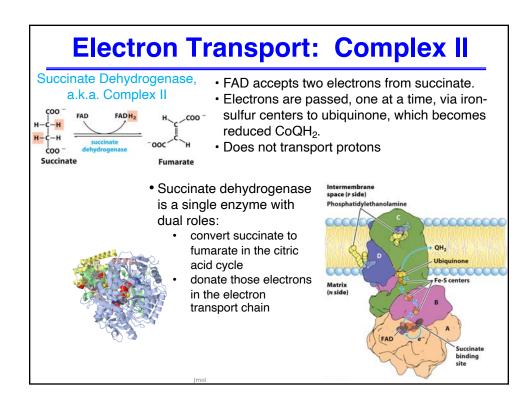
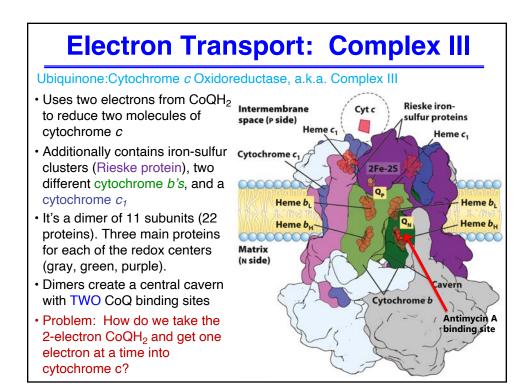
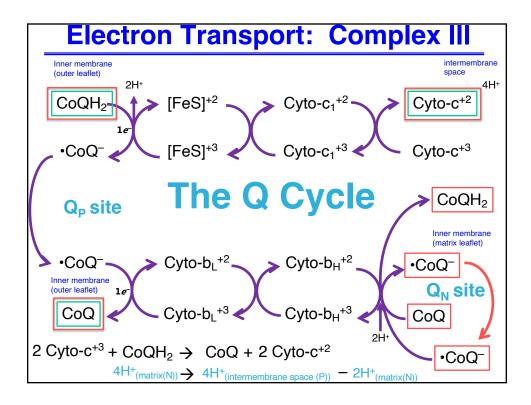
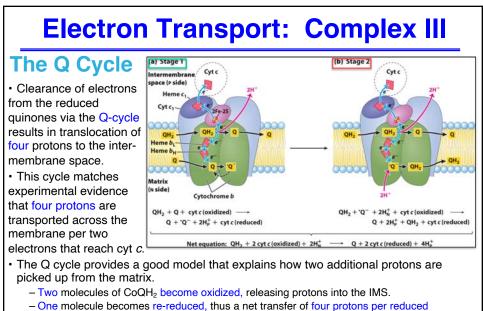

BI/CH 422/622	
OUTLINE: Introduction and review Transport	
Pasteur: Anaerobic vs Aerobic	Exam-1 material
Fermentations	Exam-2 material
Pyruvate	
pyruvate dehydrogenase (ox-decarbox; S-ester) Krebs' Cycle	
How did he figure it out? Overview 8 Steps Citrate Synthase (C-C) Aconitase (=, -OH) Isocitrate dehydrogenase (ox-decarbox; =0) Succinyl-CoA synthetase (sub-level phos) Succinate dehydrogenase (=) Fumarase (-OH) Malate dehydrogenase (=O) Suffmary	arrow Window
Oxidative Phosphorylation Energetics (-0.16 V needed for making ATP)	<u>mow window</u>
Mitochondria Transport (2.4 kcal/mol needed to transport H+ out)	
Electron transport Discovery Four Complexes Complex I: NADH → CoQH2	
Complex II: Succinate \rightarrow CoQH ₂	
Complex III: CoQH₂ → Cytochrome C (Fe²+) Complex IV: Cytochrome C (Fe²+) → H₂O	

		oonents of t spiratory Ch				
Enzyme complex/protein	Mass (kDa)	Number of subunitsª	Prosthetic group(s)	Reduction potential (<i>E</i> ₀́V)	Binding sites for:	Inhibted by:
NADH dehydrogenase	850	45 (14)	FMN, Fe-S	-0.36	NADH, CoQ	amytal, rotenone
l Succinate Jehydrogenase	140	4	FAD-E, Fe-S	0.09 (Co	5 Succinate, Q) CoQ	malonate
II Ubiquinone: cytochrome c oxidoreductase ^b	250	11	Hemes b, c ₁ , Fe-S	0.17	CoQ, Cytochrome c	antimycin a
Cytochrome c ^c	13	1	Heme	0.25	i (Cyt c)	
V Cytochrome oxidase ^b	204	13 (3–4)	Hemes a, a ₃ ; Cu _A , Cu _B	0.57	Cytochrome c, O ₂	Cyanide, azide, CO
Number of subunits in the b Mass and subunit data are Cytochrome <i>c</i> is not part of	for the mone	omeric form.		0.8 (Oz lexes III and IV	2)	otein.
					Solubilization v	ith detergent exchange chromatography








TABLE The Protein Components of the 19-3 Mitochondrial Respiratory Chain							
Enzyme complex/protein	Mass (kDa)	Number of subunitsª	Prosthetic group(s)	Reduction potential (<i>E</i> 。´V)	Binding sites for:	Inhibted by:	
I NADH dehydrogenase	850	45 (14)	FMN, Fe-S	-0.36	NADH, CoQ	amytal, rotenone	
II Succinate dehydrogenase	140	4	FAD-E, Fe-S	0.09	Succinate, CoQ		
III Ubiquinone: cytochrome c oxidoreductase ^b	250	11	Hemes b, c ₁ , Fe-S	0.17	CoQ, Cytochrome c	antimycin a	
Cytochrome c ^c	13	1	Heme				
IV Cytochrome oxidase ^b	204	13 (3–4)	Hemes a, a ₃ ; Cu _A , Cu _B	0.57	Cytochrome c, O ₂	Cyanide, azide, CO	
^a Number of subunits in the b ^b Mass and subunit data are fi ^c Cytochrome c is not part of a	or the mone	omeric form.		lexes III and IV	as a freely soluble pr	otein.	

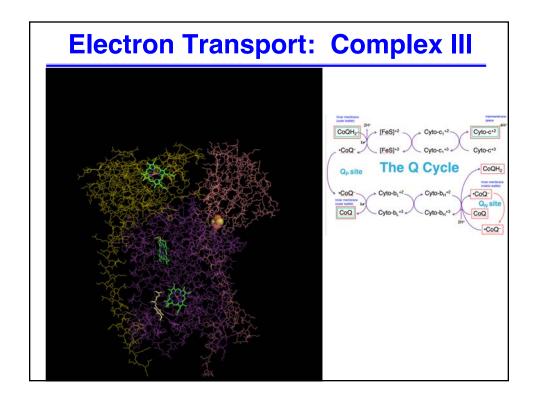
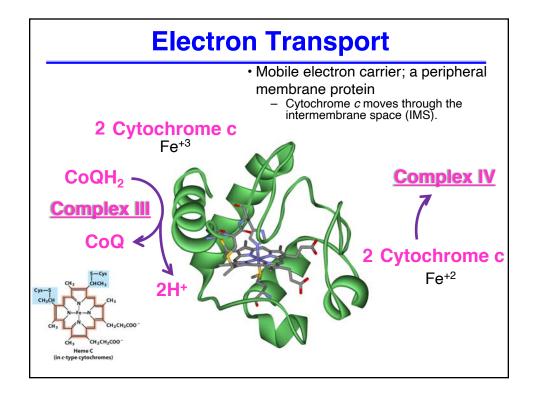
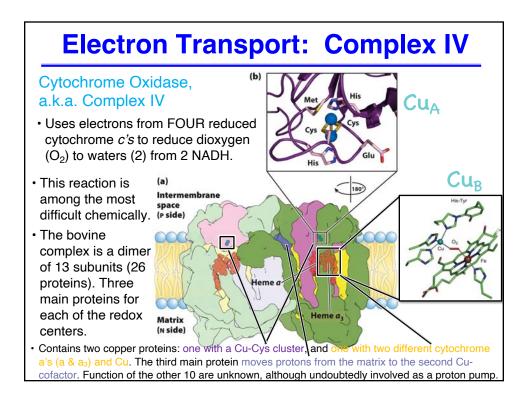
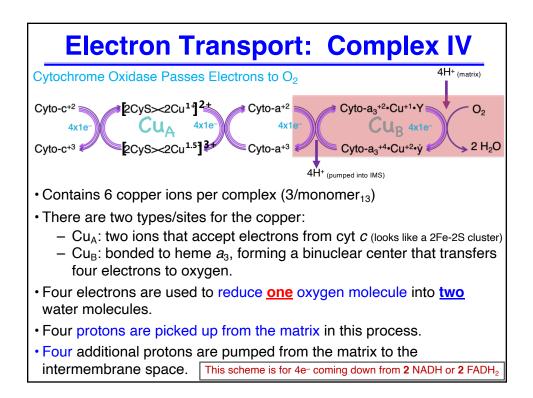
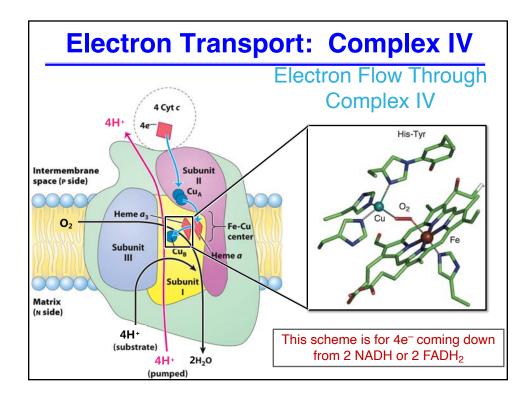


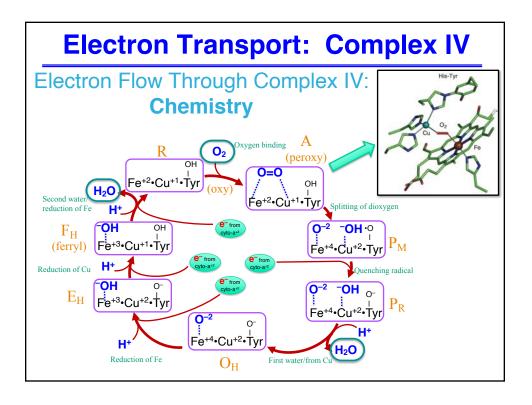
TABLE The Protein Components of the 19-3 Mitochondrial Respiratory Chain							
Enzyme complex/protein	Mass (kDa)	Number of subunitsª	Prosthetic group(s)	Reduction potential (<i>E</i> ₀´ V)	Binding sites for:	Inhibted by:	
NADH dehydrogenase	850	45 (14)	FMN, Fe-S	-0.36	NADH, CoQ	amytal, rotenone	
II Succinate dehydrogenase	140	4	FAD-E, Fe-S	0.09	Succinate, CoQ		
III Ubiquinone: cytochrome <i>c</i> oxidoreductase ^b	250	11	Hemes b, c ₁ , Fe-S	0.17	CoQ, Cytochrome c	antimycin a	
Cytochrome c ^c	13	1	Heme				
V Cytochrome oxidase ^b	204	13 (3–4)	Hemes a, a ₃ ; Cu _A , Cu _B	0.57	Cytochrome c, O ₂	Cyanide, azide, CO	
Number of subunits in the base and subunit data are ficture c is not part of a Hates e +0.05 \	for the mono an enzyme	omeric form. complex; it move .077 V		,	as a freely soluble pr	otein.	
	Cyte	chrome b	+0.20 V		+0.22 V	+0.254	





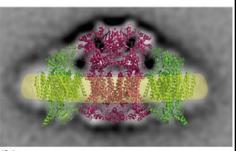

Electron Transport


TABLE The Protein Components of the Mitochondrial Respiratory Chain 19-3 Reduction Enzyme Number of Prosthetic **Binding sites** Mass potential (*E*°´V) Inhibted by: complex/protein (kDa) subunits^a group(s) for: I NADH dehydrogenase 850 45 (14) FMN, Fe-S -0.36 NADH, CoQ amytal, rotenone II Succinate Succinate, 140 4 FAD-E, Fe-S 0.09 dehydrogenase CoQ III Ubiquinone: Hemes b, c_1 , CoQ, 0.17 250 11 antimycin a ${\it cytochrome} \ c$ Fe-S Cytochrome c oxidoreductaseb Cytochrome c^{c} 13 1 Heme Hemes a, a₃; Cytochrome c, Cyanide, azide, 204 0.57 IV Cytochrome oxidase^b 13 (3-4) Cu_A, Cu_B 02 со ^aNumber of subunits in the bacterial complexes in parentheses. ^bMass and subunit data are for the monomeric form. ^cCytochrome c is not part of an enzyme complex; it moves between Complexes III and IV as a freely soluble protein.



Enzyme complex/protein	Mass (kDa)	Number of subunitsª	Prosthetic group(s)	Reduction potential (<i>E</i> ₀́V)	Binding sites for:	Inhibted by:
I NADH dehydrogenase	850	45 (14)	FMN, Fe-S	-0.36	NADH, CoQ	amytal, rotenone
II Succinate dehydrogenase	140	4	FAD-E, Fe-S	0.09	Succinate, CoQ	
III Ubiquinone: cytochrome <i>c</i> oxidoreductase ^b	250	11	Hemes b, c ₁ , Fe-S	0.17	CoQ, Cytochrome c	antimycin a
Cytochrome c ^c	13	1	Heme			
IV Cytochrome oxidase ^b	204	13 (3–4)	Hemes a, a ₃ ; Cu _A , Cu _B	0.57	Cytochrome c, O ₂	Cyanide, azide, CO

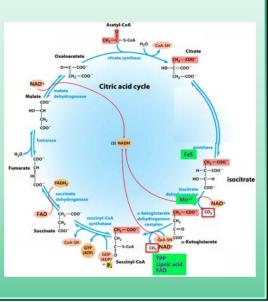




Electron Transport

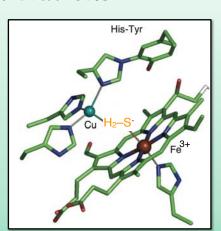
Multiple Complexes Associate Together to Form a "Respirasome"

Courtesy of Egbert Boekema



Complex III and Complex IV

Rare Fumarase Deficiency


- Loss of activity in TCA enzymes is rare as it is lethal to the cell. However, a few very rare cases have been described.
- One such case was a severe deficiency of fumarase.
- Urine and blood have high levels of fumarate, succinate, α-ketoglutarate, citrate, and malate.
- Humans with this disease have neurological impairment, encephalomyopathy (brain/muscle malady), dystonia (muscle teaching)

Clinical Correlations

Cyanide poisoning

- CN gas or KCN ingestion causes rapid loss of mitochondrial function and death.
- Cyanide works by inhibition of cytochrome oxidase by binding tightly to the Fe³⁺ of heme- a_3 . Mitochondrial respiration, and energy production ceases, and cell death rapidly follows.
- Cyanide is one of the most potent and rapidly acting poisons known. Other poisons do the same thing: CO, H_2S , N_3^-
- If detected early enough, the antidote is to offer the CN more Fe³⁺ sites to bind and titrate it off of the heme-*a*₃.

 Creation of "metHb" by oxidation of Hb using various nitrates (Fe²⁺ → Fe³⁺) can work due to vast amounts of Hb.