BI/CH 422/622				
OUTLINE: Introduction and revi Transport Glycogenolysis Glycolysis	ew			
		Exam-1 material		
Fermentations	Chemiosmotic theory: Phosphorylation	Exam-2 material		
Pyruvate pyruva Krebs' Cycle	ate dehydrogenase (ox-decarbox; S-ester) ATPase Mitchell Hypothesis			
How d Overv 8 Step	id he figure it out? S S Citrate Synthase (C-C) Aconitase (=, -OH) Isocitrate dehydrogenase (ox-decarbox; 5-ester) Succinyl-CoA synthetase (=) Fumarase (-OH) Mulate dehydrogenase (=O) Succinyl-CoA synthetase (=)	Binding-Change Model Connection to the proton motive force Net ATP production Regulation		
Energe Regula Summa	tics that be convergenced (co) See Achieve: Ch19: Case Study: The I	Narrow Window		
Ener Mito Trans Elect	getics (-0.16 V needed for making ATP) chondria sport (2.4 kcal/mol needed to transport H+ out) ron transport Discovery Four Complex I: NADH → CoQH ₂ Complex II: Succinate → CoQH ₂ Complex III: CoQH ₂ → Cytochrome C (Fe ²⁺) Complex IV: Cytochrome C (Fe ²⁺) → H ₂ O			

CAldure I hoopholyladel

Net Production of ATP via Catabolic Pathways

TABLE 19-5 ATP Yield from Complete Oxidation of Glucose *				
Process	Direct product	Final ATP		
Glycolysis	2 NADH (cytosolic) 2 ATP	3 or 5ª 2		
Pyruvate oxidation (two per glucose)	2 NADH (mitochondrial matrix)	5		
Acetyl-CoA oxidation in citric acid cycle (two per glucose)	6 NADH (mitochondrial matrix) 2 FADH ₂ 2 GTP	15 3 2		
Total yield per glucose		30 or 32		
^a If the malate/aspartate shuttle is used to transfer reducing equivalents into the mitochondrion, yield is 5 ATP. If the glycerol 3-phosphate shuttle is used, the yield is 3 ATP.				
 Every F₀ turn uses 8-17 H⁺ Every turn gets 3 ATP Additional 3 H⁺ to transport 3 P₁ * • This Table assumes F₀ is c₉ and uses 9 H⁺ per turn • Additional 3 H⁺ to transport P₁ needs 12 H⁺ per 3 ATP • This is 4 H⁺ per ATP • This is 4 H⁺ per ATP 				
What is the yield for c ₁₇ ?	NADH pumps10 H ⁺ , so $10/4 = 2.5$ ATP/NADH oxidized			

Summary:Oxidative Phosphorylation

We learned that:

- the reduced cofactors pass electrons into the electron- transport chain in mitochondria
- stepwise electron transport is accompanied by the directional transport of protons across the membrane against their concentration gradient
- the energy in the electrochemical proton gradient drives synthesis of ATP by coupling the flow of protons via ATP synthase to conformational changes that favor formation of ATP in the active site
- Summary video: https://www.youtube.com/watch?v=LQmTKxI4Wn4

End of material for Exam 2