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A b s t r a c t  

Degenerate gradient flows arise in the context of adap- 
tive control of linear systems when the usual gradient 
algorithm is used for the parameter update law. It 
is well known that in general parameter convergence is 
not guaranteed without further assumptions. The start- 
dard approach utilizes the notion of a persistently ex- 
citing input and different authors have derived different 
convergence rate estimates. In a recent paper Brockett 
re-examined this issue and developed a rate estimate 
using a property of symmetric matrices related to the 
condition number. In this paper we compare two well- 
known convergence rate estimates from the persistently 
exciting point of view with Brockett's estimate through 
a semianalytical numerical study. We establish a com- 
mon footing by relating the assumptions of each theo- 
rein to the parameters specified under the persistently 
exciting condition. Our analysis shows that for all pa- 
rameter values Anderson's result yields a tighter bound 
than the other two estimates. In each case the mag- 
nitude of the difference depends on the time it takes 
for the uniform observability condition to hold in the 
persistently exciting assumption. The shorter the time 
is, the larger the difference is. 

1 I n t r o d u c t i o n  

Degenerate gradient flows are equations of the form 

ov( ) 

where H is a symmetric, positive semidefinite but not 
positive definite matrix. Equations of this type arise 
when we wish to minimize a particular function but 
have only partial knowledge about its gradient at any 
given instant. Over time, however, different projections 

1This research was supported by ARO ODDR&E MURI97 
Program Grant No. DAAG55-97-1-0114 (Center for Dynamics 
and Control of Smart Structures through Harvard University), 
ARO ODDR&E MURI01 Program Grant No. DAAD19-01-1- 
0465 (Center for Communicating Networked Control Systems 
through Boston University) and by NSF Learning and Intelli- 
gent Systems Initiative Grant CMS9720334 

become available and it is thus possible to construct an 
effective descent procedure. In this paper we consider 
convergence rates to the zero equilibrium for degener- 
ate flows that arise in the adaptive control of a linear 
system when the standard gradient algorithm is used 
as the parameter update law. This equation has the 
form 

¢(t) - - w ( t ) w  T (t)¢(t) (2) 

where ¢(t) is the parameter error and w(t) is the state 
of an appropriate filter. Since w(t)wT(t) is positive 
semidefinite it is clear that  cT(t)¢(t)  is non-increasing 
but in general we cannot conclude that (2) is exponen- 
tially stable. It is well known that under an assumption 
of persistent excitation the equilibrium is exponentially 
asymptotically stable. Two convergence rate estimates, 
one by Sondhi and Mitra in 1976 [1] and one by An- 
derson in 1977 [2], are based on this assumption. A 
recent paper by Brockett [3] re-examined the persis- 
tently exciting hypothesis, proceeding from the notion 
of the conditioning time of the matrix w(t)w T (t) which 
characterizes the time interval over which the condition 
number (the largest eigenvalue divided by the small- 
est, see, e.g. [4]) of the integral of that  matrix is rela- 
tively small. It is the purpose of this paper to compare 
the rate estimates of Anderson, Sondhi and Mitra, and 
Brockett. We begin in the following section by giving 
some useful definitions and a pair of well known lem- 
mas that will be used in the proof of Anderson's rate 
estimate. In section 3 we present the three estimates we 
will compare. To establish the use of the persistently 
exciting condition we review the proof of the Ander- 
son result but for the sake of brevity we present the 
other two theorems without proof, referring the reader 
instead to the original papers. In section 4 we turn 
to the comparison analysis and then conclude with a 
discussion of the results. 

2 B a c k g r o u n d  

In this section we present a few standard results for 
easy reference. First we need a theorem on the expo- 
nential stability of a non-autonomous system. 



T h e o r e m  2.1 ( E x p o n e n t i a l  S t a b i l i t y )  Consider 
the system 

-- f (t, x), x ~ ~ (3) 

Let x - 0 be an equilibrium point for  (3) at t - O. 
I f  3 a funct ion v ( t , x )  and strictly positive constants 
c~1,c~2,c~8, and 5 with c~8 < c~2 such that V x in the 
open ball of radius r centered at the origin for  some 
r > O and V t > O we have 

0~1 X 2 ~  

d 

(8) 

(8) 

v(t, x) <_ ~2 x 2 

< 0 

< - ~ 3  x(t) 2 

then 

where 

~(t) ~ _< . ~ - ~  ~(0) ~ (4) 

[ ] 111] 
m - -  c~3 5 1 - ~1(1 - Z T )  o~ - I n  c~3 ( 5 )  

P r o o f  See E51, Theorem 1.5.2. Note that  there is an 
error in the theorem s ta tement  in that  reference; specif- 
ically we additionally require a8 < a2. An analogous 
result is given as Theorem 8.5 in [6]. . .  

Next we give a s tandard result on the uniform complete 
observability of a linear system under output  feedback, 
usually known as Anderson's Lemma. 

L e m m a  2.2 ( A n d e r s o n ' s  L e m m a )  Assume that V 
5 > 0  3 k5 >_0 such that V to >_ O 

/ o  t°+5 K(T)  2dT < k5 

Let E C, A] be the system 

(G) 

i t ( t ) -  A(t)x( t )  
y(t) - C(t)~(t) (7) 

and let [C, A + KC] be the system with output feedback 

~(t) - (A(t) + K( t )C( t ) )~( t )  
~(t) - C(t)~(t)  

(8) 

Let N 1 (tO, t o -~- ~) and N 2 (to, t o -Jr- ~) be the corresponding 
observability grammians. That is 

N1 (tO, tO + ~) 
fro+6 

/ ¢,~(~, to)C ~(-,-)c(-,-)¢,A(~, to)~-,- (9) 
./to 

N2(to, to + 5) 
fro+6 

n / ~Ta+KC(~,to)CT(~)C(~)~a+KC(~,to)d~(lO) 
Jto 

Let 1[ be the identity matrix and suppose that 

/32 1[ > N1 (to, to + 5) >_ 311[ 

for some constants 32 >_ /~1 ) O. Then 

~'~ ~ >_ N~ (to, to + 5) >_ ~ 

where 

(11) 

(12) 

/~ /31 /3; --/32e ~(~G2 (13) 
(1 + v/ks/32) 2 

P r o o f  See [5], Lemma 2.5.2. For a brief discussion 
and additional references see [7], Section 13.4. m 

Finally we give the definition of a persistently exciting 
input. 

D e f i n i t i o n  2.3 A funct ion w : lR ~ ]R n is said to be 
p e r s i s t e n t l y  e x c i t i n g  i f 3  c~1,c~2,5 > 0 such that 

f 
t+6 

(~21[ >__ w(cr)wT(cr)dcr ~ O~11[ Vt ~ 0 (14) 
Jt 

3 C o n v e r g e n c e  R a t e  E s t i m a t e s  

In this section we present the three convergence rate 
estimates we will compare. We begin with a result 
based on Anderson's Lemma. The following theorem 
can be found in [5]. We give the proof here to illustrate 
the use of the persistently exciting condition. 

Theorem 3.1 Consider equation (2). I f  w(t)  is per- 
sistently exciting then 

where 

with 

¢(t) ~<_ . ~  ¢(to) ~ 

7~t 

(15) 

1 
1_/3 2 (16) 

~ l n ( 1 - 3  2) (17) 

/32 O~1 
(1 4- V~O~2) 2 (18) 

1 P r o o f  Let v(¢) - 5¢T¢. Then along trajectories of 
system (2) we have 

_ ¢ T $ _  _ ¢ T ~ T ¢ _  _(~T¢)~ _< 0 (19) 

Since w is persistently exciting the system [w T, 0] is 
uniformly completely observable. Let K ( t )  - - w .  
The corresponding output  feedback system is then 
[w T, --wwT]. Notice that  

f 
ro+5 / io+5 

K 0 - )  ~d~- - ~T(~_)~(~_)d~_ (20) 
.Jto 

) rr w(T)w T(T)dT _< n(~2 (21) 
\Jto 



where Tr(.) is the trace operator and n is the dimension 
of w. Thus by Lemma 2.2 the system [w T, - w w  T] is 
uniformly completely observable with constants 

! (Yl ! e n~2 (22) 
0~i (i + x/~O~2) 2 0~2 -- 0~2 

So 

to+6 

~; ¢(t°)~-> ~,o ~(~)¢(~)~d~_> ~i ¢(to) ~ (23) 

From this we have 

tO +6 [.to+6 
+d~- - - .],,, (~(~)¢(~))~d~ _< - ~ i  ¢(to) 

(Yl -(1 + v/-na2) 2 ¢(to) 2 (24) 

Using the fact that 0(t) is non-increasing yields 

fo ~°+~ - - ; ~  ¢(t) (25) i)dT < --0~1 ¢ ( t )  2 2 
- (1 + v/-na2) 2 

Then by Theorem 2.1 we have 

¢(t) 2 -< 1 - / 3 2  e- ¢(to) 2 

= . ~  ¢(to) ~ (2G) 

where in the last step we used the definitions given in 
the statement of the theorem. .. 

We turn now to a result of Sondhi and Mitra [11 

T h e o r e m  3.2 Consider equation (2) and assume w(t) 
satisfies both the mixing condition 

1 f t + 5  
- w ( ~ ) w T  (~)d~ > a~ ~ (27) 
(~dt 

where a.~ > 0 and 

1 fit "t+5 - w T ( ~ ) w ( ~ ) d ~  < r ~ (28) 

Then 

where 

with 

(29) 

a - -  ¢ -b5 b - -  max(b1,  b2) (30) 

1 1/n(1 - s~)) b2 -- g/n(1  - p) (31) b l -  

where so is the unique positive root of 

152 2)2 s2 S(sL2 )~)2 (32) ( l + S a m + ~  a m ( 1 -  ) - - ( 1 + ~  

2Ctm5 
P -  1 + L25 + ½L452 (33) 

and 

P r o o f  See El], Theorem 1. 

Finally we give the recent result of Brockett [3]. 

T h e o r e m  3.3 Consider equation (2). Let 

w ( t )  - ~ ( ~ ) ~ ( ~ ) d ~  (34) 

If  3 positive constants r, ~, and 5 such that Vt >_ 0 we 
have 

and 

then for 

w ( t  + ~) - w ( t )  > ~ (3~) 

T~([W(t + ~) - w(t)] ~) _< P (36) 

~/ 2r 3 2e ~/ 2r3 (37) 
7 - -  3 (1+2e)  2 + l + 2 e  3 (1+2e)  2 

(with 7 necessarily between 0 and 1) and for 

1 
A -- g/n(1 - 72) (38) 

3 a constant d such that 

¢(t) ~_< d~ ~ ¢(0) ~ (39) 

P r o o f  See [3]. m 

4 E s t i m a t e  C o m p a r i s o n s  

4.1 C o m p a r i s o n  of t he  A n d e r s o n  and  B r o c k e t t  
e s t i m a t e s  
We compare the estimate of Theorem 3.1 to that of 
Brockett by first relating the assumptions used by 
Brockett to the persistently exciting condition. As- 
sume that the conditions for both theorems are met. 
We have 

/ t+6 
W(t  + 5) - W(t)  - w(cr)w T (or)act > 0~1JI (40) 

dt 

where the inequality comes from the persistently excit- 
ing condition. Comparing this to the assumption used 
by Brockett in equation (35) we take 

( - -  O~1 (41) 

For the next step we need the following lemma. 

L e m m a  4.1 Let M be a positive semidefinite n x n 
matrix. Then 

T~(M ~) <_ ETa(M)1 ~ (42) 



Proof Let the eigenvalues of M be { , ) / 1 , , ) / 2 , . . . , , X n } .  

Since M is positive semidefinite we have ,~i _> 0 for 
every i. Then 

Tr(M3) - E A3 <- Ai --[Tr(M)] 3 (43) 
• i = 1  

where the first equality follows from the spectral map- 
ping theorem and the inequality follows from the fact 
that  the eigenvalues are nonnegative. I 

Applying Lemma 4.1 we have 

3 Fft+6 T (IW(t + 6 ) - w ( t ) ]  ) - 
L d t w 

_< l /  -< # " I  (44) Lat 

where the inequality again follows from the persistently 
exciting condition and n is the dimension of w. Com- 
paring this to the assumption used by Brockett in equa- 
tion (36) gives us 

r = ha2 (45) 

Rewriting 7 in terms of a l ,  a2, n yields 

2n3a3 2Ctl @ 2n3ct3 (46) 
-- 3(1 4- 2c~1) 2 4- (1 4- 2c~1 ) -  3(1 4- 2c~1) 2 

and thus 

7 2 
1 

3(1 + 2o~1)2 [ 4~3°~I + 6o~1 + 12a 2 

-4~/n6a62 +3n3ala3 +6n3a2a 3] (47) 

We can now compare ,~, the estimate due to Brockett, 
to a, the estimate due to Anderson. Starting from 
equation (38) 

A m ~ln(1 --72) (48) 

~ l n (  1-'72 ) 
1 /32 (1 - / 3 2 )  (49) 

~ln(1-/32)4-~1n 1 /32 (50) 

1 
o~ 4- ~ln (/£1 (TL; c~1, 0~2)) (51) 

where the last step follows from equation (17) and de- 
fines the function / £ 1 ( 7 t ,  O~1, O~2). / £ 1 ( 7 t ,  O~1, O~2) < 1 

would imply A < a and thus Brockett 's result would 
give a faster rate estimate since it is more negative. As 
this expression is somewhat complicated we turn to a 
numerical study. In Figures 1, 2, 3, and 4 we show 
plots of/£1 versus a l  for different values of as and for 
different system dimensions n. Only even values of n 
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are considered since in the adaptive control context w 
is a filter vector with dimension twice that  of the orig- 
inal state. Since a l  _< a2, each curve extends only to 
a l = a 2 .  From the plots we see that  Anderson's result 
gives a tighter estimate in all cases with the difference 
being greater for small a2. As the dimension of the 
system increases the difference decreases but remains 
qualitatively the same. From equation (51) we see that  
the actual magnitude of the difference depends on 5. 

4.2 Comparison of the Sondhi-Mitra and 
Brockett estimates 
To compare these two results we first express the pa- 
rameters in Sondhi-Mitra's result in terms of the per- 
sistently exciting parameters a l ,  a2. Comparing the 
mixing condition, equation (27), to the persistently ex- 
citing condition we have 

O~1 ( 5 2 )  
Ctrn 5 

Now 

/t+~ [ tt+~ ) 
w T(T)w(T)dT=Tr l /W(T)WT(T)dT <__ ha2 

k, dt 
(53) 

with the inequality coming from the persistently ex- 
citing condition. Comparing this to equation (28) we 
take 

na2 -- SL 2 =~ L 2 = ha2 (; (54) 

Plugging these into equation (32) we have that  so is 
the unique positive square root of ( )2 ( ) 

i c~ 2 (1 s 2 s (nc~2) ~ 2 1 -I- c~1 -I- ~ - ) - -  1 -1 -~  (55) 
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and into equation (33) we have 

2 5 1  
1,n 2r~,2 (56) P-- 1 +  n52 + -~,~ "~2 

Define 

Using this and starting from equation (38) 

1 A -  ~/n(1-72) (58) 
~/n (1-72 {2) 

1_{2( 1- ) 
1 ~ ln(1 - ~c2) 4_ - ~ l n  _ ~2  

1 
b Jr- ~ l / ~  ( K 2  (/~ , 5 1 ,  5 2 ) )  

(59) 

(so) 

(61) 

which defines the function K2(•,51,52).  As before, 
if K2(n, 51,52) < 1 then A < b and Brockett 's result 
gives a faster estimate than Sondhi-Mitra's. In Figures 
5, 6, 7, and 8 we show plots of K2 for the same range 
of parameters as we used for K1. These plots show 
Brockett 's result gives a tighter bound than Sondhi- 
Mitra's for all parameter  values with the difference be- 
ing greater for small 52. As the dimension of the system 
grows the difference decreases. From equation (61) we 
see the magnitude of the difference again depends on 5 
and so can be quite large even if K2 is close to one. 
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4.3 C o m p a r i s o n  of  t h e  A n d e r s o n  a n d  S o n d h i -  
M i t r a  r e s u l t s  
For the sake of completeness we compare the remaining 
combination. Starting from equation (17) we have 

5 m ~ ln(1 - 32) (62) 

~ln (11- /32 _ ~c2 (1 - ~c2)) (63) 

1 (  1-~2 ) 
~ l n ( 1 - { 2 ) + - ~ l n  1 - { 2  (64) 

1 
b + -gln (K3(rt, 51,52))  (65) 

which defines the function K3(n, 51,52) Here, i f / (3  < 
1 Anderson's result gives a tighter estimate than 
Sondhi-Mitra's. In Figures 9, 10, 11, and 12 we p lo t / (3  
over the same range of parameters as in the previous 
two cases. As expected we see that  for all parameters 
the Anderson estimate gives a faster convergence rate 
than the Sondhi-Mitra result with the difference larger 
for smaller a2 and a magnitude depending on 5. 

5 C o n c l u s i o n s  

In this paper we have presented a comparative study of 
three different convergence rate estimates for a degen- 
erate gradient flow equation common in adaptive con- 
trol. We considered two well-known results, one due 
to Anderson and one due to Sondhi and Mitra, and a 
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recent result by Brockett. Our analysis shows that  An- 
derson's result yields a tighter est imate than the other 
two and that  Brockett 's  est imate is t ighter than Sondhi 
and Mitra's.  For small 5 the difference can be quite 
large; that  is as the input becomes more strongly ex- 
citing (mixing) the Anderson result indicates a much 
faster rate of convergence than would be expected from 
either Brockett 's  or Sondhi and Mitra 's  result. 
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