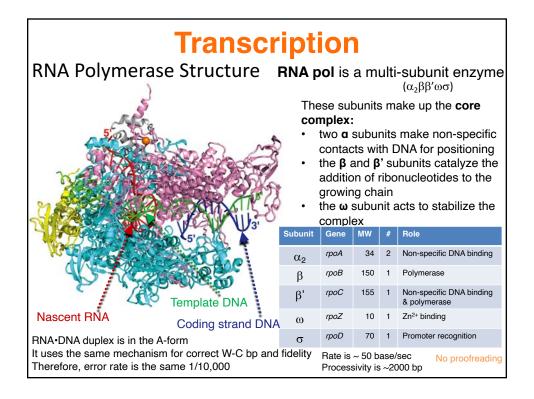

Overview-mRNA structure Process **RNA** Polymerase Fidelity Translation Genetic Code triplet decyphering tRNA Structure Anticodon Acylation (charging) Aminoacyl-tRNA Synthetases Mechanism Fidelity Protein Biosynthesis Overview Process Ribosome review Peptidyl Transferase Fidelity

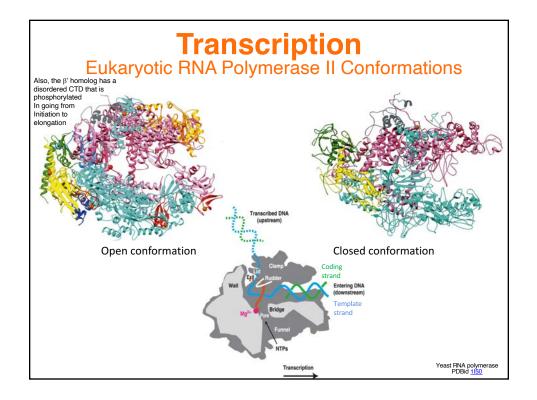

Lec	ture 25 (11/16/20)	Nucleic Acids
TODAY		A. The 4 S's of Nucleotides & NAB. Structure of the Information
• Reading:	Ch25; 990-995, 1005-1012 Ch26; 1035-1038 Ch27; 1077-1085, 1092-1096	C. Recombinant DNA: Biochemical Basis of Biotechnology 1. Restriction enzymes, DNA ligase 2. Vectors and Inserts to make recombinant DNA (rDNA)
Problems:	Ch25 (text); 1-3,5-7,10,13-16,12 Ch25 (study-guide: applying); 1,4 Ch25 (study-guide: facts); 3,4,6 Ch26 (text); 1,2,5,6,12 Ch26 (study-guide: applying); 1 Ch26 (study-guide: facts); 1,3,5 Ch27 (text); 6,7,9 Ch27 (study-guide: applying); 1,3	3. Transformation of hosts 4. Selection of transformants 5. Expression 6. Site-directed mutagenesis D. Replication 1. Polymerases 2. Fidelity a. Polymerase recognition b. Exonuclease
NEXT		i. Direct reversal ii. Base excision
•Reading:	Ch27; 1088-1091, 1096-1108	iii.Nucleotide excision 3. Sequence determination 4. PCB
•Problems:	Ch27 (text); 5,8,10,11,13,16,17 Ch27 (study-guide: applying); 2,3 Ch27 (study-guide: facts); 4,6	4. FCA E. Transcription 1. RNA polymerase 2. fidelity F. Translation 1. Genetic code 2. tRNA

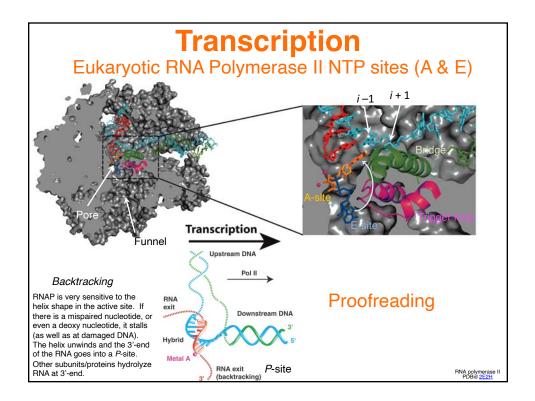


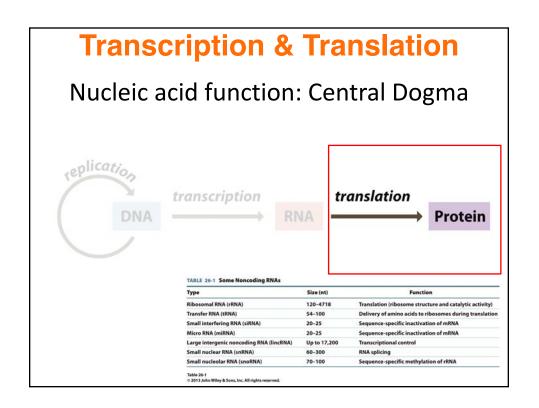


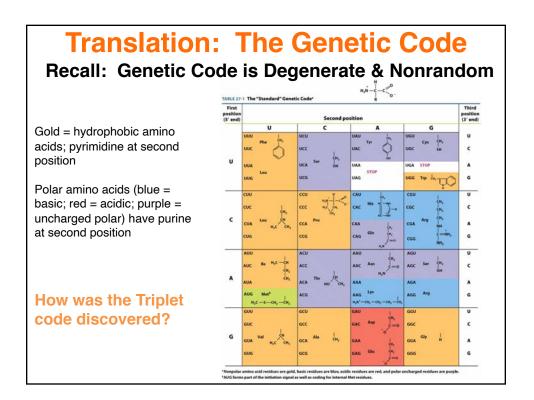


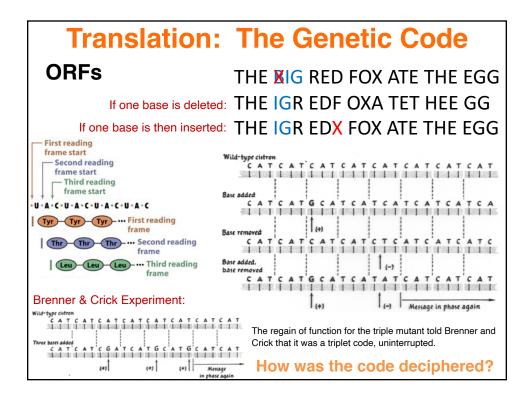






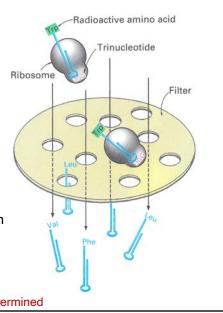






Transcription & Translation	
Transcription	
Overview	
Process	
RNA Polymerase	
Fidelity	
Translation	
Genetic Code	
triplet	
deciphering	
tRNA	
Structure	
Anticodon	
Acylation (charging)	
Aminoacyl-tRNA Synthetases	
Mechanism	
Fidelity	
Protein Biosynthesis	
Overview	
Process	
Ribosome review	
Peptidyl Transferase	
Fidelity	

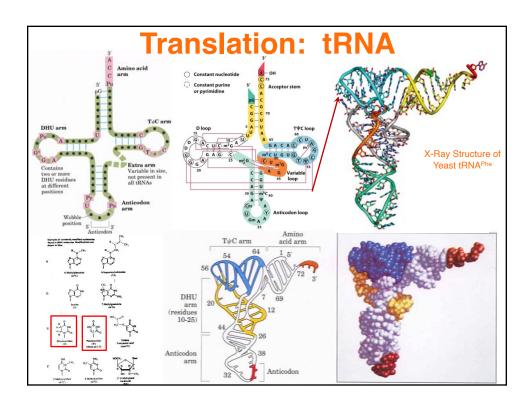
Translation: The Genetic Code **Key Developments:**

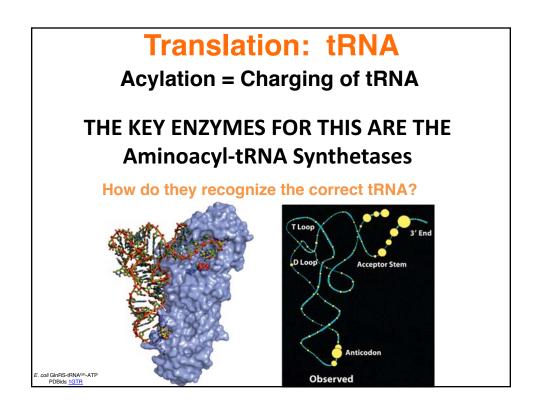

- 1. Chemical synthesis of nucleic acids
- 2. in vitro protein synthesis

Nirenberg (NIH)

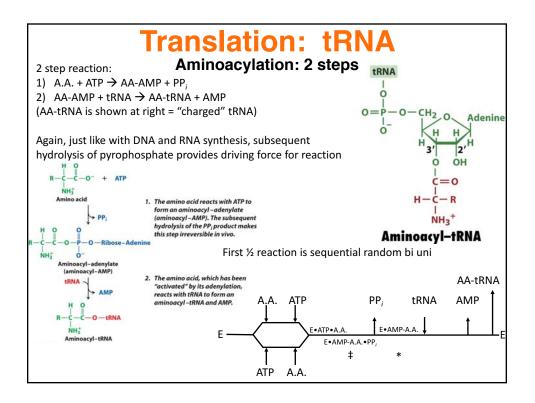
1. First codons used Polynucleotide Phosphorylase (NDP \Rightarrow RNA + P_i) to make RNA in vitro: poly-A, poly-C, etc.

Result: UUU=Phe, AAA=Lys, CCC=Pro, GGG=Gly


- 2. Chemical synthesis of defined triplets. Use ribosomes and charged tRNA with
 - different radioactive amino acids ·Mix and filtrate - only those amino acids with correct tRNA to complementary "mRNA" will complex with the ribosome Result: 50/64 determined



Translation: T	he	Genetic	Code
Key Developments: 1. Chemical synthesis of nucleic acids 2. <u>in vitro</u> protein synthesis <u>Khorana (MIT)</u>	Repeat unit uc	Coding properties of polynucleotides UCU CUC UCU CUC UCU CUC UCU Ser lieu ser lieu	Expected product Single sequence unespective of phase
 Chemical synthesis of repetitive RN by first making small overlapping complementary DNAs, ligating, and using RNA polymerase to make corresponding repetitive RNAs. Add synthetic RNAs to in vitro prote synthesis cocktail with radioactive amino acids. Analyze sequences of the radioactive protein produced. Result: nearly all codons determined, some remained ambiguous. Combined data from Nirenberg establish the CODE. This method was only one able to detere the stop codons. 	bin ve but shed		


Translation: The	e Genetic Code
Key Developments: 1. Chemical synthesis of nucleic acids 2. <u>in vitro</u> protein synthesis	<u>nit</u> <u>Coding properties of polynucleotides</u> <u>Extended Product</u> UCU CUC UCU CUC UCU CUC UCU CUC Single services المراحي المراحي (Single service)
Khorana (MIT)	ser leu ser leu .
•Chemical synthesis of repetitive RNAs by first making small overlapping	AGG AGG AGG AGG Different sequences an different phases bys tys tys
complementary DNAs, ligating, and using RNA polymerase to make	A AGA AGA AGA AG
 corresponding repetitive RNAs. Add synthetic RNAs to in vitro protein synthesis cocktail with radioactive 	84 GAA GAA GAA G 90 - 90 - 90 - 90
amino acids.	UAU CUA UCU AUC UAUC Single sequence interspective of phase tyr - leu - ser - ileu - tyr - · · ·
protein produced. CAUA Result: nearly all codons determined, but some remained ambiguous.	GAU AGA UAG AUA GAU AGA UAG AUA to to t
Combined data from Nirenberg established the CODE. This method was only one able to determine the stop codons.	Use of repeat polynucleotides for deter- mining the genetic code. The polynucleotides were used as messengers in vitro in conjunction with a pro- ten-synthesung system from E. coli. The polypoptide chains produced were isolated and analyzed, and their composition defined the coding properties of the con- tributing triplets. (Adapted from Khorana G. Harvey Lect 6276: 1964)

Transcription & Translation
Transcription
Overview
Process
RNA Polymerase
Fidelity
Translation
Genetic Code
triplet
deciphering
tRNA
Structure
Anticodon
Acylation (charging)
Aminoacyl-tRNA Synthetases
Mechanism
Fidelity
Protein Biosynthesis
Overview
Process
Ribosome review
Peptidyl Transferase
Fidelity

