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Abstract— In this paper, we present a sample-detection
scheme designed for non-raster scanning in atomic force
microscopy. The scheme utilizes a maximum-likelihood
estimator applied over a moving window and enables
the tracking of a string-like sample. By tracking, the
tip is kept in proximity to the sample, reducing the
total imaging time by eliminating the measurement of
unnecessary information. We combine the new estimator
with previously reported results and apply the algorithm
in simulation to actual data obtained through a raster-
scan image of DNA.

I. INTRODUCTION

Atomic force microscopy (AFM) [1] has led to
remarkable discoveries in the field of nanotechnology,
molecular biology, medicine, materials science and
many others. AFM is well known for its high spatial
resolution. Because of this, and its ability to operate
in liquid environments, it is well suited for the study
of biological samples. As a result, AFM has led to
improvements in our understanding of a variety of
biological systems at the molecular level, including the
structure and function of proteins, DNA, lipid films, and
molecular motors [2]–[5]. Despite these successes, the
applicability of AFM to study the dynamics in systems
with nanometer-scale features is severely limited by
the AFM’s temporal resolution. For example, current
commercial AFMs generate a single image in the order
of minutes. Due to the wealth of dynamic phenomena
with time scales much faster than this, there is great
interest in improving the temporal resolution of the
instrument.

To achieve this improvement, researchers have fol-
lowed two main approaches: alternative physical de-
signs (e.g. [6]–[8]) and advanced control technology
(e.g. [9]–[11]), as well as combinations of both [12].
These schemes, however, treat the AFM system as an
“open-loop” imaging device and continue to utilize the
raster scan pattern as the basic scanning routine.

Our work approaches the goal of improved tempo-
ral resolution in a different manner - through non-

raster scanning. By using the information collected by
the instrument to adjust in real-time the measurement
process, a more rational sampling can be achieved.
Combining the measured data with a priori knowledge
about the sample allows us to design feedback control
laws that keep the tip in the vicinity of the sample,
thereby reducing the imaging time by reducing the
amount of measurements needed. Here we focus on
string-like samples such as DNA, microtubules, and
other biopolymers.

The core algorithm, briefly described in Sec. II,
has been previously described in [13], [14]. Here we
develop a maximum-likelihood scheme for detecting
the underlying sample in the data captured through
our tracking approach. Because our primary interest is
in the imaging of biological samples, our discussion
centers on the intermittent contact (or tapping) imag-
ing mode, although the scheme is easily applied to
other imaging modalities as well. We then illustrate
the overall scheme by combing the elements of the
algorithm, including the use of theoretical bounds for
control parameter selection to guarantee tracking [15],
to a data set from a traditional AFM raster-scan of a
DNA strand.

II. NON-RASTER SCAN METHOD WITH SMOOTH

SCAN TRAJECTORY

The raster-scan pattern can be viewed as an open-
loop scheme for the trajectory of the AFM tip in
the plane. As illustrated in Fig. 1, our non-raster scan
method closes the high-level control loop of the AFM
system to steer the tip in close proximity to the under-
lying string-like sample.

We model the string-like sample as a planar curve
whose evolution in the plane is governed by the curva-
ture. Given an estimate of the curvature and the tangent
to the curve at the current point, the future evolution of
the curve, at least locally, can be predicted by solving
the Frenet-Serret frame equations to yield a predicted
curve r(s) where s is the arclength along the sample.
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Fig. 1. Closing the high-level control loop. The measurements
acquired by the tip are filtered and then used to estimate the
parameters of the tip steering control. In the current paper, this
controller drives the tip in a sinusoidal pattern along the string-like
sample.

We define a scan pattern along this predicted curve by
setting the tip trajectory xtip to

xtip(s(t)) = r(s(t)) +A sin(ωs(t))q2(s(t)) (1)

where q2 is the normal vector to the curve r, A is the
scan amplitude, and ω the spatial frequency. As the
tip moves, the measurements are used to continually
estimate the path of r, leading to a scan pattern as
shown in Fig. 2. Details can be found [14].

Fig. 2. Smooth non-raster scan pattern. The underlying curve
(blue) is not known in advance but is estimated based on measure-
ments obtained along the tip trajectory (black). Image from [14].

III. DETECTION SCHEME

The tip trajectory xtip is designed so that it peri-
odically crosses the underlying sample. This allows us
both to image the sample as well as to track it. In order
to implement the tracking, an estimate of the location
of the sample point rk+1 in the scan is needed. (Here
the index k indicates the sample number along the

path.) There are various techniques available to provide
estimates of the sample location. For example, in [16]
a high-speed detection scheme is introduced that relies
on the transient dynamics in the cantilever when the
tip transitions onto the sample. In this work, we are
interested in using the measured data for generating
images and therefore assume the measured signals
(height, amplitude, phase) are available and of sufficient
quality for detection.

In general, for string-like samples the tip will move
up onto the sample, cross over, and then step down, as
illustrated in Fig. 3. (We note that it is straightforward
to extend the scheme presented below to boundaries,
such as along a cell or along a crystal, in which the tip
would only move up onto the sample during the portion
of the scan illustrated in the figure.) The responses of
the measured signals to this crossing are different for
the height, amplitude and phase signals. For example,
height increases as the tip steps onto the substrate and
decreases as the tip steps down while the amplitude
signal undergoes a brief decrease in its magnitude on
the step up until the control loop responds to the
disturbance, and a brief increase for the step down.
These changes create a unique shape for the trace of
the signals, and we use these shapes to identify the
location of our underlying sample.

Fig. 3. Illustration of AFM tip crossing a string-like sample. The
tip is moving at a speed vtip, crossing the string-like sample at
an arbitrary angle relative to the direction defined by the tangent
vector of the string. The sample has an height of d.

In this paper, we design the detection scheme based
on the height data measured, but it can easily be
extended to the other signals. Since height data are
measured sequentially along the scan trajectory, the
sequence for N measurements along a segment of the
scan can be modeled as:

zj = hj + vj , j = 1, 2, · · · , N (2)

where zj denotes the measured height, hj the actual
value, vj the measurement noise, and the subscript j
indexes the discrete sampling of the AFM along the
scan trajectory. We assume the noise process is white
with a zero mean, variance σ2

v Gaussian distribution.
Other noise models can be used.
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Equation (2) can be rewritten in vector form to yield

Z = H + V, V ∼ N (0, σ2
vI), (3)

where Z is the measured height data, H the actual
height, and V the modeled Gaussian white noise pro-
cess.

A. Maximum likelihood estimator

We have chosen the maximum likelihood (ML) ap-
proach to detect the crossing points within the measured
data. Depending on the sample that the AFM tip is
crossing and the velocity at which the tip is traveling,
one can model the crossing pattern with different
shapes. In this paper we focus on a square function
derived from subtracting one Heaviside function from
another, the Heaviside function is defined as:

1(s− s0) =
{

1, s ≥ s0,
0, otherwise.

In our setting, s is the running arclength parameter
used in our non-raster scan method, and s0 denotes
the position where the step up occurs.

We model the crossing pattern using a square func-
tion given by

h(s;φ∗) = h∗(1(s− s∗0)− 1(s− (s∗0 + ρ∗))), (4)

where φ∗ = {s∗0, h∗, ρ∗} is the collection of parameters
controlling the shape of this function, with the super-
script (∗) denoting the true (unknown) value. In this
vector, s∗0 represents the left edge of the square, h∗

is the height of the sample, and ρ∗ denotes the width
of the square function. We note that this shape model
can be adjusted to include a slope that accounts for the
image tilt common to AFM.

The string tracking algorithm uses a single point to
represent the position of the string-like sample in the
scan. One can choose this point to be anywhere along
the width of the sample, including either of the two
edges. This point, however, should be the same along
the string; that is, if one chooses the left edge for one
crossing then the left edge should be used for the entire
string.

To use the shape function with the sampled height
data, we represent the square function (4) in discrete
form as

hφ∗(j) =
{
h∗, j∗ ≤ j ≤ j∗ + ρ∗n,
0, else, (5)

where j∗ denotes the position where the step up begins,
and the lower script for ρ∗n denotes the width using the
subindex n for discrete values.

The ML estimator is given as

φ̂ = arg max
φ

p(Z|φ) (6)

where p(Z|φ) is the conditional probability distribution
function (PDF) for obtaining the measurement Z given
φ = {h, j, ρn}.

In general, one solves (6) to determine the best esti-
mate of the parameter φ. To simplify the optimization
problem we can take advantage of a priori information
about our sample. For example, the measured height of
DNA in air is about 1.5 nm while in liquid it is 1.8 nm
[17]. Using this knowledge and through scaling, we set
the value of h∗ to one.

From (3), the PDF in (6) is given by

p(Z|φ) = α exp

− N∑
j=1

(Z(j)− hφ(j))2

2σ2
v

 , (7)

where α is the scaling factor of the Gaussian. Express-
ing this in terms of the log likelihood yields

φ̂ = arg min
φ

N∑
j=1

(Z(j)− hφ(j))2. (8)

In most cases, the measurement sequence collected
along the scan trajectory consists of only a small
number of points. Thus, this optimization problem can
be solved rapidly through a simple numerical search.

Generally, for the tracking algorithm we are con-
cerned primarily with the position of the string and not
in the width ρn. We can then use a simpler shape model
in which the width of the square function is set to zero,
yielding

hφ(j) =
{

1, j = j∗,
0, else. (9)

The ML likelihood estimation then reduces to the
search for just one parameter, namely j∗. This shape
function is particularly useful when the number of
measurements in the trajectory are small. This is the
case for string-like samples when the tip speed is large.

B. Moving window framework

In the non-raster scan pattern in (1), the tip is
constantly moving in a sinusoidal pattern across the
sample. In order to use the ML detection scheme, it is
necessary to select proper segments of the continuous
evolving curve for the N discrete data sets for detec-
tion. We have chosen a moving window framework
illustrated in Fig. 4, to provide for a continuous update
on the evolving tip trajectory and to estimate in real
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Fig. 4. Illustration of the moving window framework for ML
estimation. The window size is chosen to guarantee that there is at
least one string crossing inside at all times.

time the position of the sample in the scan as height
measurements are acquired.

The size of this data “window” should be selected
with care to ensure proper detection and avoid loss of
tracking. The window frame should be large enough to
ensure that there is indeed a crossing of the sample
in the data set. Otherwise the data will consist of
only noise and substrate, leading to false detection
and erroneous parameter estimation in the tracking
scheme. It is also important, however, to avoid a
window size that is too large since the computational
time for solving (8) is related to the amount of data.
As a result, we choose the window size to be three-
quarters of the spatial sinusoidal period, that is ωs ∈
[ωso − 3π/2, ωso] where so is the current position of
the tip with respect to arclength.

The ML detection scheme thus proceeds as follows.
To initialize, we first move the tip along the first three-
quarters of a period of the tip trajectory to acquire
a complete data set in the window frame. We then
use the ML estimator to estimate the crossing position.
We record this crossing location and return its actual
position to the tracking algorithm. Based on this infor-
mation, the tracking algorithm updates the estimate of
the string sample and therefore the scan pattern. As the
tip continues to move, we update the window frame and
repeat the process. Note that the new window contains
only a few new points and in general the detected
crossing is the same as before. We therefore compare
the new detected point with the previous one. If the
difference is large enough, we update the position and
send it to the tracking algorithm. Otherwise, we ignore
the detected crossing.

IV. EXAMPLE

We show here an example of applying the string-
tracking scheme to data from an AFM image of DNA.

The image was taken from the web site of Asylum
Research [18]. As shown in Fig. 5, we selected a
portion of the image that is approximately 500 nm
by 500 nm, with 400 pixels in each direction. This
corresponds to a resolution of 1.25 nm for each pixel.
On the figure we also indicate the region to which we
will apply the tracking algorithm. This portion was
chosen as it contains a long strand with significant
curvature and because it does not lie close to another
strand of DNA (as in the left portion of the figure).
We note that if there are two portions close together,
then the tracking algorithm will still track the DNA
but currently we cannot guarantee which strand will
be followed after they separate. This question is the
subject of ongoing research.

We incorporated the detection scheme presented in
this paper with the tracking algorithm in [14]. The
choice of scan parameters (A,ω) was guided by results
in [15] (see IV-A). Note that the algorithm does not
know a priori any information about the location of the
DNA strand other than an initial condition. In practice,
such an initial condition can be determined using an
initial fast but rough scan or through simply scanning
until a sample is detected. See [14] for more details.

Fig. 5. DNA image data used for scan example. Image from [18].

A. Scan amplitude and scan frequency

Following our earlier work of [15], we can select the
two main scan parameters, A and the spatial frequency
ω, to guarantee that the algorithm will track the sample.
This is done as follows.

First, we select the amplitude to ensure the sample
is completely crossed during each spatial period of the
sinusoid. In this case we need only select A larger than
the known width of the sample. Here we choose A =
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2.5 nm for a total scan width of 5 nm, significantly
larger than the approximately 2 nm size of DNA.

We must then choose ω. This parameter serves as the
resolution in the image and thus it should be chosen
large enough to produce the desired resolution along
the DNA. Choosing it too large, however, increases the
total path length of the tip trajectory and thus the overall
imaging time. Finally, we must also ensure tracking of
the strand, even through regions of high curvature. In
[15] we derive theoretical bounds on ω as a function
of the amplitude, A, and the curvature, κ. Hence in
addition to A, we need to determine the maximum
curvature on the string-like sample.

In general this can be determined from the physical
constraints of the sample to be imaged. Known models
for DNA (for example, the worm-like chain model
in [19]) can be used. Alternatively, if an initial, low-
resolution scan is performed, the maximum curvature
can be estimated from the data. We follow that ap-
proach here and calculate the curvature in two regions
of the strand, shown in Fig. 6. The two regions have
curvatures of 13.02 and 9.58, respectively. The resulting
minimum values of f = ω

2π that guarantee tracking are
also shown. With this we choose ω = 2π10.

Fig. 6. Calculation on the minimum spatial frequency ω = 2πf
that will guarantee tracking through curvature κ on the sample
DNA image. Curvatures are calculated at two sharp turns to find the
maximum value, and a suggested minimum frequency is calculated
using the theoretical bounds with given the amplitude value. Note
that the x and y axis are indices of the pixels.

B. Converting arclength to time

In order to avoid exciting unwanted dynamics in the
scanning and measurement system, we choose to move

the tip at a constant velocity of vtip = 1 nm/unit time.
Since the underlying curve, and thus the desired tip
trajectory, is naturally described in terms of arc length,
we need to determine the conversion between time and
arclength as described in [14]. The relationship depends
on the current curvature value and is illustrated in Fig.
7 for the selected scan parameters and for a curvature
of zero. At every instant of time, the time value is then
converted into the corresponding arclength value. This
value is then used in the equation for the tip trajectory,
(1) to determine the desired position of the tip.

Fig. 7. Conversion between time and arclength at a constant vtip.
(Top) A regular sampling with respect to time yields an irregular
sampling in arclength. (Bottom) The corresponding tip trajectory,
illustrating the irregular spatial sampling.

Note that sampling at a fixed rate in time then
corresponds to an uneven sampling in space as shown
in the lower image in Fig. 7. The samples are denser
near the portion of the trajectory corresponding to the
location of the sample and sparser at the extremes of
the trajectory. A constant sampling in space can easily
be achieved by allowing for a varying tip speed.

C. Scanning

The result of scanning the strand according to our
tracking algorithm is shown in Fig. 8. The non-raster
scan is performed from the tip of the hook on the left
of the DNA strand, and proceeds to the lower right
part. The scan covers several consecutive turns in this
DNA sample. The white dots indicates the trace of the
tip trajectory xtip, while the black squares indicates
the crossing intersection points found by the moving
window ML algorithm.

The height trace along the scan trajectory of this scan
is shown in Fig. 9. It can be seen that the measured
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Fig. 8. Smooth scanning trajectory trace on the sample DNA
image. The non-raster scan was initialized at the upper left part of
the string, then scanned along the DNA strand towards the lower
right corner, following its curvy path. The scan amplitude was 2.5
nm and the scan frequency was 10 Hz. These values are guaranteed
to track this particular sample.

data itself is noisy. Our detection characteristic func-
tion essentially looks for a jump in the height signal,
corresponding to when the tip crosses the underlying
DNA sample. Note the value on y-axis is not in units
of length due to image data conversion.

Fig. 9. Height data along the scan trajectory on the DNA image.
The trace shows a noisy data set as we scan along the DNA strand.
The crossing of the tip with sample occurs where the there is a
jump in height measurement. The non-raster scan method identifies
these regions with the moving window ML detection scheme.
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