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Precise 3-D localization of fluorescent probes without numerical
fitting

Ting Sun and Sean B. Andersson

Abstract—We present an analytical algorithm for determining
the position of a fluorescent probe in three dimensions (3-D) from
a collection of measurements taken at different locations. This
algorithm, fluoroBancroft, relies on the fact that the intensity
point spread function depends only on the radial distance between
the center of the focal point and the position of the fluorescent
probe. We present a simulation study comparing the performance
of the algorithm to the standard technique of fitting the data to
a Gaussian profile. Our results indicate that in the 3-D case, the
fluoroBancroft algorithm is able to localize the probe with an
accuracy on the order of tens of nanometers using less than
ten measurements (pixels). The Gaussian fitting procedure is
unable to locate the probe even when using 36 measurements
(the maximum number of measurements used in the simulations).
Moreover the new technique is typically two orders of magnitude
faster than the Gaussian fitting approach in terms of computation
time. These results indicate the fluoroBancroft algorithm can be
used effectively in a closed-loop controller to track the motion
of single fluorescent probes in 3-D in a confocal microscope.

I. INTRODUCTION

Single particle tracking in fluorescence microscopy has be-
come an extremely important tool for understanding molecular
processes [1], [2]. Particle tracking is typically achieved by
analyzing a sequence of wide-field images obtained using
a charge-coupled device (CCD) camera. Using techniques
such as Gaussian fitting, the location of an isolated point-
source can be determined in the plane with a precision on
the order of a few nanometers. If limited to the focal plane,
this technique can yield a temporal resolution on the order
of milliseconds [3]. When extended to three dimensions, the
temporal resolution is reduced to the range of seconds [4].
A confocal setup (and related techniques such as two-photon
microscopy) operates in 3D and has a temporal resolution on
the fluorescence measurements which is orders of magnitude
faster than in wide-field imaging. In recent years, researchers
have begun to develop algorithms for tracking single fluores-
cent probes in confocal and two-photon microscopes [5]-[7].
Because measurements are taken sequentially, it is important
for high-speed tracking that the position of the probe can be
determined rapidly and with only a few measurements.

One of the authors recently introduced the fluoroBancroft
algorithm for estimating the location of a fluorescent probe in
two dimensions (2-D) from intensity measurements. Its local-
ization performance in the wide-field setting is comparable to
the currently standard technique of fitting a Gaussian profile
to the data [8] while in the confocal setting it has much better
accuracy and requires measurements from only four to five
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locations in space [9]. Moreover, for the same amount of data,
the computational speed is typically two orders of magnitude
faster than the numerical fitting procedure. In this paper
we extend the algorithm to 3-D localization in the confocal
setting. The algorithm relies on the fact that the fluorescence
intensity depends only on the distance to the probe. Therefore,
a collection of measurements obtained at different locations
can be interpreted as a set of range-only measurements. The
fluoroBancroft algorithm is inspired by Bancroft’s algorithm
for solving a similar range-based localization problem in the
global positioning system (GPS) [10].

Several algorithms exist for sub-diffraction limit localization
and fundamental limits have been derived [11]. A common
method is to fit the data to a Gaussian profile using a non-
linear least-squares fit. This can provide precision on the order
of 1-20 nm in a typical system [12], [13]. Most algorithms
were developed for the wide-field setting where images are
comprised of hundreds of pixels and has been used primarily
in localizing a particle in the focal plane. In this paper we
consider localization in 3-D based on confocal measurements
and compare the performance of the fluoroBancroft algorithm
to a Gaussian fitting approach. The simulation results indicate
that fluoroBancroft can yield precise localization (with errors
on the order of tens of nanometers) using less than ten
measurements while the Gaussian fitting approach is unable
to localize the fluorescent probe even when using 36 mea-
surements (the maximum number used in this comparison).

II. THE FLUOROBANCROFT ALGORITHM

In confocal fluorescence microscopy the output fluorescence
intensity from a point source is the product of the illumination
and detection intensity point spread functions (PSF) [14]. The
intensity pattern is circularly symmetric and gives rise to the
familiar Airy disk in the plane. Within the central disk, the
intensity is well-approximated by a Gaussian. The PSF in
the axial direction can also be approximated by a Gaussian
within a limited range. Since in the tracking application it is
reasonable to assume that the fluorescent tag will remain near
the center of the focal point, we choose to model the intensity
of a diffraction limited spot by
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Here, m is a scaling factor determined by the total number of
photons emitted by the probe during the measurement period
and 20 is the full-width, half-maximum (FWHM) of the image
spot in the focal plane, given by
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where N.A. is the numerical aperture of the objective. Simi-
larly, 20, is the full-width, half-maximum (FWHM) along the
axial direction, taken here to be

20, — 1A 3)
N.A.

The measured intensity is given by the true intensity to-
gether with background and shot noise. The background noise,
arising primarily from unwanted excited and autofluorescence
of the sample, is assumed to be constant across the field of
view. For the purposes of position estimation, we model it as a
Poisson random variable np with mean and variance equal to
Np. The statistics of the background noise can be determined
experimentally and therefore we assume Np is known. The
shot noise is a Poisson process with a rate dependent on
the total number of photons detected [1]. The model for the
measured intensity with focal point located at (x;,y;, 2;) is
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Here 7 is indexing the measurement number. Scaling the axial
coordinate by 2z’ = (0/0,) z, (4) can be rewritten as
Lr:7ne_§%—+n3—%nymt ®)
where
17 = (2 — 20)” + (Y — v0)* + (2 — 20)%.
Taking the expected value of (4) and solving for r? yields
r? = 20%In(2m) — 202 In(I; — 2Np). (6)

Note that because the background noise can be measured to
determine Np, the second term on the right-hand side of (6)
is known. However m is related to the true intensity of the
fluorescent probe and is therefore not known. Define
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Then (6) can be rewritten as
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Stacking together n measurements yields
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Pre-multiplying (8) by B” and rearranging yields
( To Yo 2, b )T:BT(a+Ae) 9

where Bt = (BTB)f1 BT is the Moore-Penros pseudo-
inverse of B. Notice that the unknown position (xg,yo)
appears both on the left-hand side and on the right-hand side
(through A). Since we are interested only in the location of the
fluorescent probe, we isolate the position by pre-multiplying
both sides of (9) by

Q=
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This yields
(20 yo 2 )=Q(B"(a+Ae)).

We now state an interesting property of BT.
Proposition 2.1: Let e = (1,1,--- ,1)T and let A be an
n X m matrix. Define B = ( A e ) Then

0o 1)".

(10)
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Proof: We have
B"B=B"( A e)=(BTA BTe).
Thus B”e is the (m + 1) column of B B. Now
I = (B"B)” (B"B)
= ((B™B)'BTA (B"B) 'Bc ).
Therefore Bfe = (BTB)_1 BTe is the last column of the

identity matrix as claimed. [ ]
Applying this proposition to (10) results in

T
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To rescale the axial coordinate define
1 0 O
R=1 01 0
00 2
Then the solution to the localization problem is given by
T
( To Yo 20 ) = RQB'a. (12)

Since B and « depend only on the measurements and the
locations of those measurements, (12) determines the location
of the fluorescent probe as a closed-form equation.

III. SIMULATION METHODS

To investigate the performance of the fluoroBancroft algo-
rithm, we modeled a point source fluorescing at a wavelength
of 540 nm at a rate of 40 photons/ms. The fluorescence was
imaged using a 0.8 N.A., 20x magnification objective lens
through a circular pinhole onto a point detector. The signal-
to-noise ratio (SNR) depends on the pinhole radius [15]. In
these simulations the pinhole radius was set to 3.2 pym.

4182



The noise-free intensity value of the fluorophore in the
detector plane was modeled as a Gaussian as in (4) with
the parameter m determined by the fluorescence rate and
the integration time (the time spent collecting photons at
a single location). The total number of photons collected
by the detector from the fluorescent probe was determined
by integrating the exponential over the area of the pinhole
and multiplying the result by the quantum efficiency of the
detector. Background noise was introduced by adding a sample
from a Poisson process with parameter Np = 10 photons/ms.
Finally, shot noise was included by adding a sample from a
Poisson distribution whose parameter was given by the total
number of photons collected by the detector. For a small
circular pinhole, the SNR for the model taken here can be
shown to be given approximately by [15]:

Vs ’l”dN.A.

SNR = V@ A Ng/N

where N is the fluorescence rate of the molecule, \ is the
wavelength of the emitted fluorescence, M is the magnification
of the objective, Qg is the quantum efficiency of the detector,
and n,, is the total number of photons emitted by the molecule
during the integration time. For all simulations, Qp was set
to 0.55 and an integration time of 15 ms was chosen, leading
to a signal-to-noise ratio of 11.
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Fig. 1.  Simulated intensity measurements with an SNR of 16.2. (left)
Measurements along a radial line in the focal plane. (right) Measurements
along a line in the axial direction with (x,y) = (0,0). The fluorophore is
located at the origin.

The location of the fluorophore in each trial was chosen
randomly from a uniform distribution on z¢, y9, 20 € [0 nm,
114 nm]. Intensity measurements were made from different
positions in space. Measurements locations were chosen to be
approximately evenly distributed over a sphere. Because the
actual position of the fluorophore was unknown, the radial
position of each measurement was selected randomly from
the range [0, r4] where 74 is the radius of the pinhole, back-
projected into the sample plane. This sampling pattern ensures
that the intensity was measured at a variety of different ranges
to the fluorescent probe.

In each trial the number of measurements was fixed and
100 iterations were run. For each run, the position of the
fluorescent probe was determined from the data using the
fluoroBancroft algorithm (12) as well as by using a nonlinear
least-squares fit of the data to a Gaussian given by
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in which xg,yo, 20, A,0 and o, were allowed to vary. The
simulations were performed in Matlab and the Gaussian fit
performed using the built-in routine 1sgnonlin.

IV. RESULTS AND DISCUSSION

The execution time in Matlab for the fluoroBancroft algo-
rithm was less than a millisecond even when 36 measurements
were used and less than 300 us when ten measurements
were used. Because all calculations were done in Matlab, the
execution times should be considered an upper bound. Fig.?2
shows the ratio of the Gaussian fit execution time to that of
fluoroBancroft. In all cases the analytical algorithm is more
than two orders of magnitude faster.
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Fig. 2. Comparison of the execution times of the fluoroBancroft and Gaussian
fitting algorithms. FluoroBancroft is at least two orders of magnitude faster
than the fitting approach.

Fig.3 shows the standard deviation in the error of the
estimates, ||# — ro|| where 7 is either the fluoroBancroft
or Gaussian fit estimate. As the figure shows, the standard
deviation of the Gaussian fit approach is greater than 500
nm in all cases. This is significantly higher than even the
Rayleigh resolution criterion (approximately 400 nm for the
given simulation parameters), indicating that the Gaussian
fitting algorithm is unable to locate the fluorophore. However,
the accuracy did improve as the number of measurements was
increased and it is expected that with enough measurements,
the algorithm would exceed the Rayleigh criterion. The flu-
oroBancroft algorithm successfully localized the fluorescent
probe using only six measurements and had a standard devi-
ation of less than 50 nm after only 9 measurements.

It is important to note that the choice of measurement
locations has a large impact on the performance and statistical
properties of the algorithm. Although this effect was not
explicitly considered, this dependence is indicated in Fig.4
in which the mean errors in the x, y, and z directions are
shown. For an unbiased estimator, this mean should be zero.
The figure shows that in these simulations, fluoroBancroft had
a negative bias in all directions. There is therefore a need
for further theoretical and experimental study to understand
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Fig. 3.
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Standard deviation of the error in the estimate of the position of the fluorescent probe as a function of the number of measurements. The bottom

image is zoomed in on the vertical axis to indicate the performance of the fluoroBancroft algorithm. The simulations indicate that even with 36 measurements,
the Gaussian algorithm has a standard deviation larger than the Rayleigh criterion, indicating the algorithm is not yielding any information. FluoroBancroft
drops below the Rayleigh criterion using only six measurements and below 50 nm using only nine measurements.
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Fig. 4. Mean of the errors in the x (left), y (center), and z (right) axes. Because the measurement locations in the simulations changed as the number of
measurements was varied, these results indicate that the choice of where to collect data has a strong influence on the accuracy of the results and that a bias
can be introduced into the estimate depending on the choice of measurement locations.

the effect of the measurement locations and to design optimal
sampling patterns.
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