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Abstract— For some applications in team robotics, a wireless
electronic communication system is not ideal. We propose for
some of these tasks that it is more appropriate to communicate
through motion, that is by encoding symbols in locomotion and
decoding symbols using sensor data. We discuss some of the
challenges and requirements of such a system and derive for
the LTI case control policies used to enact trajectories that
optimize a joint expression of control energy and robustness to
observation noise.

I. INTRODUCTION

Complex interactions between and emergent patterns of

multiple agents can be achieved in the absence of any

communication [1], [2]. Richer behavior, collaboration and

more flexible control, however, can be achieved when direct

communication between agents is allowed. For example,

multiple agents tasked with efficiently finding targets in a

given environment would clearly benefit from sharing with

each other their best computed estimates of target positions.

Typically such inter-agent communication is accomplished

using some form of wireless electromagnetic transmission.

Communication over wireless networks, both centralized and

distributed, remains an active area of research and industrial

application [3] and reasonably robust implementations of

such communication systems are feasible for many robotic

team applications [4], [5]. While wireless networks can offer

high speed information transfer, as we discuss below, they

are not always the best choice.

Wireless communication systems transmit information

along frequency bands of the electromagnetic spectrum.

They are therefore not suitable for underwater scenarios.

Further, transmitted messages are subject to electromagnetic

noise from the environment from natural sources such as

solar phenomena [6]. Electromagnetic communication is also

subject to cross-talk, in which signals from other sources

bleed into the allotted communication channel. This problem

is certain to become more frequent given the increasing

prevalence of wireless systems [7]. Electromagnetic systems

are also vulnerable to adversarial jamming [8] and other

security risks [9]. It can be argued that any system operating

in such environments should have a backup communication

network that is robust to these error sources.

Perhaps more importantly, wireless communication sys-

tems require infrastructure. The physical mechanisms re-

quired to transmit/receive signals add both volume and

payload to the design. Transmitting wireless signals requires
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consumption of energy, a resource that is not abundant

for wireless systems, and the signal processing on received

signals requires computational resources. These resource

requirements are in direct conflict with the goal of developing

teams of small, agile robotic agents that can operate in the

field long-term [10], [11].

One method for inter-agent communication that does not

require the transmission of wireless electromagnetic signals

is motion-based communication (MBC). In such a paradigm,

an agent that needs to transmit information will enact a

trajectory. The transmitting agent’s observing neighbors then

measure its trajectory and decodes the desired message.

This takes advantage of the agents’ sensing and locomotion

systems without requiring additional physical apparatus in

order to communicate. A well-studied example of a MBC

system in nature is the bee waggle dance [12] in which bees

encode the direction and distance to a foraging target in the

parameters of the dance.

While the fundamental study of MBC from a control

point of view is still in its infancy, there is some prior

work on communication through relative motion [13]–[15]

and in communicating during shared activities such as dance

[16]. This last also defines and analyzes an energy-minimal

problem subject to particular separation constraints on the

communicated symbols (see also Sec. II). Other works

consider coupling information and continuous trajectories

but do not endeavor to design cooperative communication

systems. Results in symbolic control address the problem of

finding minimum size alphabets of control primitives capable

of steering several types of dynamical systems [17], but

do not address control energy or observation. Others have

studied decoding motions to determine a non-cooperative

agent’s intent [18] or to learn sequences of motion primitives

[19], but have not consider the design of optimally decodable

trajectories. There has also been work on the related problem

of motion camouflage, that is finding trajectories that keep a

system hidden from an observer [20].

In this work, we define and solve a minimum energy,

maximum distinguishability problem for a linear system

and connect it to the well-studied linear quadratic regulator

(LQR) problem. The remainder of this paper is organized

as follows. In the next section, we formulate and discuss

the general MBC problem and define a specific optimal

control problem that balances the amount of energy in the

applied controls against the distinguishability of the encoded

messages by the observer. In Sec. IV we restrict ourselves

2013 American Control Conference (ACC)
Washington, DC, USA, June 17-19, 2013

978-1-4799-0176-0/$31.00 ©2013 AACC 365



to linear time-invariant systems and solve the corresponding

optimal control problem. We provide an example of our

results in Sec. V. Finally, in Sec. VI we conclude with a

discussion of the results and some future directions.

II. THE MBC DESIGN PROBLEM

While there are many ways to formulate the MBC prob-

lem, there are several common issues and challenges includ-

ing the following.

• Balance of tasks:

Most cooperative tasks require agents to move in the

mission space. If motion also encodes communication,

there must be a way of making information-bearing

motions distinct from informationless motions that are

required to fulfill the task specification. One can con-

sider decoupling task motions from communication mo-

tions either spatially (by reserving portions of the state

space for each) or temporally. One can also consider

superimposing a communication motion “on top” of a

task motion by introducing, for example, a dither pattern

on top of a translation.

• Scalability in number of agents:

If an agent can observe a large number of neighbor-

ing agents, it must be able to receive messages from

multiple neighbors at the same time and decode the

signals; this is a strain on both sensor and computational

resources. This is exacerbated by the fact that communi-

cating agents must maintain line-of-sight (with respect

to the sensors employed) and that agents may desire to

simultaneously transmit and receive information.

• Limited energy consumption:

Enacting a trajectory requires the consumption of energy

by the agent. As discussed, in Sec. I, one motivation

for MBC is its application on small, agile robotic

agents in which energy must be carefully managed.

The communication trajectories, then, should be as low-

energy as possible.

• Scalability in message complexity:

One of the most obvious restrictions of MBC is the

limited bandwidth. One should not expect, then, to de-

velop an MBC system which follows the same paradigm

as for wireless communication through electromagnetic

means. One appealing approach is to encode in the

trajectories of an MBC system a limited number of

possibly parameterized messages rather than a generic

structure from which arbitrary messages can be built;

such is the scheme in the bee waggle dance [12]. The

particular messages will likely need to be carefully

tailored for each situation.

• Balancing expressivity against distinguishability:

Expressivity can be generated either by having a rich

set of symbols, each conveying a different message,

or by allowing complex messages to be generated by

sequences of a small set of symbols. As discussed

in the previous point, the limited bandwidth of MBC

prevents the use of long sequences. The number of

distinct symbols is also limited, in this case by the fact

that the observer must be able to distinguish between

them in face of sensor resolution and noise.

In this work we set aside the challenges of task balancing

and scalability and focus on those of energy consumption and

distinguishability. In the next section, we define a problem

that captures these two issues and then focus it to the case

of linear systems in Sec. IV.

III. MBC AS AN OPTIMAL CONTROL PROBLEM

Consider a simple model with a single transmitting agent

T and a single observing agent O. T is a mobile agent whose

dynamics are given by the general nonlinear differential

equation

ẋ = f (x(t),u(t)), x(to) = xo, (1)

where x(t) ∈ R
n is the (kinematic) state of T , xo ∈ R

n is its

initial state of T , and u(t) ∈ R
m is the control input to T .

Let the kinematic state of O be given by a vector z(t) ∈R
n.

O can make observations y(t) ∈ R
p of the state of T where

the observation relationship is given by

y(t) = h(x(t),z(t)). (2)

Note that for the purposes of this work we ignore the

dynamics of the observing agent, though questions as to the

best control for the observer to measure a transmission are

both interesting and relevant.

Since we are ignoring issues related to combining commu-

nication with other tasks, in the sequel we will often suppress

the dependence on the initial condition and fix the initial time

to be to = 0. We also select a fixed communication interval

[0, t f ] and fixed final state x f . One natural choice is to set

the final state equal to the initial state; this would allow both

for message concatenation and also ensure that the system

can continue with whatever task it was performing prior to

beginning a transmission. We naturally assume that x f is

reachable from the initial condition.

We suppose that we have a finite alphabet of commu-

nication symbols, S = {s1,s2, . . . ,sq}. To each symbol we

wish to associate a unique trajectory xi and, by extension,

an observed signal yi. The MBC problem, then, is to select a

set of control inputs ui(·) : [0, t f ] 7→ R
m such that x(t f ) = x f

and that minimize the energy utilized by T while maximizing

the distinguishability (in a sense to be made precise in Sec.

III-B below) of the signals observed by O.

A. Cost of transmission

We assume that associated to each symbol si is a probabil-

ity pi that the symbol will be selected for transmission. One

component of our goal is to minimize the average value of

the energy of transmission in the following sense. Let Ji(t f )
be the total energy in the control signal ui(·). Define the

random variable J(t f ) as the energy in the control signal of

a randomly selected signal; J then takes on values in the set

{Ji(t f )}
q
i=1. The expected value of the total energy in sending

a symbol is then given by

E[J(t f )] =
q

∑
i=1

piJi(t f ). (3)
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Intuitively, a minimum energy assignment of controllers

would associate the lowest energy control with the most

probable symbol and, conversely the highest energy con-

troller to the least probable symbol.

B. Distinguishability of symbols

We define the observation distance dO between two signals

y1(·) and y2(·) as

dO(y1,y2; t f ) =
∫ t f

0
(y1(σ)− y2(σ))T M(y1(σ)− y2(σ))dσ

(4)

where T denotes transpose and M is a given symmetric,

positive definite matrix. The “total distinguishability” of a

set of symbols is denoted ∆(t f ) and defined by

∆(t f ) = ∑
i, j:i6= j

dO(yi,y j; t f ). (5)

Notice that contrary to the energy cost E[J(t f )], in the

definition of ∆(t f ) we do not weight the distance between

received signals by the frequencies of symbol selection. This

is done to ensure that the communication system is uniformly

robust.

Note also that we have chosen the L2 norm to measure the

distance between signals. While other norms can be selected,

the choice of the L2 norm provides a measure of robustness

since measurement errors can be filtered out over the entire

interval.

C. Optimal control problem

We can now bring together the cost functions of the control

energy and the distinguishability to arrive at the optimal

control problem capturing the MBC scenario.

min
ui

w1E[J(t f )]−w2∆(t f )

subject to

ẋi = f (xi(t),ui(t)),

xi(0) = xo, xi(t f ) = x f ,

yi(t) = h(xi(t),z(t)),

i = 1,2, . . . ,q.

(6)

where w1 and w2 are weights that emphasize the importance

of minimizing the control energy and of maximizing the

distinguishability, respectively.

We note that the work in [16] sets up a similar problem

but deals with the distinguishability objective by introducing

a minimum distance constraint of the form

min
j∈{1,2,...,q}

dO(yi,y j, t f )≥ δmin > 0 ∀i 6= j (7)

rather than using dO in the objective to optimize the separa-

tion of the observed signals. The two approaches are clearly

similar but we feel that the inclusion of the separation in

the objective is more flexible. Note that with constraint (7),

we expect the energy cost to increase monotonically with

the parameter δmin such that in the optimal case (7) will be

satisfied with equality. In contrast, our formulation rewards

increased distinguishability. Depending on the weights wi,

our approach may allow T to produce significantly more

distinguishable signals by expending slightly more energy

when compared to the approach in [16].

IV. MBC FOR LINEAR SYSTEMS

The general MBC problem defined in (6) is challenging

to solve. In this section we simplify the problem to the case

where T is a linear time-invariant (LTI) system and O has

LTI observations, that is

ẋ(t) = Ax(t)+Bu(t),

y(t) =Cx(t).
(8)

We assume that the pair (A,B) is controllable and that the

pair (A,C) is observable. Applying the variation of constants

of formula yields the solution

x(t) = eAtx0 +
∫ t

0
eA(t−σ)Bu(σ)dσ ,

y(t) =Cx(t) =CeAtx0 +C

∫ t

0
eA(t−σ)Bu(σ)dσ

(9)

Using this in (4) with M = In yields the observation

distance

dO(y1,y2, t f )=
∫ t f

0
(x1(σ)− x2(σ))T

CTC (x1(σ)− x2(σ))dσ .

(10)

To complete the definition, we assume that the energy

function associated with each controller is quadratic in the

control and the state, that is

Ji(to, t f ) =
∫ t f

0
uT

i (σ)Rui(σ)+ xT
i (σ)Qxi(σ)dσ (11)

for given matrices R = RT > 0 and Q = QT ≥ 0. The MBC

problem (6) then becomes

min
ui

∫ t f

0

(

w1

q

∑
i=1

pi

(

uT
i (σ)Rui(σ)+ xT

i (σ)Qxi(σ)
)

−w2 ∑
i, j

(xi(σ)− x j(σ))T
CTC (xi(σ)− x j(σ))

)

dσ

subject to

ẋi(t) = Axi(t)+Bui(t),

xi(0) = xo, xi(t f ) = x f ,

i = 1,2, . . . ,q j = 1,2, . . . ,q.

(12)

This clearly has the form of the linear quadratic regulator

(LQR) problem. To make this explicit, first define the stacked

vectors ũ(t), x̃(t), x̃0, and x̃ f as

ũ(t) =
[

uT
1 (t) uT

2 (t) · · · uT
q (t)

]T
,

x̃(t) =
[

xT
1 (t) xT

2 (t) · · · xT
q (t)

]T
,

x̃o =
[

xT
o xT

o · · · xT
o

]T
,

x̃ f =
[

xT
f xT

f · · · xT
f

]T
.

(13)
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Next define the combined state dynamics matrices Ã (of

dimension nq×nq) and B̃ (of dimension nq×mq) as

Ã = diag{A, A, · · · , A} , (14a)

B̃ = diag{B, B, · · · , B} . (14b)

Then combine the observation matrix C with the observations

weights to define C̃ (of dimension nq×nq) as

C̃ =











2w2CTC −w2CTC · · · −w2CTC

−w2CTC 2w2CTC · · · −w2CTC
...

. . .
. . .

...

−w2CTC · · · −w2CTC 2w2CTC











.

(15)

Finally, define the combined state and control cost matrices

R̃ (of dimension mq×mq) and Q̃ (of dimension nq×nq) as

R̃ =











w1 p1R 0 · · · 0

0 w1 p2R · · · 0
...

. . .
. . .

...

0 · · · 0 w1 pqR











, (16a)

Q̃ =











w1 p1Q 0 · · · 0

0 w1 p2Q · · · 0
...

. . .
. . .

...

0 · · · 0 w1 pqQ











. (16b)

Putting all this together, we can rewrite the linear optimal

control problem for MBC, (12) as

min
ui, i∈{1,2,...,q}

∫ t f

0

(

q

∑
i=1

(

ũT (σ)R̃ũ(σ)+ x̃T (σ)
(

Q̃−C̃
)

x̃(σ)
)

)

subject to

˙̃x(t) = Ãx̃(t)+ B̃ũ(t),

x̃(0) = x̃o, x̃(t f ) = x̃ f ,

i = 1,2, . . . ,q.

(17)

Problem (17) is the well-known continuous-time linear

quadratic cost minimization problem with fixed endpoint.

The solution to this problem is given by (see, e.g. [21])

ũ(t) =−B̃T K(t)x̃(t)− v(t),

K̇(t) = ÃK(t)+K(t)ÃT +K(t)(Q̃−C̃)K(t)− B̃R̃B̃T
,

K(t f )> 0,

v(t) =−B̃T ΦÃ−B̃B̃T K(t)(0, t)η0,

W (Ã− B̃B̃T K(t), B̃,0, t f )η0 = x̃o −ΦÃ−B̃B̃T K(t)(0, t f )x̃ f .

(18)

where ΦÃ−B̃B̃T K(t)(0, t) is the state transition matrix asso-

ciated with Ã − B̃B̃T K(t) and W (Ã − B̃B̃T K(t), B̃,0, t f ) is

the controllability Gramian associated with the pair (Ã −
B̃B̃T K(t), B̃). Since ũ contains each of the control inputs

defining each of the signaling trajectories, solving (18) yields

the entire set of optimal controls {u∗i }i∈[1,q] to encode the q

messages.

In order for the solution in (18) to be optimal, the matrix
(

Q̃−C̃
)

must be positive semidefinite. In the following

proposition, we develop a sufficient condition for which

positive semi-definiteness holds under the assumption that

the probabilities of selection for each of the symbols are

equal.

Proposition 1: Assume that the alphabet of q communica-

tion symbols has a uniform selection probability distribution,

that is pi =
1
q
, i = 1,2, . . . ,q. Then, if

w1

q
Q−3w2CTC ≥ 0, (19)

then the matrix Q̃−C̃ is positive semidefinite.

Proof: For the given alphabet of q symbols, define the

matrix ζq as

ζq = Q̃−C̃

Then ζq can also be written as

ζq = Iq ⊗

(

w1

q
Q−3w2CTC

)

+1q×q ⊗w2CTC (20)

where ⊗ is the Kroenecker (tensor) product, Iq is an identity

matrix of dimension q× q and 1q×q is an q× q matrix in

which every element is 1. This decomposition of ζq yields

the following relationship,

x̃T ζqx̃ =
q

∑
i=1

xT
i

(

w1

q
Q−3w2CTC

)

xi

+

(

q

∑
i=1

xi

)T

w2CTC

(

q

∑
i=1

xi

) (21)

Since CTC is positive semidefinite, the second sum in (21)

is guaranteed to be non-negative. By selecting w1,w2, and

Q such that
w1
q

Q−3w2CTC ≥ 0, the first sum is guaranteed

to be non-negative. Under this condition, then, (Q̃−C̃)≥ 0

and the proposition is proved.

In general, one would not expect the communication sym-

bols to be selected with uniform probability. The following

extends Prop. 1 to the non-uniform case.

Proposition 2: Assume that the alphabet of q communi-

cation symbols has a given non-uniform selection probability

distribution pi, i = 1,2, . . . ,q. Define

p∗ = min
i∈{1,2,...,q}

pi.

Then, if

w1 p∗Q−3w2CTC ≥ 0,

then the matrix Q̃−C̃ is positive semidefinite.

Proof: Following the same procedure for Prop. 1 yields

x̃T ζqx̃ =
q

∑
i=1

xT
i

(

w1 piQ−3w2CTC
)

xi

+

(

q

∑
i=1

xi

)T

w2CTC

(

q

∑
i=1

xi

) (22)
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and thus

x̃T ζqx̃ ≥
q

∑
i=1

xT
i

(

w1 p∗Q−3w2CTC
)

xi

+

(

q

∑
i=1

xi

)T

w2CTC

(

q

∑
i=1

xi

) (23)

Thus, if w1 p∗Q−3w2CTC ≥ 0, then x̃T ζqx̃ ≥ 0. Thus Q̃−
C̃ ≥ 0.

Note that Prop. 1 is a special case of Prop. 2.

V. A SIMULATION EXAMPLE

To illustrate these results, we created a program in MAT-

LAB that can calculate ũ for a given set of parameters.

The differential equations in (17) and (18) were solved

numerically using MATLAB’s built-in ODE solver ode45

and MATLAB’s boundary value problem solver bvp4c. We

used the program to solve the following system over the

interval [0,1].

ẋ(t) =

(

0 1

−1 −1

)

x(t)+

(

0.5 0.1

0.05 1

)

u(t),

y(t) =
(

1 0.5
)

x(t).

We call the first coordinate of the state x(t) position and

the second coordinate velocity. The cost matrices for the state

and controls were set to

Q =

(

3 0

0 1

)

, R =

(

2 0

0 2

)

.

The initial and final state values were set to

xo =

(

0

0

)

, x f =

(

5

0

)

.

For this example, we sought the controls for three com-

munication symbols with selection probabilities of

p1 = 0.5, p2 = 0.3, p3 = 0.2.

with optimization weights

w1 = 9, w2 = 1.

The optimal trajectories corresponding to the symbols in the

trinary alphabet are shown along with their associated energy

costs in Fig. 1. Note that the optimization automatically

assigned the symbol with the lowest frequency (s3) to a

trajectory with the highest energy cost among the three

determined by the algorithm.

The corresponding signals observed by O when T enacts

the optimal trajectories are shown along with their L2 sep-

aration in Fig. 2. Note here that the minimum pairwise L2

separation occurs between the two least frequently selected

signals y2 and y3 despite the fact that we did not explicitly

consider selection frequency in the formulation of ∆(t f ). The

total optimal cost is w1E[J(t f )]−w2∆(t f ) = 616.20.
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Fig. 1. Optimal trajectories in phase space found for a 3-symbol alphabet
when (18) is applied to the system with given dynamics, cost and parameters
(details are in the text). The energy cost of each motion is shown.. The
expected energy is E[J(t f )] = 68.88.
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Fig. 2. The signals obtained from observing the optimal trajectories in Fig.
1 in the absence of noise. The values of the pairwise signal separation (in
the L2 norm) are noted on the graph. The total separation is ∆(t f ) =3.75

VI. DISCUSSION

The propositions in Sec. IV give us sufficient conditions

that enable the use of the LQR framework to find minimum

energy, maximum separation trajectories for encoding signals

in motion. This approach, however, does not necessarily

scale well with alphabet size and cannot easily accommodate

symbols whose use is infrequent. Consider, for example,

condition (19) in Prop. 1. Given a fixed Q and C, as the

number of symbols grows, q → ∞, it must be that the ratio

of the weights also tends to infinity, that is

w1

w2
→ ∞.

From this we infer that the LQR approach is fundamentally

limited in terms of the number of communication symbols it

can support. As the number of symbols grows, the separation

between those signals in the observation space diminishes,

eventually resulting in indistinguishable symbols. One pos-

sible way around this is to replace the optimization over the

signal separation with a constraint on the separation, as in

[16], though intuitively one expects there to be a cost in
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energy to support the separation between all the symbols for

very large alphabets.

Under the LQR approach, this result indicates that small

alphabet sizes are preferred. This is an intuitively appealing

notion as it is certainly easier to distinguish two symbols

than 100. This implies that it may be interesting to consider

alphabet size explicitly in the optimization problem. That is,

as the weight of the energy used for the symbols (as captured

by w1) becomes large relative to the cost of separation

(as captured by w2), one may use a smaller alphabet and

communicate messages through longer words. This decision

would increase distinguishability but would likely increase

the cost of sending entire messages. To capture this problem,

define the function L(q,m) to be the length of a message

m encoded in an q-symbol alphabet. Then, if we know

the selection probability of m we may instead change the

objective of our minimization from the one in (12) to

min
q,{ui}i∈{1,2,...,q}

∫ t f

0

(

w1Em

[

L(q,m)
q

∑
i=1

ui(σ)T Rui(σ)+ xi(σ)T Qxi(σ)

]

−w2 ∑
j,k: j 6=k

(

x j(σ)− xk(σ))TCTC(x j(σ)− xk(σ)
)

)

dσ

(24)

where the expectation is now over the probabilities among

messages rather than symbols.

Another issue arises when the selection distribution is non-

uniform. For condition (2) in Prop. 2 to be met, the ratio of

the weights must again go to infinity as p∗ → 0. Thus larger

entropy distributions force a higher weight ratio and thus

a stronger weighting on the energy at the expense of the

separation. To circumvent this, one could initially ignore the

selection frequency weights and redefine (3) to be

E[J(t f )] =
q

∑
i=1

1

q
Ji(t f ) (25)

so that the symbols are assumed to satisfy a uniform dis-

tribution. Since the distribution is not uniform, however, we

would still like to optimize the symbol encoding to minimize

the average amount of energy used in a signal transmission.

This can be done by calculating the actual energy of each

of the trajectories found and assigning the lowest energy

trajectory to the most probable symbol, the next lowest

energy trajectory to the second most probable, and so on.

VII. CONCLUSIONS

In this paper we introduced a version of the motion

based communication problem in which both the cost of

transmitting a symbol through a trajectory and the separation

in the observation space between all the symbols in a given

alphabet are optimized. We connected the problem to the

LQR for the case of a linear system.

While these results are promising, the analysis also showed

that there are concerns with this approach when one consid-

ers alphabets with large cardinality or a wide range in the

selection frequencies of the symbols. While we proposed

a few possible alternatives to overcome these issues, this

remains an interesting and open topic.
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