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Abstract—In this work we present an efficient environment not only for expressing control tasks but also for describing
representation based on the use of landmarks and language- the environment. In particular, [4] proposed representing
based motion programs. The approach is targeted towards e enyironment of a language-driven dynamical system
applications involving expansive, imprecisely known terrain . .
without a single global map. To handle the uncertainty inher- by means of landmarks, linked together not.by geometric
ent in real-world applications a partially-observed controlled ~ elations but by thdeedback control laws required to move
Markov chain structure is used in which the state space is from one location to anotherThis gives rise to a directed
the set of Ian_dmarks an_d the contro_l space is a set of m_otion graph, with nodes Corresponding to landmarks and edges
programs. Using dynamic programming, we derive an optimal - paing identified with control programs encoded in the motion
controller to maximize the probability of arriving at a desm_ed description language MDLe [2], [3]. This representation of
landmark after a finite number of steps. A simple simulation ” v = .
is presented to illustrate the approach. the world makes contact with studies on human and animal
navigation (see, e.g., [5]) that suggest the existence of two
navigation systems used by mammals: a local response sys-

As systems theory reaches into the domain of multi-modaém and a global place-knowledge system. In simple terms,
systems, it reveals a complexity of behavior that is not usuallyhen the goal location is visible local information is used to
encountered in classical models. This complexity is part afavigate; when moving to locations which are not visible,
what motivates research in the subject but at the same tirstored knowledge of the spatial structure of the world is
it gives rise to new challenges when it comes to answeringsed. Although landmark-based navigation has been explored
basic system-theoretic questions in the new setting. Théxtensively by other authors for localization [6], [7], naviga-
point is perhaps most easily illustrated in the followingtion [8], [9] and descriptions of “large-scale” environments
example: knowing that a mobile robot or other autonomoud.0], the novelty of the approach in [4] is that geometric
system is controllable (by checking the properties of &elationships and global coordinates are abandoned in favor
governing differential equation) does not tell us whether it i®f language-based instructions that can be interpreted down
possible (or how) to steer the robot between two locationt® control laws suitable for driving a differential equation-
in a reasonably complex environment. The reasons for thisased model. This results in a parsimonious description of
difficulty are twofold. First, the environment is at best onlythe world, without the need for global geometry and without
locally state space-like, with regions that are uninteresting enapping areas that are easily navigable or uninteresting.
should be avoided. Second, a complex environment makes itin this work we use [4] as a point of departure to study
difficult to design control laws, especially if one insists onlanguage-driven control and navigation in a stochastic setting.
doing so at the level of sensors and actuators. We exploit classical results on partially-observed controlled

Efforts to address the latter challenge have included rédarkov chains to obtain control programs (more precisely
search on the “motion description languages” MDL andtrings in a formal language) that are optimal in the presence
MDLe [1], [2], [3] which provide a means for abstracting of uncertainty associated with the environment, the sensors
from the low-level details (e.g. kinematics and dynamics) of and actuators of the system under consideration and with
control system. Control programs written in these languagélke precision of the language itself. The next section gives a
combine feedback control laws and logic into strings thdbrief description of MDLe. Section Il presents the control
have meaning almost independently of the underlying sygproblem we are concerned with and describes its Markov
tem, much like desktop software achieves a level of hardwaohain representation. In Section IV we derive control policies
independence by relying on appropriate device drivers.  that are optimal for moving to a desired landmark. Section V

The design of a motion description language shapes the seintains simulation results that illustrate our approach.
of control laws that can be formulated, as does the choice
of a representation for the environment. After all, feedback ll. MDLE
control is a map between observations and inputs. PerhapsThe starting point for MDLe is an underlying physical
then it should come as no surprise that language can be usefystem such as a mobile robot with a set of sensors and

I. INTRODUCTION
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actuators for which we wish to specify a motion controldo not have global geographical information, we cannot rely
program. The system is assumed to be governed byoa any map. In the absence of sensing and actuator noise,
differential equation of the form one can replace geometric relationships between landmarks
. with instructions on how to get from one to the other [4]. The
&= f(2) +Gla)u;  y=h(z) €R (@) environment is then represented by a directed graph in which
wherez(-) : Rt — R" is the state of the system(.) : the nodes are the landmarks and edges are associated with
R? x Rt — R™ is a control law of the type = u(t, h(z)), MDLe plans. In order to be practical, this approach must be

andG is a matrix whose columng; are vector fields in R.  modified away from its deterministic setting, since we cannot
The simplest element of MDLe is thetom, defined to be a guarantee that a given plan will perform as expected every
triple of the formo = (u, ¢, T), whereu is as defined earlier, time due to noisy sensing and control and environmental
¢ :RP — {0,1} is a boolearinterrupt function defined on uncertainty.
the space of outputs fl’O@ﬂSEI’ISOfS, and € R denotes the To handle this Uncertainty, we generalize the directed
value of time (measured from the time the atom is initiated) &raph representation to a partially-observed controlled
which the atom will expire. Te@valuatethe atom is to apply Markov chain. Given a collection of: MDLe plans denoted
the control lawu until the interrupt¢ is low or until 7 units by G = {I'1,...,T'n}, we associate to each plan a Markov
of time have elapsed. Atoms can be composed into a strin@atrix, A(k), specifying the transition probabilities between
called abehavior, that carries its own interrupt function andlandmarks; thus[A(k)];; = pi;(k) is the probability of
timer. Behaviors can in turn be composed to form higheiending at landmarkZ; given that we begin at landmark
level strings (callecbartial plans) and so on. We will use L; and execute plai;. At the completion of each plan an
the termplan to refer to a generic MDLe string independen[ﬂbservation is made, giving us information about the current
of the number of nested levels it contains. For more detailgndmark.
on the language, including example programs, see [3]. It is important to note that this choice of representation
places some restrictions on the set of landmarks and plans.
Since the system does not know with certainty which land-
mark it is on at the completion of a plan, the effect of
We assume that there is a sél, = {Li,...,L,}, of applying each plan from each landmark must be known;
“interesting” or useful geographical locations which we calthis is precisely the meaning of the Markov mati¥ k).
landmarks. These landmarks can take various forms, such @urthermore, each plan must guarantee that upon completion
GPS coordinates, visual cues, or evidence grid maps [11]. {Re system is at some landmark. A simple way of accom-
general, however, they are identified with local geographicalishing this is, of course, to completely tile the world with
information only; that is they are not referenced to any globaandmarks. A more economical approach, however, is to
coordinate system. We associate to each landmark a senshbose plans carefully. For example, in an office environment
signature as follows. Let(t) € R” be the sensor data it is possible to create plans which ensure the system will
collected at timet and letL be the current landmark taking always end up inside an office rather than in a hallway,
values in{L;} U{. Then though due to changes in the environment such as people
: opening or closing their doors the particular office cannot be
L=Liif s(t) = si(t) t€ltoto+T] ) sgeciﬁgd with ce?tainty. Thus, thepuse of feedback control
where s;(t), t € [to,to + T] is the sensor signature of laws encoded as MDLe plans enables a simplified description
the i** landmark. We do not assume these signatures to ioé the environment in a manner akin to that by which
unigue since a robot equipped with noisy sensors may fedback can reduce the complexity of motor programs [12].
best be able to identify to within a subset of the collection of
landmarks. We thus restrict our observations to the collection
of equivalence classes where two landmarks are deemedn order to use local navigation techniques the robot must
equivalent if their signatures are “close” based on somienow which landmark it is on. In this section, then, we

I11. L ANDMARK-BASED NAVIGATION AMID
UNCERTAINTY

IV. OPTIMAL NAVIGATION BETWEEN LANDMARKS

metric. We refer to this set a§ = {Ly,.. .,Ep} where propose a method of finding the sequence of MDLe plans
p < n and eachL, is a representative of the equivalencethat drives the robot to a desired landmark with maximal
class. probability, in a time-optimal manner, under the assumption

We will classify navigation tasks into two categories. Thehat such sequences exist. Recent work along these lines can
first involves motion on or near a landmark. In this setting thee found in [13].
robot knows what landmark it is on and possesses a map ofThe navigation problem described in Section Il is nat-
the nearby terrain. Assuming the robot can use its sensorsurally discrete. To find the optimal sequence we turn to
localize itself on this map, navigation is in principle solved bydynamic programming (DP) [14]. The state space for the
path planning. In this paper we are concerned with navigatiaobot is the collection of landmarkg, the control space
betweerlandmarks where, because we have assumed that ¥8ethe collection" of MDLe plans, and the observation
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space is the collection of equivalence classes of landmarlksjbject to the dynamics of (9,10). The final cost is
Z. Let xy, 21, ur, be the state (location), observation, and

control respectively at time: and letk € {0,1,...,N}. IN(Pnin) = Ex{gn(z)|In}
We assume that we are given a sensor model for the robot; ,
that is we know the distributiofPr(z, = j|zx = 4) giving = ZQN PN\N =GnPyy (13)

us the probability of making observatiai; given that we
are currently on landmark;. Define the usual information where we have made the obvious definition for the vector
vector G . Applying one step of the DP algorithm yields

I 2 3
k= (20,215 -y 2y U, Uty 5 Up—1) ) In-1(Py_yn-1) = minE,, {Jn(Pyn)}

and the vector of conditional probabilities

P
n = min GNP.y—i A(W)PN_1|Nn— 14
Pk\k:(pilc\kapi\ka-wapmk)/ 4) v Z N (W) By-1v 4

where' indicates transpose and, = Pr(z; = jllk) IS Thys the optimal control at theV — 1)t step is
the probability of being in statd.; at time & given the

information up to the current time. Usmg Bayes rule and the ) ,

assumption that the observation depends only on the state #N-1 = argnﬂnzGNPZN:Z'A(“)PN*HNA (15)

and not on the previous information or current control we =1

have which simply minimizes the expected value of the cost over
j — Pra — i) the final Qbservation. Carrying the DP algorithm one more

Pr1fkt1 ft1 = 1kt step we find theV — 2 stage cost to be
~ Pr(zeplrr = J) Pr(ess = g1k, ur) (5)
3 Pr(zkga|wryr = 9) Pr(wegn = i1k, ug) IN—2 (Pn_gn_2) = minEzN,l {In-1 (Pyvoav-) )

Now define

Pry1jx = A(u) Py (6) = min Z Z GNPay=iy AN -1)

’Ll 112 1
so thatPr(zgpr 1 = jllp,ux) = [Pk+1|k} . For ease of Py =i, A(u)Py_on_2 (16)
notation we also define the diagonal matfix

The optimal control at timeV — 2 is thus
P. = diag (Pr(:|a, = L1), ..., Pr(:|ex = L)) (7) P | s

and the vectoe = (1, 1,...,1)’. Using this notation equation Gy
’ ’ UN—2 = arg mln =i ,U,N_

(5) has the form ? Z Z o 1)

’Ll 122 1

j Pr(zpy1|org1 = J) [Pk-‘rl\k]j ®) 'PZN—l:i2A(u)PN—2\N—2 17)
Det1jk+1 = . . _
e € Pry 1 Pryak which is the control which minimizes the expected value of
We can then write the update equation for the conditiondhe final cost over the last two observations. The general case
probability as the two step iteration given by is given by the following theorem.
Theorem 4.1:For k = N — 1,--- ,0 the optimal cost to
Py = Alug) P ©) go is given by
sz+1Pk+l|k:
Pevipprr = S5 p (10) P » P
zhg1 L kA 1lk T (Pyx) = min Z Z . Z GNP, —i,

where Py, is a known initial distribution. To proceed with Y i lia=1 in_p=1

the DP algorithm we must choose the cost function we wish A(UN-1)Pey_y=is Alin—2) + Pry =i A1) Py
to minimize. We first choose to maximize the probability of
arriving at a desired landmark, denotédat time N. To this H

end define the function The usual corollary yields the optimal control policy.
1 ifz=d Corollary 4.2: The optimal control at timé; is
gn (@) = { 1 otherwise 11
We denote a policy as = {po, i1, . ., pun } Where uy, is fu; = arg min Z Z Z Gy Pep=iy Alin-1)
the control function at timé:. The cost function we wish to u=liz=1 ty—p=1
minimize is .PZN—1:i2A(/’[’N*2) T P2k+1:iN—kA(u)Pk|k

Jx(Pojo) = Ezp k=12, .N{Ez{gn(zn)|IN}}  (12) =
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A simple extension allows us to maximize this probabilityequations are then integrated forward by one time step and
of arriving at the desired landmark in the minimum amounthe sensors evaluated by intersecting each ray with the set

of time. To this end we define the functions of polygons modeling the environment. The process then
b, axp=d repeats until the list of atoms is exhausted.
gk() :{ b, otherwise (18) The office-like environment used for these simulations

is shown in Figure 1 together with a virtual robot. Three
and seek to minimize the cost function given by

10

N-—1
Jx(Pojo)= Ezk,k—1,..4,N{G'NPN|N +ZG§€PM} (19)
k=0

L L
The DP solution is given by the following theorem. L 2 3
Theorem 4.3:For k = N — 1,---,0 the optimal cost to °
go is given by

Tk (Pyi) = muin (G Py

P
+ Z ( 2+1P2k+1:i1A(u)Pk|k)
‘=1

~

P p
+ Z Z ( ;c+2PZk+2:’L'1A(Nk+1)PZk+1:i2A(U)Pk\k) ©
11=112=1 -2
p p 5 2‘ z‘t e‘s f; 1‘0 1‘2 1‘4
+ Z Z
“Z:; Wz:k N Fig. 1. Environment and robot
Ay 1) -+ Pr i =in o Aw) Prji )] landmarks, denoted.;, L., and Ls;, were defined. Their
m (z,y) regions are shown in Figure 1. Each covered headings

The optimal control follows immediately from this theo-0f (—80,—100) degrees. The following control functions
rem. We note that while the complexity of finding the optimatvere created.
control increases exponentially with the number of stages, it « 9o [uf ug]: Applies controlsuy anduy.
grows onlylinearly in the number of landmarks. » goAvoid[uy, d ke]: In the absence of obstacles within
d of the front, setsuy = uy,. If an object is detected
within d, setsuy = uy, (d — Tmin) andug = tkg with
To illustrate the proposed representation and the derived the sign chosen to steer away from the obstaelg;,{ =
optimal control laws, a simple simulator was developed. distance to obstacle.)
The robot is modeled as a direct drive system obeying the . followWall[uy, k; kg d]: Maintains distance and head-
following nonholonomic kinematics ing to wall by settingu; = —k (2 (d /r-mln)_|_9) Sm(g)
— uycos(8), (20) and ug = —_kg((d — Tmin) + 29) Whe_re Tonin |sAtr_1e
measured distance to the closest side wall &nts

V. SIMULATION RESULTS

/= U sin(6), (21) the estimate of the heading with respect to the wall.
0 = g, (22) If both distance and heading errors are small then sets
where uy =uyp, andug = 0. R R
ur, + upR ur — UR o alignWall [k¢]: Setsuy = 0 anduy = —kof whered is
U= 5 W= (23) the estimate of the heading with respect to the closest
side wall.

Hereu; anduy are the forward and heading velocities, ~ —~
uz, anduy are the left and right wheel velocities, andis o rotateAway[ky]: Setsus = 0 andug = —kqt Whereo
the distance between the wheels. It is equipped with a set IS the estimate of the heading with respect to the rear
of range sensors. The environment is modeled by a set of Wall
polygons. The simulator accepts an MDLe plan specified dde following interrupt functions were also defined.
a list of atoms and at each time step the current interrupt « wait [7]: Fires afterr seconds.
function is evaluated. If it has fired the next atom is loaded « sideOpen[side d 7]: Fires if sensor on side indicated

and if not the control function is evaluated to determine by side (with 1 indicating left, 2 indicating right, and 3
andug. To model actuator noise, independent samples from indicating either) reads less thdror if 7 seconds have
a normal distribution are added tq, and toug. The system passed.
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« alignedWall[vy 7]: Fires if the estimated heading with matrices were

the nearest side wall is less th@w| or if 7 seconds 0 0 0 0 0 0
have passed. o , . Ap=1043 0 0| Ap=|012 0 0
« rotatedAway[v 7]. Fires if the estimated heading with ! 057 1 1 ! 088 1 1
the rear wall is less thap| or if 7 seconds have passed. 10 0 1 1 1
o atWall [d 7]: Fires if the front sensor reads less than Apis=10 0 0 Ai=10 0 0
or if 7 seconds have passed. 2 0 1 1 ’ 00 0

) ) The optimal controller of Corollary 4.2 was used as
From these funcuqns various atoms were cpnstru_cted A ows. The state was initialized and a three-stage controller
from the atoms five plans were defined including the .4, geer the robot to the desired landmark. At the end
|dent|.ty. plan (der;ote?()j ]l)3 which ?pplles a zero control. Th%f three stages the probability vector was tested and if the
remaining four {1, L, L3, and Ly) were designed to steer o o 1ahiity of being at the desired landmark was less than
the robot in the absence of noise from landmairio 7. As 0.95 the process was repeated.

o
an example, plarl; is In Figures 2,3, and 4 we show the evolution of the state,

{ (sideOpen [3 6 5]) (followWall [1 20 2 0.4]) the true and observed landmarks, and the selected plan at
(atwall [0.3 30]) (goAvoid [1 0.05 1 0.025])  €ach time step for a sample run with a true initial position
(wait [0.75]) (go [0 1.57]) on Ly, an initial state of a uniform distribution across the
(alignedWall [5 10]) (alignwall [2]) states, and a desired final position bs This run shows the
(wait [0.5]) (followWall [1.25 20 2 0.4])  robustness of the approach to both the actuator and sensing
(sideOpen [1 6 5]) (followWall [1 20 2 0.4]) noise; despite driving to an unintended location twice and
(wait [0.5]) (go [0 1.57]) getting several incorrect readings (including the final one)
(rotatedAway [3 0.1 5]) (rotateAway [3]) the controller was successful in achieving the objective.

(wait [3.5]) (goAvoid [1 0.4 1 0.025])

(wait [2]) (go [0 1.57]) '

(alignedwall [1 10]) (alignWall [2]}

0.9
0.8
where the notation is (interrupt) (control). This plan reads as
follows. Follow the nearest wall until either side reads greater
than six meters, then go straight until a wall is reached. Turn
counter-clockwise, align along that wall, and follow it for
half a second. Continue following the wall until the left side
sensor reads greater than six meters. Rotate and align to the
wall behind, move forward for three and a half seconds (but
do not run into any intervening obstacles), and then rotate .
counter-clockwise0°. Finally align to the wall.

0.7

0.6

05

State probability
~

0.4

0.3

0.2

0.1

It should be noted that the plans were chosen to be T T 9 moumonow s 0
somewhat brittle with respect to the simulated noiseLjn
for example, the robot attempts to detect the opening to the Fig. 2. L; to Lo: State evolution

next room quickly. Due to noise the robot may not have
moved far enough and the interrupt will fire too soon, causing
the robot to end back on landmark two. While more robust )
plans could certainly be designed, some level of uncertainty N this paper we presented an approach to landmark-based

was desired to show the use of the optimal controller. navigation for mobile robots intended for applications in
o _ o expansive or sparse environments and designed to handle the
The a priori observation probabilities were chosen to bgojsy sensors and actuators one finds in real-world robotics.

VI. CONCLUSIONS

(with the notationPr(i|j) = Pr(z =iz = L;)) Under this approach the set of landmarks is viewed as a
Pr(1]1) =05 Pr(1)2)=0.3 Pr(1]3) =0.2 controlled Markov chain where the controls are feedback
Pr(2]1)=02 Pr(2]2)=06 Pr(2]3)=0.1 control laws encoded in a motion description language.
Pr(3]1) =0.3 Pr(3[2) =0.1 Pr(3|3) =0.7 Global information is thus replaced by local information

around each landmark and the connections between those
The Markov matrices were determined by running eactandmarks.

plan 100 times from each landmark. Actuator noise was sam-An optimal controller was developed using dynamic pro-
pled from aAN(0,0.01) distribution. The resulting Markov gramming that maximizes the probability of steering the
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