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Abstract: We present an algebraic solution to the problem of localizing
a single fluorescent particle with sub-diffraction-limit accuracy. The algo-
rithm is derived and its performance studied experimentally. Isolated 20
nm fluorescent beads were imaged using a wide-field microscope at two
different positions separated by 100 nm and at a range of signal-to-noise
ratios (SNR). The data were analyzed using both the new algorithm and the
standard approach of fitting the data to a Gaussian profile. Results indicate
that the proposed approach is nearly as accurate as Gaussianfitting across a
wide range of SNR while executing over 200 times faster. In addition, the
new algorithm is able to localize at lower SNR than the fittingmethod.
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1. Introduction

The ability to determine the position of an isolated fluorescent particle with sub-diffraction
limit accuracy is an invaluable tool in fluorescence microscopy. It has been used in the study of
a wide variety of molecular processes including the motion of influenza viruses during infection
[1], the motion of molecular motors such as myosin and kinesin [2], and the delivery of genes to
the nucleus using synthetic delivery vectors [3]. The interested reader is directed to the review
articles of Moerner [4] and Joo, et. al. [5] for further references.

Many different techniques for estimating the position of the particle have been proposed
(see, e.g., [6, 7]). The most commonly used ones typically fitthe measured intensity data to a
Gaussian profile. The location corresponding to the maximumof the Gaussian is taken to be
the position of the source. Theoretical formulas for the accuracy of this approach have been
derived [8] and, with sufficiently high signal-to-noise ratio (SNR), accuracy on the order of one
nanometer can be achieved [2]. Fundamental limits on the accuracy of estimation have been
determined and algorithms based on optimal estimation theory proposed that nearly achieve
this limit [9, 10].

Despite the myriad of successes to date, these methods suffer from drawbacks arising from
the numerical nature of the schemes. These include the need for a large set of data and the time
it takes to perform a numerical fit of the data. Neither of these is an issue when imaging is
performed in wide-field using a CCD camera and when analysis is done offline. In applications
where real-time position information is desired, however,it is important to produce estimates
as fast as possible. Moreover, when images are acquired using confocal or multi-photon tech-
niques, pixels are obtained sequentially rather than in parallel. The amount of data required to
determine accurately the position of a fluorescent particlethen has a direct effect on the tem-
poral resolution of any real-time tracking algorithm utilizing position estimation. These issues
are particularly relevant given the increasing interest inusing confocal and multi-photon setups
to track the motion of single particles [11, 12, 13].

In this paper we describe a novelalgebraicalgorithm inspired by a solution to the position
estimation problem in the Global Positioning System (GPS) known as Bancroft’s algorithm
[14]. The algorithm, termed fluoroBancroft, relies on the fact that the fluorescence intensity
depends only on the distance between the location of the measurement (the center of a pixel
when a CCD array is used) and the position of the source particle. We focus here on localization
in the plane, although the algorithm has been generalized to3-D [15]. Simulation results to
date indicate that the method has accuracy similar to Gaussian fitting [16] when large amounts
of data are available and performs significantly better thanGaussian fitting when only a few
measurements are available [17]. In fact as few as three measurements are needed to estimate
the position of a source particle in the plane.

The remainder of the paper is organized as follows. In Sec. 2 we describe the fundamen-
tal idea of the algorithm in terms of range-based localization and then give the mathematical
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derivation of the estimation formula in Sec. 3. In Sec. 4 we describe a set of experiments in
which 20 nm fluorescent microspheres were imaged at two successive locations separated by
100 nm. A collection of images at different SNR were taken andthe data were used to study
the performance of the fluoroBancroft algorithm with respect to the Gaussian fitting approach.
These results are described in Sec. 5.

2. FluoroBancroft - the concept

As will be shown in Sec. 3 below, a measurement of the fluorescence intensity can be converted
to a measurement of the distance between the fluorescent particle and the position at which the
measurement was taken. If a CCD camera is being used, each pixel acts as an individual detector
with its position given by the center of the pixel. In confocal and multi-photon applications, the
center of the detection volume of the microscope determinesthe position of the measurement.
As illustrated in Fig. 1, a measurement of the range yields a circle of possible locations of the
source (or, if estimation is being done in three dimensions,a sphere of possible locations).
A second measurement from a different location in space yields a second circle. Under the
assumption that the fluorescent particle is fixed, it must be located at the intersection of the two
circles. With two measurements there are thus two possible positions for the source. Including
a third measurement from a third location produces yet another circle. In the absence of noise,
there is a single point of intersection of the three circles and thus a unique solution for the
position of the source particle (in three dimensions, a fourth measurement is needed to get a
unique solution). Noise in the intensity measurements, however, is propagated into noise in the
measurement of the range. In general, then, the circles willnot intersect at a common point and
an approximate, rather than an exact, solution to the estimation problem must be found. In Sec.
3 below, we develop a linear system in terms of these range estimates (c.f. (10)) and present an
analytical solution using the Moore-Penrose generalized inverse. Due to the properties of this
inverse, the solution satisfies a least-squares criterion in terms of the error (see (12)).

r
1

r
2

r
3

Fig. 1. Range-based estimation in the plane. Each measurement yields an estimate of the
range to the source (yellow star) and thus a circle of possible locations for that source. With
two measurements from two different locations, the source must lie at the intersection of the
two circles, leading to two possible solutions. In the absence of noise a third measurement
produces a unique solution given by the single common point of intersection of the circles.
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3. FluoroBancroft - the derivation

We model the intensity at(x,y) of a fluorescent particle located at(xo,yo) as a Gaussian profile
given by

I(x,y) = me
− (x−xo)2

2σ2
x

− (y−yo)2

2σ2
y + ηB+ ηshot (1)

wherem is an unknown scaling factor determined by the photon emission rate of the fluorescent
particle and the integration time of the measurement,σx andσy describe the width of the point
spread function in the two directions,ηshot is a random variable describing the shot noise,
andηB is a random variable with meanNB that captures the background intensity noise and
the intrinsic noise (dark current) of the detector. The value of NB is assumed known (through
measurement). The random variable defined by

I = me
− (x−xo)2

2σ2
x

− (y−yo)2

2σ2
y + ηshot (2)

is assumed to be Poisson with mean value

〈I 〉 = me
− (x−xo)2

2σ2
x

− (y−yo)2

2σ2
y (3)

where〈·〉 represents expectation. The parametersσx andσy are determined by setting the e−1

point of the intensity model to be equal to the Rayleigh radius. In the absence of aberrations,
the values will be equal and given by

σx = σy =
0.6λ√
2N.A.

(4)

where N.A. is the numerical aperture of the objective lens and λ is the wavelength of the emitted
light. If σx is not equal toσy then we scale they−coordinate by defining ˜y = (σy/σx). We then
have

I(x,y) = me
− (x−xo)2

2σ2
x

− (ỹ−ỹ′o)
2

2σ2
x + ηB + ηshot

= me
− r2

2σ2
x + ηB + ηshot (5)

where we have defined the distancer between the point(x,y) and the position of the molecule

r =

√

(x−xo)
2 +(ỹ− ỹ′o)

2. (6)

Note that this model is an approximation of the true point spread function of a diffraction
limited spot and the noise in the measurement (see, e.g., [18]). Deviations of the measured
intensity from this model will introduce error in the estimated position of the source particle.

Taking the expected value of (5) and rearranging, we obtain an equation for the range to the
source particle:

r2 = 2σ2
x ln(m)−2σ2

x ln(〈I〉−NB). (7)

Note that the value ofm, related to the true intensity of the fluorophores, is not typically known.
We now assume we have a collection of intensity measurements, denoted asIi , and taken

from the (known) positions(xi ,yi). Each measurement yields a range measurement of the form
(7). To rearrange this equation, define

b = 2σ2
x ln(m), P2

i = 2σ2
x ln(Ii −NB), (8a)

αi =
1
2

(

x2
i + ỹ2

i +P2
i

)

, Λ =
1
2

(

x2
o + ỹ2

o

)

. (8b)
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Then (7) can be written as the following scalar equation:

0 = αi + Λ−
(

xi ỹi 1
)





xo

ỹo

b



 . (9)

Stacking togetherN such measurements into a vector equation and rearranging yields

B





x0

ỹ0

b



 = α + Λe (10)

where

α =







α1
...

αn






, e=







1
...
1






, B =







x1 ỹ1 1
...

xN ỹn 1






(11)

are all known. TheN×3 matrix B captures the locations at which each of the measurements
was taken. Under the mild assumption that all the points do not lie on a single line, this matrix
is full rank.

The linear system defined by (10) is overdetermined and thus in general does not have an
exact solution. An approximate solution that minimizes theEuclidean norm of the residual
error,δ , defined by

δ = B





x0

ỹ0

b



− (α + Λe) , (12)

is given by the Moore-Penrose pseudo-inverse ofB [19]. To obtain this least-squares solution,
pre-multiply (10) byBT and rearrange to yield





xo

ỹo

b



 = B† (α + Λe) (13)

whereB† =
(

BTB
)−1

BT . The unknown position of the fluorescent particle appears onboth
sides of this equation, explicitly on the left side and implicitly on the right side throughΛ. To
solve for the position of the fluorescent source, we utilize the following proposition.

Proposition 3.1. Let e be the N×1 vector of all ones as defined in(11)and let A be any N×m

matrix such that the matrix obtained by appending e to A, B
△
= (A e), is full rank. Then

B†e=











0
...
0
1











. (14)

Proof. Let I denote the identity matrix. We have

I =
(

BTB
)−1(

BTB
)

=
(

BTB
)−1

BT (A e)

=
(

(

BTB
)−1

BTA
(

BTB
)−1

BTe
)

=
(

B†A B†e
)

.

ThusB†e is equal to the last column of the identity matrix as claimed.
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Prop. 3.1 allows us to solve for the position of the fluorescent particle as follows. Define the
matrixQ as

Q =

(

1 0 0
0 σx

σy
0

)

. (15)

Pre-multiplying (13) byQ and applying the proposition yields the fluoroBancroft solution:
(

xo

yo

)

= QB†α. (16)

Given a set ofN measurements, the fluoroBancroft algorithm is applied by first building the
vectorα and the matrixB defined in (11) , calculating the Moore-Penrose inverseB†, and then
performing the matrix multiplication in (16). Although thematrix BTB must be inverted, this
matrix is always 3×3, independent of the number of measurements used.

4. Experimental methods

All experiments were carried out on a Zeiss Axiovert 200 microscope using a 63x, 1.2 N.A. wa-
ter immersion objective lens (Carl Zeiss, Inc., Thornwood,NY, USA). Actuation was achieved
using a three-dimensional nanopositioning stage (Nano-PDQ; Mad City Labs, Inc., Madison,
WI, USA) with a positioning accuracy of 0.1 nm. An Xcite EXFO illumination source (Missis-
sauga, Ontario, Canada) was used to generate the excitationlight. This light was passed through
a dichroic filter set (Chroma Technology, Rockingham, VT, USA) to produce a narrow-band
excitation centered at 532 nm. Fluorescence emission collected by the objective was passed
through the filter set that blocked any reflected excitation light. The image was captured using a
CCD camera (Retiga EXi; QImaging, Inc., Surrey, BC, Canada). Each pixel on the CCD sensor
array was 6.45µm× 6.45µm; this translates to 102 nm× 102 nm in the image plane with the
63x objective.

20-nm diameter carboxylate-modified microspheres embedded with “Nile Red” fluorophores
were purchased (Invitrogen, Inc, Carlsbad, CA). The microspheres were diluted in de-ionized
water and dried onto a glass coverslip. The coverslip was then placed on a bead of water on
a glass slide and sealed. A region containing four visible and isolated beads was selected. A
cropped image of one of the beads taken with an exposure time of 25 ms is shown in Fig. 2.
Images were taken with exposure times of from 1 to 51 ms in steps of 2 ms. At each exposure
time, forty sets of two images were collected. In between each image the nanostage was dis-
placed 100 nm in thex−direction. The background statistics were determined by selecting a
30× 30 pixel region that did not contain a microsphere and calculating the mean and variance.
The SNR for a given exposure time was calculated from

SNR=
I0

√

σ2
BG+ σ2

I0

(17)

whereI0 denotes the mean maximum signal level above the background,σ2
BG the variance of

the background intensity values, andσ2
I0

the variance in the maximum intensities. Means and
variances were calculated across the 80 images acquired at agiven exposure time. The resulting
SNRs ranged from 3.28 to 18.5.

The position of a particle in an image was determined using both the Gaussian fitting and the
fluoroBancroft algorithms. This was done by selecting a 16×16 pixel array surrounding each
particle and using the 256 data points in the two position estimation algorithms. Once the posi-
tions in each image were determined, the displacements between every pair of displaced images
at a given exposure time were calculated by simply calculating the length of the displacement
vector, leading to 1600 measurements for each microsphere.
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Fig. 2. Fluorescence image of a 20-nm diameter microsphere embedded with “Nile Red”
fluorophores. Axis labels are pixel indices and grayscale represents fluorescence intensity.

The values forσx andσy in the model (1) used in the fluoroBancroft algorithm were calcu-
lated from (4) to be 203 nm for the given imaging parameters.

Gaussian fitting was performed using a least-squares minimization (using the built-in Matlab
routinelsqnonlin) to fit a model of the form

I(x,y) = me
− (x−xo)2

2σ2
x

− (y−yo)2

2σ2
y . (18)

The position of the particle,(xo,yo) as well as the values forσx, σy, andm in the model were
varied. The algorithm was initialized using the coordinates of the center of the pixel with the
largest intensity as the position of the particle, the maximum intensity value form, and withσx

andσy as in (4). All analysis was performed using the Matlab software package (MathWorks,
Natick, MA, USA) on an Apple iMac (2.66 GHz Core 2 Duo) desktopcomputer.

5. Results and discussion

Typical results of the analysis for the displacement of one microsphere at a fixed SNR of 8.49
are shown in Fig. 3. The mean error in the measured displacement when the fluoroBancroft
algorithm was used was 44.5 nm with a standard deviation of 24.5 nm. The performance was
nearly as accurate as the Gaussian fitting algorithm which yielded a mean error of 37.0 nm and
a standard deviation of 25.5 nm. Despite the similar performance, the fluoroBancroft algorithm
executed on average over 200 times faster than the Gaussian fit approach (see also Fig. 7).

5.1. Biasedness of the fluoroBancroft estimator

The absolute position of the beads is unknown and thus one cannot determine the bias in the
position estimates quantitatively since the position error cannot be calculated. Using the error in
the displacements, however, we can investigate the bias qualitatively as follows. If the position
estimates were Gaussian distributed with zero mean and varianceσ2

e , then the error in the
translation measurement,d, would be Rayleigh distributed with the probability distribution
function

fd(d) =
d

σ2
e

e
− d2

2σ2
e U(d). (19)

whereU(d) is the unit step function (see, e.g. [20]). The mean and the variance for this dis-
tribution are given by

〈d〉 = σe

√

π
2

, Var[d] =
(

2− π
2

)

σ2
e . (20)
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Fig. 3. Results for images acquired with an SNR of 8.49. The mean of the error is indicated
with a black dotted line and the standard deviation with a reddashed line. (a) Error in
displacement when the fluoroBancroft algorithm was used forposition estimation. The
mean was 44.5 nm and the standard deviation was 24.5 nm. (b) Error in displacement when
a Gaussian fit was used for position estimation. The mean of 37.0 nm was better than that
obtained by fluoroBancroft while the standard deviation of 25.5 nm was slightly worse.

Therefore, if the position estimates produced by the fluoroBancroft estimator are unbiased
(zero-mean error) then, from (20), the mean and variance of the translation estimates would
be related according to

Var[d] =

(

4
π
−1

)

〈d〉2. (21)

In Fig. 5.1 we show the difference between standard deviation of the error in the translation
estimates produced by the fluoroBancroft algorithm and the mean of those errors, scaled ac-
cording to (21). These results indicate that the algorithm exhibits some bias, particularly at low
SNR.
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Fig. 4. Biasedness of the fluoroBancroft estimator. If the estimator were unbiased, then
the mean and variance of the displacement estimates would berelated by (21). That the
difference, shown here, is not zero indicates the algorithmexhibits some bias in the position
estimates.
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5.2. Variance as a function of SNR

Although the error in the position estimates cannot be calculated, the accuracy of the algorithms
in terms of their standard deviations in the estimates can becompared. In Fig. 5 we show
the standard deviations in the position estimates in thex-direction (Fig. 5 (a)) andy-direction
(Fig. 5 (b)). The two algorithms are very similar in thex-direction, although at low SNR the
Gaussian fit fails to localize the particle. The mean difference in the standard deviation in the
x-direction between the two algorithms across all SNR above 6is only 0.086 nm. In they-
direction, however, the fluoroBancroft algorithm is somewhat worse than Gaussian fit with an
average difference of 13.6 nm.
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Fig. 5. Comparison of the standard deviation of the positionestimate using fluoroBancroft
(blue solid line) and Gaussian fit (red dashed line). (a) Standard deviation of thex−position
estimate. (b) Standard deviation of they−position estimate. In thex-direction, the two
estimators are very similar while in they− direction the Gaussian fit exhibits consistently
better performance at SNRs above 6.

In single particle tracking, the displacement measurements between frames of an image se-
quence reveal information about the motion of the particle.The errors in the position estimation
propagate into the displacement measurement and ultimately determine its accuracy. The ac-
curacy of the displacement measurement is shown in Fig. 6 (a)in which we show the standard
deviation in the displacement error from the fluoroBancroftalgorithm (solid blue line) and from
the Gaussian fit algorithm (dotted red line). Note that the Gaussian fit algorithm was unable to
consistently localize the particle at SNRs below 6 while theaccuracy at these SNRs of the dis-
placement error using the fluoroBancroft algorithm was on the order of 30 nm. The difference
between the standard deviation of the Gaussian fit algorithmand the fluoroBancroft algorithm
is shown in Fig. 6 (b). At SNRs below 10 the fluoroBancroft algorithm is consistently more
accurate than the Gaussian fit with an average difference of 2.15 nm (omitting the results below
an SNR of 6). At SNRs above 10 the Gaussian fit is more accurate with an average difference
of -4.5 nm.

5.3. Computational speed

Exact execution times for the algorithms depend of course onthe hardware platform and the
software environment. The actual values of the execution times, therefore, have little meaning
in and of themselves. The ratio of the two, however, is an indicator of the relative performance
of the two algorithms. In Fig. 7 we show the ratio of the mean run time of the Gaussian fit
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Fig. 6. Comparison of the standard deviation of the errors inthe calculated displacement.
(a) Standard deviation of the error for each estimator. (b) Difference between Gaussian fit
and fluoroBancroft results.

algorithm to the run time of the fluoroBancroft algorithm as afunction of SNR. At SNRs above
6, the fluoroBancroft is on average 261 times faster than the numerical approach while at lower
SNR the difference is even more dramatic. Note also that thisalgorithm is algebraic and thus
its execution time is a function only of the amount of data (since that determines the size of
the matrices in (16)). The variations in this ratio, therefore, arise entirely from the Gaussian fit
approach.
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Fig. 7. Ratio of run times.

6. Conclusions

This paper describes a novel algorithm for determining the position with nanometer-scale ac-
curacy of a sub-diffraction limit fluorescent particle. Thealgorithm uses a range-based local-
ization scheme to create an algebraic formula for the position of the particle. The performance
of the algorithm was demonstrated experimentally and shownto have accuracy similar to the
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Gaussian fitting approach while executing two orders-of-magnitude faster. The scheme is thus
well-suited for real-time applications.
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