The role of the left and right inferior frontal gyrus in language recovery in aphasia

Peter Glynn, Swathi Kiran, \& Chaleece Sandberg

Aphasia Research Laboratory, Boston University, Boston, MA

INTRODUCTION

The mechanisms of the involvement of the left and right inferior frontal gyrus (IFG) in the process of post-stroke language recovery are not well understood.

Some studies have underlined the role of LIFG in recovery mechanisms (Sebastian ε Kiran, 2011; Saur et al., 2006; Fridriksson, 2010).
Other studies have implicated the RIFG in compensatory functions (Abo et al., 2004; Fridriksson \& Morrow, 2005)

Main Hypothesis: LIFG is very important in language recovery to the extent that LIFG tissue is spared post stroke.
Research Question: What is the relationship between \% spared tissue and \% signal change 1) in the IFG and ipsilesional tissue?
2) in the IFG and corresponding contralesional tissue?

3) in the IFG and all other regions?

PARTICIPANTS

| Table 1. Participant Profiles | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | P1 | P2 | P3 | P4 | P5 | P6 | P7 |
| Age | 56 | 66 | 55 | 54 | 59 | 59 | 49 |
| Gender | Female | Female | Male | Male | Male | Male | Male |
| Months Post Stroke | 38 | 15 | 76 | 108 | 144 | 23 | 168 |
| Lesion Region | Left MCA | Left ICA | Left MCA | Right MCA | Left MCALeft MCALeft MCA | | |
| Lesion Size (volume of cortex) | $85 c c$ | 112cc | 133cc | 180cc | 180cc | 228cc | 314 cc |

Lesion overlap in left hemisphere $(n=6)$ and right hemisphere ($n=1$)

METHODS

Participants were scanned once while performing a semantic language task in English. Data Acquisition Parameters:

- T1: 140 sagittal slices, $1 \mathrm{~mm}^{3}$ voxels, 240×240 matrix, $\mathrm{FOV}=240 \mathrm{~mm}$, flip angle $=8$, fold-over direction $=A P, T R=8.2 \mathrm{~ms}, \mathrm{TE}=3.8 \mathrm{~ms}$
- BOLD:31 axial slices (3 mm thick, 0.3 interslice gap), $3 \mathrm{~mm}^{3}$ voxels, 80×78 matrix, FOV $=240$, flip angle $=90$, fold-over direction $=A P, T R=2000 \mathrm{~ms}, \mathrm{TE}=35 \mathrm{~ms}$

Preprocessing in SPM8

Lesion Masking (MRIcron)

- Slice Timing

Realignment
Coregistration
Segmentation (lesion masked as Brett et al., 2001)

Normalization

- ART Repair (Mazaika et al., 2009)

ROI and Correlation Analysis

Subtracted normalized lesion maps from ROI maps (AAL atlas)
Calculated ROI volumes using MRIcron
Calculated \% of spared tissue as (Anatomical ROI Volume-Lesion Volume)/(Anatomical ROI Volume)
Calculated \% signal change in ROIs using Marsbar (Brett et al., 2002)
Non-parametric Spearman correlation determined for the $\%$ spared tissue in each ipsilesional ROI and $\%$ signal change within each ROI

Statistical Modeling in SPM8

\longrightarrow - Fixed Effects Analysis using GLM Canonical HRF and its Temporal Derivative High Pass Filter of 128 s

Bilateral ROIs

- IFG opercularis
- IFG orbitalis

IFG triangularis

Middle Frontal Gyrus

Superior Frontal Gyrus

Angular + Suprmarginal Gyri

Middle Temporal Gyrus

Anterior Cingulate

REFERENCES

RESULTS

Research Question 1: Correlations between \% spared tissue and ipsilesional \% signal change

Only one region, the IFG triangularis, showed a correlation that approached significance (rho $=-1, p=.08$)

. Research Question 2: Correlations between \% spared tissue and contralesional \% signal change

Two regions showed a significant negative correlation between ipsilesional spared tissue and contraslesional signal changes.

IFG opercularis (rho $=-0.93, p=0.003$)
ii. IFG triangularis ($\mathrm{rho}=-0.85, \mathrm{p}=0.01$)

Correatation Between Ipsilesional \% of Spared
Tissue and Contralesional $\%$ Signal Change in

Correlation Between IPsilesional $\%$ of Spared
Tissue and Contralesional $\%$ Signal Change in

3. Research Question 3: Correlations between \% spared tissue in IFG and \% signal change in other brain regions

Three regions showed a significant negative correlation between ipsilesional spared tissue in the IFG and signal changes within the MFG, two approached significance
i. IFG opercularis to ipsilesional MFG ($\mathrm{rho}=-0.82, \mathrm{p}=0.03$)
ii. IFG triangularis to ipsilesional MFG (rho $=-0.85, \mathrm{p}=0.01$)
iii. IFG orbitalis to ipsilesional MFG (r ho $=-0.75, p=0.07$)
iv. IFG opercularis to contralesional MFG (rho $=-0.78, \mathrm{p}=0.04$)
v. IFG triangularis to contralesional MFG (rho $=-0.70, p=0.08$)

Correlation Between \% of Spared Tissue in
Ipsilesional IfGop and $\%$ Signal Change in
Ipsilesional IfGop and \% signal Ch

Correlation between \% of Spared Tissue in IPsilesional IFGoop and \% \% Sparana Change in
Contralesional MFG
 Correation Between \% of Spared Tissue in
Ipsilesional IfGetri and $\%$ Siseral

4. How does the extent of damage determine engagement?

Despite extensive damage, spared LIFG tissue shows consistent activation in a semantic task.
In the IFGop and IFGtri, increased damage is also associated with significantly increased signal change in the contralesional IFG and MFG and the ipsilesional MFG. When the IFG is not spared, contralesional IFG is engaged. When some IFG is spared, ipsilesional structures (IFG, MFG) are engaged.
These data therefore highlight the importance of the preservation and consequent activation of left IFG in language recovery in aphasia.

