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Abstract— This paper describes a scheme to track multiple
fluorescent particles diffusing in two dimensions. Fluorescence
intensities are measured using a scanning-stage confocal setup.
We develop a combined model for the position of the particles
and the dynamics of the piezo-stage and design a linear-
quadratic-Gaussian controller to drive the overall estimation
error to zero. The scheme is illustrated through simulation.

I. INTRODUCTION

Particle tracking is an important class of tools for studying
single-molecule systems in molecular biology. Based on the
number of particles to track, algorithms can be divided
into two main categories: single particle tracking (SPT)
and multiple particle tracking (MPT). SPT has been used
in the study of many systems and has been shown useful
in measuring diffusion coefficients [1], in discriminating
molecules according to their mobility [2] and in revealing
dynamics of signaling receptors [3]. Most approaches rely
on wide-field imaging using CCD cameras followed by
image processing. The temporal resolution is limited by the
speed and sensitivity of the CCD imagers to at best a few
millseconds for two-dimensional studies and to hundreds
of milliseconds to seconds for three-dimensional studies.
These slow times severely restrict the systems that can be
investigated with these techniques.

The temporal resolution can be improved by orders-of-
magnitude by using single photon counters and confocal (or
multi-photon) setups instead of CCD cameras in a wide-field
setup. Particle tracking in this setting is achieved by actuating
the detection volume relative to the particle. Most work to
date is targeted at SPT [4]–[7]. The general approach in most
of these efforts is to move the detection volume rapidly
in a circular pattern and to use the measured fluorescence
intensity to estimate the position of the particle. This has
been combined this scheme is coupled to a linear quadratic
Gaussian (LQG) controller to achieve tracking of a single
particle in two dimensions [4] and in three dimensions [8].

The goal of MPT is to provide the trajectories of multiple
particles simultaneously. This is critical in revealing overall
bulk transport properties and the properties of the environ-
ment itself. MPT has been used to measure heterogeneities
in solutions of actin filaments and actin bundles [9] and has
found application in drug and gene delivery [10]. Most MPT
methods rely on image processing of wide-field images. As
with SPT, the time and spatial resolution are limited by the
CCD imagers. Moreover, it is time consuming to extract the
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position information from images and the results are sensitive
to background noise. To date, there has been relatively little
work on MPT in the confocal setup, although [6] did apply
a single particle tracking scheme to multiple particles by
simply cycling between the particles.

In this paper, we take an approach similar to [4], here
extending the scheme to N particles. The result is an LQG
controller designed to track particles moving under Brownian
diffusion in two dimensions in a confocal microscope. Unlike
[4], however, we do not drive the detection volume rapidly
around a circular pattern to obtain a position estimate. Rather
we obtain a small number of measurements near to the
current estimate and use an estimation algorithm developed
by one of the authors [11]. This algorithm needs only
measurements of the fluorescence intensity at as few as three
different locations around the particle. As a result, it does
not require high speed beam steering. The overall tracking
scheme is therefore easier to implement.

II. SYSTEM MODEL

In this section we develop the complete system model for
both the single particle and multiple particle settings. A block
diagram of the approach is shown in Fig. 1

Fig. 1. Block diagram for single particle tracking. An LQG-based controller
is implemented to achieve particle tracking. In the multiple particle case, a
collection of such systems is switched between.

A. Actuator models

Although the work in this paper utilizes simulations to
explore the algorithm, it is our intent to implement the
algorithm on a home-built confocal microscope in our lab.
Thus the system model is based on a nano-positioning stage
built into the microscope (a Mad City Labs Nano-PDQ). The
nanostage can be run either in closed loop mode, in which
a controller provided by the manufacturer is used to drive
the actuators, or in open-loop mode in which the commands
are simply amplified and applied to the piezos. We identified
the transfer function for both modes and then designed our
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own controller to improve the positioning dynamics. By
simulating with both the built-in controller and our higher-
performance controller, we can obtain information on the
effect of the stage dynamics on the tracking scheme.

Fig. 2 shows the closed-loop Bode plots of the x-axis of
the stage under the built-in controller and under our con-
troller. The closed-loop cutoff frequency is improved from
approximately 300 Hz (built-in) to 2 kHz (our controller).

Fig. 2. Close loop Bode plots of stage under two different feedback
controllers. The solid red curve is the built-in controller provided by the
manufacturer and the dashed blue curve is our controller.

B. Single particle model and position estimation

We assume the two axes are independent and first derive
the system model for the x−axis. Let the dynamics of the
translation stage be given by the transfer function Gx(s)

Gx(s) =
Xs(s)
Ux(s)

(1)

where xs represents the position of the stage and ux repre-
sents the input voltage to the x−axis piezo.

The Brownian motion of a particle in one dimension is
described by the stochastic differential equation

dxp(t) =
√

2Ddwx(t) (2)

where xp is the position of particle, D its diffusion coef-
ficient, and dwx(t) an infinitesimal Wiener increment with
mean 0 and variance dt where dt is sampling time of system.
We take as the system state

X = [xp xs ẋs · · ·x
(n−1)

s ux u̇x · · ·u
(m−1)

x ]T (3)

and as control input the highest relevant time-derivative of
the driving voltage of stage ux(t):

u(t) =
dm

dtm
ux(t). (4)

The system output is modeled as the difference between
the location of the particle and the position of the stage plus
measurement noise:

yx(t) = xp(t)− xs(t) + vx(t). (5)

This measurement is described in Sec. II-B.1 below.
The linear stochastic dynamic system for the x−axis in

state-space can be written as,

Ẋ = AxX +BxUx + wx, Y = CxX + vx, (6)

where the matrices are derived from the transfer function.
Since wx comes from the Brownian motion of the particle,
we have

Wx = E
[
wxw

T
x

]
= 〈x2

p〉 = 2Ddt. (7)

Noise in the measurements is driven primarily by aut-
ofluorescence in the sample and electronic (shot) noise in
the sensors. These noises are filtered through the position
estimation scheme described below. For the purposes of the
system model, we assume the measurement noise vx has a
known covariance (determined through experiment) of

Vx = E
[
vxv

T
x

]
.

The y−axis can be modeled in the same manner as the
x−axis. Thus the system model for tracking a single particle
in two dimensions is given by appending a second single
axis to the first. Note that the dynamics of the translation
stage, Gy(s) need not be the same as for the x-axis. The
corresponding model is then

Ẋ = AoX +BoU + w, Y = CoX + v, (8)

where

Ao =
[
Ax 0
0 Ay

]
, Bo =

[
Bx 0
0 By

]
, Co =

[
Cx 0
0 Cy

]
,

w =
[
wx

wy

]
, v =

[
vx

vy

]
.

1) Position estimation : To estimate the position of the
particle, the fluoroBancroft algorithm [12] is used. This
is an analytical formula that converts a set of at least
three fluroescence intensity measurements taken at different
positions in the plane into an estimate of the position of the
particle. In this work, we obtain m intensity measurements
as follows. For each actuator voltage ux and uy calculated by
the controller (described in Section III below), we generate
m additional scan voltages that are cycled through in series.
These voltages drive the system through m points and at
each of these we record both the fluorescence intensity and
the position of the stage. These data are then used in the
estimation algorithm to determine the position of the particle.

As more measurements are used in the estimation algo-
rithm, the accuracy is improved at the cost of a larger total
measurement time. During this time, the particle continues
to move. This motion is not captured by the model and leads
to increased estimation error.
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C. Multiple particles model

Suppose now that there are N particles and N independent
translation stages with which to track them. We can set up a
state-space equation for this system by expanding the state-
space model for the single particle tracking case to N copies:

Ẋ = AX +BU +W, Y = CX + V, (9)

where

A = diag{
N︷ ︸︸ ︷

Ao, ..., Ao}, B = diag{
N︷ ︸︸ ︷

Bo, ..., Bo}

C = diag{
N︷ ︸︸ ︷

Co, ..., Co}
In reality, there is only one translation stage. In this work,

we simply cycle through each system in turn, tracking first
particle one, then particle two, and so on. As a result, the
sampling time on the full model is N times slower than the
sampling time used on the translation stage. Optimizing both
the cycling sequence and the relative amount of time spent
on each particle remains an open problem.

Finally we note that in practice, the implementation will
be done digitally and thus the above model is discretized
based on the desired sampling time.

III. TRACKING CONTROLLER

In this section, we apply standard LQG controller design
to achieve tracking. We initially consider the single particle
model before moving to the multiple particle scenario.

A. Tracking a single particle

An LQG controller combines a Kalman filter for state es-
timation with a linear quadratic regulator (LQR) for control.
Consider first the Kalman filter. Suppose the initial state of
the particle model is a random variable with mean X̂0 and
covariance Σ0. One standard description of the discrete-time
Kalman filter equations is given by the time update equations
to produce the prediction X̂k+1|k based on the model and the
control input combined the measurement update equations to
produce the estimate X̂k|k from X̂k|k−1 and the innovations.

Consider now the LQR controller. For the x−axis, we
define the cost function to be

Jx =
∞∑

k=1

λx[(xp(k)− xs(k))2 + λuu
2(k)] (10)

where λx and λu are weights for the state and input. This
cost defines the weighting matrices Qx and Rx for the full
state and input for the x−axis. A similar cost is defined for
the y−axis. Then the cost matrix for one particle tracking
system will be

Qo = diag{Qx, Qy}, Ro = diag{Rx, Ry}

such that the overall cost function is

J = Jx + Jy = XTQoX + UTRoU. (11)

The control that optimizes the quadratic cost is given by

Uk = −GcX̂k|k (12)

where the gain matrix Gc is

Gc = (Ro +BT
o P∞Bo)−1BT

o P∞Ao. (13)

Nominally, P∞ would be the solution to the discrete-time
algebraic Riccati equation (ARE). In our formulation, how-
ever, the position of the particle is driven purely by white
noise and is not affected by control input. The system is thus
uncontrollable and the ARE cannot be used. Instead, we use
the steady-state solution to the Riccati equation

Pk−1 = Qo +AoPkA
T
o

−AT
o PkBo

(
Ro +BT

o PkBo

)−1
BT

o PkAo

since the components that diverge do not enter into the gain
matrix Go.

The control scheme for tracking a single particle is then
as follows. Using the time update equations of the Kalman
filter, we obtain the predicted state X̂(k+1|k). A component
of this state is the predicted driving voltage (ux, uy) and
the predicted stage position (xs, ys). Based on the driving
voltage, the scan procedure described in the previous section
is run and the particle position estimated from the fluores-
cence measurements. The state measurement is calculated as
the difference between the estimated particle position and
stage position. This output is then fed into the Kalman filter
measurement update equations to generate X̂k+1|k+1.

B. Tracking multiple particles

The tracking scheme for multiple particles is to simply
combine the LQG tracking controllers for each particle. The
predicted driving voltages are determined from the LQG
controller. The stage then simply cycles through the particles
based on these voltages, running the estimation procedure on
each. After all particles have been estimated, a single overall
system measurement is generated, the Kalman filter updated,
and the process repeated.

One of the primary differences between single and mul-
tiple particle tracking is the need for a relatively large shift
in the acutators when moving between particles. Due to the
actuator dynamics and depending on the sampling time of the
system, overshoot or other transient effects may lead to poor
positioning of the focal volume of the microscope. In extreme
cases, this error may be large enough that the particle is not
inside the focal volume at all, leading to loss of tracking.
It is therefore important to design low-level controllers that
yield small one-step positioning errors to improve tracking
performance in the multiple particle case.

IV. SIMULATIONS

To explore the scheme and guide the selection of control
parameters such as sampling frequency, number of measure-
ments and the driving voltage scan radius, we performed a
simulation study. Although in practice the dynamics of the
actuation stage in the x and y directions can differ signifi-
cantly, we set them equal here to focus on the effect of other
control parameters. The stage transfer function corresponding
to the manufacturer-provided closed-loop mode shown in
Fig.2 was discretized using a sampling time of dt, while
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in a simulation with N particles, the full system model is
discretized with a sampling time of Dt = Ndt. The initial
positions for each of the N particles positions were generated
randomly and the stage position was initialized at the origin.

Fluorescence intensities were modeled according to [13]

I(x, y) = me−
(x−xp)2+(y−yp)2

ω2 + ηB + ηS (14)

where m represents the maximum fluorescence value, ω the
beam waist, ηB the background fluorescence, and ηS the
shot noise. For these simulations, the beam waist was taken
as ω = 0.5 µm, the maximum intensity was given by a
rate of 200,000 photon/s and the background fluorescence
was given by a Poisson random variable with parameter set
to 2000 photons/s. The measured intensity thus depended
upon the sampling frequency. The shot noise was given by
a Poisson random variable with parameter given by the total
number of photons collected in the sampling period. Unless
otherwise specified, position estimation was done based on
five measurements, one at the predicted actuator position and
four equally distributed on a circle of radius ur = 0.06 V
and centered on the predicted actuator position. Fig. 3 shows
a single run for a particle diffusing with coefficient D = 2
µm2/s. The solid blue curve is the (simulated) real particle
position and the dotted red line is the estimated position
based on the noisy measurement.

Fig. 3. Simulated single particle tracking performance. The particle is
diffusing with a coefficient D = 2 µm2/s (solid blue line). The dotted red
line shows the estimated particle position from the Kalman filter.

A. Single particle tracking

1) Error as a function of diffusion coefficient: Fig. 4
shows the tracking error and the standard deviation in the
error (error bars) as a function of the diffusion coefficient
with a sampling rate of 250 Hz. Both the tracking error and
its standard deviation increase as the diffusion coefficient is
increased. Fundamentally, this error is driven by the motion
of the particle during each time interval. Based on (7), the
error and standard deviation should then be proportional to√
D. This relationship holds roughly, with the mean and

standard deviation approximately doubling as the diffusion
constant in increased from 1 µm2/s to 4 µm2/s. After 4 µm2/s
the system was unable to maintain tracking since the particle

diffused far enough away in one sample period so that it was
not detected during the next estimation round.

Fig. 4. Tracking error and std. dev. (error bars) as a function of the diffusion
constant. The sampling frequency was fixed at 250 Hz. The error is driven
by the diffusion of the particle during each measurement cycle and therefore
grows roughly proportional to

√
D.

2) Error as a function of sampling frequency: Fig. 5
shows the tracking error and standard deviation for a fixed
particle as a function of the sampling frequency. Because the
particle is fixed, the error arises primarily from measurement
noise. As the sampling frequency is increased, the measure-
ment time for each measurement is decreased, leading to a
poorer signal-to-noise ratio (SNR). This in turn leads to an
increased tracking error.

Fig. 5. Tracking error and std. dev. (error bars) as a function of the sampling
frequency for a fixed particle. Increasing sampling frequency corresponds
to decreasing SNR, leading to increased error in the position estimate. This
in turn leads to poorer tracking performance.

When tracking a diffusing particle, additional error arises
from the fact that the particle is constantly in motion. At
low sampling frequencies, the SNR in the measurements is
relatively high and the error due to the motion of the particle
is dominant. Increasing the sampling frequency leads to a
faster response by the controller and thus a decreased error.
As the frequency is taken even higher, the SNR continues to
decrease and the measurement noise plays a more dominant
role. This is illustrated in Fig. 6(a) in which we show
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(a) Sampling frequency (b) Scan radius (c) Num. measurements

Fig. 6. Tracking error and std. dev. (error bars) as a function of different parameters for a particle diffusing with D = 0.5 µm2/s. (a) At low sampling
frequencies, the error due to particle motion dominates. Performance improves with increasing sampling frequency, eventually plateauing due to reduced
SNR in the measurements. (b) Increasing the scan radius eventually leads to a reduced SNR that leads to a larger error. (c) increasing the number of
measurements initially improves performance due to better position estimation. Increasing the number of measurements also increases the total measurement
time, eventually leading to poorer performance due to motion of the particle during the measurement process.

the tracking error and standard deviation as a function of
sampling frequency when tracking a diffusing particle with
D = 0.1 µm2/s. Tracking performance improves rapidly as
the sampling frequency is increased to 300 Hz. After that
the performance remains relatively constant, implying that
the improvement in tracking due to a faster system response
is offset by the corresponding reduction in the SNR.

3) Error as a function of scan radius: As described in
Sec. II-B.1, position estimation is done based on a collection
of samples obtained around a circle of radius ur. If this
radius is too large relative to the size of the beam waist, then
the SNR will be low and position estimation will be poor.
If the radius is too small then the measurement locations
will be close together and this also yields poorer position
estimation since each measurement provides essentially the
same information. Moreover, for a small radius the region
explored by the scanning procedure will be small. In this
case, even at relatively small values of the diffusion constant,
the particle will diffuse out of the region during the sample
period, leading to a loss of tracking. These tradeoffs are
exhibited in Fig. 6(b) in which we show the tracking error
and standard deviation as a function of the scan radius when
tracking a single particle moving with D = 0.1 µm2/s. The
sampling frequency was set to 250 Hz. For the simulated
conditions, tracking performance was best for scan radii of
0.08 V to 0.15 V.

4) Error as a function of the number of measurements:
Performance of the algorithm also depends on the number
of measurements used in the estimation scheme. For a
fixed particle, increasing the number of measurements leads
to improved performance of the estimator at the cost of
increased measurement time. For a diffusing particle, this
increased measurement time leads to increased error due to
the fact that the particle is constantly moving. In Fig. 6(c) we
show the tracking error and standard deviation as a function
of the number of measurements used in the estimation
procedure. The sampling frequency was set to 250 Hz and
the particle was diffusing with D = 0.1 µm2/s. Tracking per-
formance improved slightly as the number of measurements

was increased from four to seven. Additional measurements
yielded increasingly poorer performance. Tracking failed
completely when more than 24 measurements were used in
the estimation procedure.

B. Multiple particle tracking

For the multiple particle scenario, we fixed the sampling
frequency to 500 Hz, the scan radius to 0.06 V, and the
number of measurements used on each particle to five. In Fig.
7 (top) we show the tracking error and standard deviation
when tracking two particles as a function of the diffusion
coefficient. The maximum diffusion coefficient that could
be tracked was reduced from 4 µm2/s in the single particle
case (see Fig. 4) down to 0.4 µm2/s. In Fig. 7 (bottom) we
show the results when tracking three particles. The maximum
diffusion coefficient was further reduced to 0.2 µm2/s. In
the absence of any stage dynamics, one would expect the
tracking performance to scale inversely with the number of
particles being tracked. When switching between particles,
however, the stage needs to move a relatively long distance.
The transient response of the stage thus plays a large role in
the overall performance.

As seen in Fig. 2, the manufacturer’s closed-loop con-
troller has a cutoff frequency of approximately 300 Hz. To
explore whether this is the limiting factor in the tracking
performance, we ran the simulations using our controller
which has a cutoff frequency of approximately 2 kHz. The
sampling rate was set to 1 kHz. We first considered a
single particle. The tracking error and standard deviation
as a function of the diffusion constant are shown in Fig. 8
(top). The new low-level controller leads to slightly improved
tracking performance with the maximum diffusion constant
that can be tracked increasing from 4 µm2/s to 5 µm2/s.
That only a small improvement was achieved is as expected
since tracking a single particle does not require the large
shifts needed in multiple particle tracking and thus the stage
dynamics play a smaller role.

In Fig. 8 (bottom) we show the tracking error and standard
deviation when tracking three particles. In this scenario,
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Fig. 7. Tracking error and std. dev. (error bars) as a function of the
diffusion constant when tracking two (top) and three (bottom) particles.
The max. diffusion coefficient for two particles was 0.4 µm2/s while for
three particles it fell to 0.2 µm2/s.

tracking performance is greatly improved over the slower
low-level controller with the maximum diffusion constant
that can be tracked rising from 0.2 µm2/s to 1.2 µm2/s.

Fig. 8. Tracking error and std. dev. (error bars) as a function of the
diffusion constant when tracking a single particle (top) and three particles
(bottom) with the stage dynamics replaced by our higher-performance low-
level controller. For one particle, performance is improved only slightly over
the lower speed controller while in the multiple particle case an order-of-
magnitude improvement in the tracking capability of the system is achieved.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we introduced an LQG-based scheme for
tracking multiple fluorescent particles in a confocal setup
and explored its performance through numerical simulation.
The simulation results provide guidance on choosing control
parameters and indicate that the dynamics of the actuation
stage play a large role when multiple particles are considered.

In addition to experimental implementation, we are consid-
ering three primary theoretical questions. First, the LQG sys-
tem for the multiple particle case is a simple concatenation of
LQG controllers for each particle independently. The com-
bined system is thus suboptimal. We are seeking to improve
upon these results by appealing to limited communication-
based approaches [14]–[16]. Second, we are exploring better
sampling patterns for the estimation procedure that take into
account the dynamics of the stage as well as the noise
characteristics of the estimator. Finally, we are extending the
approach to tracking in three dimensions.
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