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Functional magnetic resonance imaging is the most widely used imaging technique to study treatment-
induced recovery in post-stroke aphasia. The longitudinal design of such studies adds to the challenges re-
searchers face when studying patient populations with brain damage in cross-sectional settings. The present
review focuses on issues specifically relevant to neuroimaging data analysis in aphasia treatment research
identified in discussions among international researchers at the Neuroimaging in Aphasia Treatment Re-
search Workshop held at Northwestern University (Evanston, Illinois, USA). In particular, we aim to provide
the reader with a critical review of unique problems related to the pre-processing, statistical modeling and
interpretation of such data sets. Despite the fact that data analysis procedures critically depend on specific
design features of a given study, we aim to discuss and communicate a basic set of practical guidelines that
should be applicable to a wide range of studies and useful as a reference for researchers pursuing this line
of research.

© 2012 Elsevier Inc. All rights reserved.
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Introduction

Functional magnetic resonance imaging (fMRI) is one of the most
widely used imaging techniques to study intact and impaired cognitive
functions (Crosson et al., 2010). In particular, an increasing number of
studies have used fMRI to assess functional brain activity changes in re-
sponse to treatment of acquired aphasia (for recent reviews see
Meinzer et al., 2011; Thompson and den Ouden, 2008; Meinzer and
Breitenstein, 2008; Crinion and Leff, 2007). Although aphasia can be
caused by various types of brain damage, it is most frequently observed
after middle cerebral artery stroke in the left hemisphere (Nicholas,
2005). The analysis and interpretation of functional imaging data in
brain damaged populations poses several challenges to the researcher,
relating to a number of factors, including the presence of a lesion and
possible hemodynamic changes due to vascular pathophysiology.

Compared to cross-sectional studies (e.g., examining individuals
with aphasia at different stages of recovery), neuroimaging studies
of treatment effects present additional challenges. They aim to assess
treatment-induced plasticity of neural functions in a longitudinal de-
sign, typically involving repeated assessments in the same individuals
(e.g., before and after treatment). Whereas some aspects of data pro-
cessing are essentially the same as neuroimaging studies of healthy
participants, several important differences with regard to the data
processing and statistical analyses need to be considered when pur-
suing aphasia treatment research. Previous reviews have discussed
general aspects of functional imaging in brain damaged populations
(e.g., Crosson et al., 2010; Price et al., 2006) or have focused on specific
language domains in aphasia (e.g., Crosson et al., 2007 for a review of
imaging language production mechanisms). The present paper focuses
on issues specifically relevant to assessing treatment-induced plasticity
and conveys the consensus regarding critical aspects of data processing
that was reached during the Neuroimaging in Aphasia Treatment
Research Workshop, held at Northwestern University.

In this paper, we aim to provide the reader with a review of critical
issues regarding data analysis in functional neuroimaging of aphasia
treatment and provide guidelines regarding how to deal with these
issues. We acknowledge that data analysis procedures depend on
the goals and specific design features of a given study (e.g., experimental
design, type of treatment, language modality assessed), so the recom-
mendations are intended to have broad application. Although data anal-
ysis also includes the reporting of these procedures, this will not be the
main focus of thismanuscript, as general guidelines for describingmeth-
odological aspects of fMRI studies have been elaborated elsewhere (see,
for example, Poldrack et al., 2008). However, because data analysis in
brain-damaged individuals might differ substantially compared to that
in healthyparticipants,wemake recommendations for reporting specific
procedures where necessary.

In summary, we discuss a basic set of practical suggestions for an-
alyzing datasets collected to assess treatment-induced plasticity in
aphasia patients. These guidelines are intended to provide a reference
for researchers pursuing this line of research.
Processing of MRI data sets

Functional MRI datasets require several pre-processing steps that
are implemented in similar ways in available and commonly used
Please cite this article as: Meinzer, M., et al., Neuroimaging in aphasia tre
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data analysis packages (e.g., Statistical Parametric Mapping, SPM,
http://www.fil.ion.ucl.ac.uk/spm; Analysis of Functional Neuroi-
mages, AFNI, Cox, 1996; Brain Voyager©). These include (1) realign-
ment of the images of an fMRI time series to compensate for head
movement during scanning and correction for slice timing differ-
ences, (2) co-registration of the functional data to a high-resolution
structural image, (3) spatial normalization to account for inter-
individual variations in brain size and anatomy, and (4) spatial
smoothing of the data to increase statistical power for group analysis.
Following pre-processing, a statistical model is designed to estimate
neural activity in a single patient or within and between groups of
study participants.

Realignment, slice timing correction, and co-registration procedures
are relatively unaffected by the presence of brain damage. Thus, early
pre-processing of lesioned and normal brains is essentially the same.
However, spatial normalization, smoothing and, most importantly, as-
pects of statistical modeling of the data (model-specification, statistical
inferences and interpretation) vary depending on whether healthy or
aphasia participants’ data are analyzed. Moreover, there are several
important differences regarding the analysis of cross-sectional or
longitudinal data in aphasia research. Thus, we will discuss them in
more detail below.
Pre-processing fMRI data

Spatial normalization (between participant and/or session realignment)
There are basically two different ways to proceed after image re-

alignment and co-registration. One is to statistically analyze the re-
spective dataset in native space, which assures a valid relationship
between an individual participant's anatomy and his/her activation.
This approach, however, is limited to extraction of data from individ-
ual participants and cannot be used when the objective is to generate
a group image reflecting statistical analysis of mean differences be-
tween groups or across sessions. An alternative way to proceed is to
spatially normalize the functional imaging data. This is a necessary
step for studies that rely on voxelwise comparisons, such as contrasts
between healthy and brain- damaged groups, comparison of activity
patterns of individual participants to a reference population, or correla-
tion of treatment outcome with changes in activity patterns. Moreover,
it is necessary to report activity patterns in standard coordinates (e.g.,
Talairach or Montreal Neurological Institute space (Mazziotta et al.,
1995; Talairach and Tournoux, 1988)), which facilitates comparison of
signal location with other published studies. The quality of the normal-
ization has been shown to affect activity patterns in group studies of
healthy subjects; i.e., inaccurate normalization leads to reduced sensitiv-
ity to detect functional activity (Ardekani et al., 2004). This is further
complicated in brain-damaged participant groups where automated
warping algorithms, as implemented in standard neuroimaging analysis
platforms,may produce inappropriate solutions because of the presence
of lesioned tissue, leading to inaccurately localized activation (Price et
al., 2006). Similarly, misalignment of images in aphasic groups may re-
sult in falsely detected activity compared to a control group. Thus, pre-
cise and valid normalization is critical to understand the neural
substrates of treatment-induced recovery.

Before proceeding further with the discussion of spatial normali-
zation, caveats regarding such procedures in individuals with stroke
atment research: Consensus and practical guidelines for data analysis,

http://www.fil.ion.ucl.ac.uk/spm
http://dx.doi.org/10.1016/j.neuroimage.2012.02.058


3M. Meinzer et al. / NeuroImage xxx (2012) xxx–xxx
must be mentioned. First, group studies that analyze mean changes
from one session to the next can obscure perilesional activity, espe-
cially when study samples have diverse lesion patterns (Crosson et
al., 2007). Because the contribution of perilesional activity to recovery
of function as a result of treatment frequently is an important issue,
this kind of session-to-session comparison is problematic in studies
of individuals with diverse lesion patterns, unless perilesional activity
is not of interest. There are valid uses of group images in aphasia
treatment research, and ways of addressing this problem are dis-
cussed later in this paper. Second, we use SPM as an example of
how problems in registration of images for stroke patients have
been addressed. This is not meant to imply that other programs
have not addressed these problems or that different, equally effective
solutions to those available in SPM are not possible.

Methodological advances in neuroimaging (Bandettini, 2009)
have increased our ability to combine brain images from different
brain-damaged participants into a common anatomical space and to
analyze thousands of regions simultaneously (Godefroy et al., 1998;
Rorden et al., 2007). There are many different methods of spatial nor-
malization (also referred to as registration), some automated and
some manual, with global or local warping to a given atlas (Crinion
et al., 2007; Godefroy et al., 1998; Rorden and Brett, 2000; Seghier
et al, 2008). All have strengths and weaknesses that should be recog-
nized. Ideally, if it is decided that scanswill be normalized, the deforma-
tion error should be quantified, for example, using forward and
backward registration between each participant's scan and atlas or tem-
plate space. Some methods may benefit from normalizing (registering)
scans to an age-appropriate atlas to further minimize potential image
registration error.

Automated normalization algorithms often use differences in in-
tensity values between a given image in native space and a template
to calculate the spatial transformation parameters that minimize the
mismatch between the two images (Friston et al., 1995). This usually
involves both linear (affine) and nonlinear distortions of the original
image. Linear transformations apply uniform warps across the entire
image to match the overall shape and orientation of the template.
However, linear algorithms restrict the fitting of local anatomy (e.g.,
sulcal structure and size). Therefore, subsequent non-linear transfor-
mations that are concerned with local shape are required. Problems
with automated normalization procedures arise when there are
areas of large signal change, such as those reflecting the presence of
a structural lesion. Although affine transformations are relatively ro-
bust to lesion effects, the quality of non-linear transformations are
disproportionately affected. That is, in an attempt to reduce image
mismatch introduced by the structural damage, the algorithm may
over-fit the original image, distorting intact tissue and reducing the
size of the lesion in the normalized images (Brett et al., 2001).

Hence, affine-only solutions cannot be recommended for lesioned
brains, as they compromise the fitting of local anatomy, which is es-
pecially important in individuals with stroke-induced lesions that
produce enlarged ventricles or local atrophy. Thus, there have been
attempts to restrict the normalization to undamaged parts of the
brain by masking the lesion (e.g., cost-function masking; Brett et al.,
2001), thus minimizing the impact of the lesion on the non-linear
component of the normalization of the remaining image. Masking
the lesioned area does not mean these areas are not normalized, but
rather that there is a continuation of the normalization solution for
the remaining brain to the lesioned area. With regard to structural
images, cost-function masking has been shown to be superior to
affine-only solutions (Brett et al., 2001) and is considered the gold
standard. The major limitation for aphasia studies is that cost-
function masking is limited to individuals with unilateral pathology,
because normalization of the area under the mask largely depends
on intact homologous areas. In addition, cost function masking
might be compromised by a lack of symmetry between brain struc-
tures (Binder et al., 1996) and masking of lesioned brain areas
Please cite this article as: Meinzer, M., et al., Neuroimaging in aphasia tre
NeuroImage (2012), doi:10.1016/j.neuroimage.2012.02.058
involves an operator dependent and laborious manual definition of
the lesion boundary. We note, however, that this latter problem
might be accounted for by applying more recent automated lesion
identification procedures (see, for example, Seghier et al., 2008).

With regard to functional imaging, normalization of a high resolu-
tion anatomical image provides transformation parameters that are
applied to the co-registered functional images. However, the impact
of different normalization procedures on functional activity has only
been formally assessed for one of the major functional imaging analysis
platforms so far (SPM5). Crinion et al. (2007) compared the perfor-
mance of three different normalization procedures (affine only, stan-
dard SPM normalization, and unified normalization as implemented in
SPM5 and above) with and without cost-function masking. Compared
to previous SPM normalization procedures (see Crinion et al., 2007
and Ashburner and Friston, 2005 for a comprehensive description of
both procedures), unified normalization comprises segmentation (i.e.,
tissue classification as grey and white matter and cerebrospinal fluid),
bias correction (modeling of tissue non-homogeneities, which in turn
allows modeling of healthy and lesioned tissue separately within one
tissue class), and spatial normalization in a single iterative model. In
particular, the bias correction may act like an implicit cost-function
mask (e.g., the effects of lesioned white matter should not affect the
normalization of intact white matter that is modeled separately; see
Ashburner and Friston, 2005 for details).

Performance of different normalization procedures and their impact
on functional data were assessed in three experiments establishing the
anatomical validity of each respective normalization procedure using
anatomical landmarks (i.e., co-localization of anatomical landmarks
across images) in intact brains and intact brains with simulated lesions.
In addition, the impact on functional activity was assessed by using a
previously published dataset of strokepatients obtained during an audi-
tory speech comprehension paradigm (Crinion and Price, 2005). The
main results of the study were that unified models (1) produced the
best results in terms of anatomical co-localization and (2) resulted in
greater sensitivity for functional activity. While cost-function masking
improved the quality of the standard normalization, it did not further
improve the quality of the unified solution.

In a subsequent study, Andersen et al. (2010) found that cost-
function-masking used with the unified solution produced greater
normalization accuracy of high-resolution structural scans in chronic
stroke patients with relatively large lesions and secondary changes in
brain morphology (e.g., dilation of ventricles). Moreover, no differ-
ence in normalization accuracy was found between different types
of masks (precise, roughly-outlined, smoothed, or unsmoothed), indi-
cating that even a time-efficient rough outlining of the lesioned area
appears to improve normalization quality significantly compared to
unified normalization without masking in such patients. However, it
is worth noting that the localization errors introduced by both
methods (i.e., unified normalization with or without cost-function
masking) were significantly smaller than the typical smoothing kernels
(6–8 mm) used in fMRI studies. Thus, the impact of these errors is not
large enough to significantly affect group fMRI studies in patients with
brain damage.

Taken together, these findings suggest that, when using SPM5 or
later versions, unified normalization is recommended over other ap-
proaches when morphological changes are restricted to the region
of primary pathology. When this normalization approach fails, addi-
tional cost-function-masking is advised, especially in patients with
additional secondary changes as a consequence of large lesions. In
the context of other imaging analysis platforms where the impact of
different manual or automated normalization procedures on func-
tional activity patterns has not been formally assessed, cost-function
masking may be considered an appropriate solution to minimize inac-
curate normalizations due to lesion effects.Moreover, quality assurance
procedures should be established and reported (e.g., comparing the re-
sults against the image in native space to detect distortions of the
atment research: Consensus and practical guidelines for data analysis,
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normalized image). This is particularly indicated in longitudinal group
studies on aphasia rehabilitation that require not only good within-
subject session-to-session registration of the images, but also good
between-subject registration to enhance the sensitivity of the analysis.

Detrending for signal drift and spatial smooting
Detrending fMRI series for linear or low frequency drifts in signal

baseline and spatial smoothing of image data are two procedures that
can be performed prior to data analysis. Regarding the former, linear
and low frequency drifts in baseline signal levels are common in fMRI
data, and they reduce sensitivity to task-related activation. Detrending
algorithms to remove the signal drift from the data vary in effectiveness.
Tanabe et al. (2002) found that linear and quadratic detrending in-
creased sensitivity to task-related activation in individual fMRI images,
whereas cubic detrending actually decreased sensitivity to activation
changes. Although a spline detrending method was superior to linear
or quadratic detrending, an automatic method selecting the optimal
detrending method on a voxel-by-voxel basis was superior to all other
methods, increasing sensitivity to activity changes by 150%. These
results indicate that even within a single data set, different kinds of
baseline signal drift can be present and further suggest that amethod
that can select the best detrending method on a voxel-by-voxel basis
is preferred.

The purpose of spatial smoothing is to increase signal to noise in
the time series data by reducing random noise, to account for inter-
subject variability in functional and structural anatomy by blurring
the spatial details of the functional maps (i.e., increase statistical
power in group studies), to allow for parametric statistical testing,
and to assure that the data conform to the lattice assumption of
Gaussian random field theory (Turner et al., 1998). Spatial smoothing
is usually achieved by convolving the data with a Gaussian kernel of a
given size that is determined by the voxel size and the size of the an-
ticipated signal change (Hopfinger et al., 2000; Price et al., 2006).
Drawbacks of spatial smoothing are that spatial resolution decreases,
and blurring or shifting of activation may result in merging of adja-
cent clusters of activation. Hence, accuracy of localization may be
compromised, which is most critical for single subject studies. Typical
smoothing kernels in fMRI group studies involving healthy partici-
pants are usually two times or more the re-sampled voxel size.
Choosing an optimal smoothing filter is not trivial as it may signifi-
cantly affect the results of a given study. However, the impact on
functional activity in brain-damaged populations has not been thor-
oughly evaluated. Although the degree of spatial smoothing clearly de-
pends on study design and should be determined empirically, studies in
healthy individuals can be used as a starting point to determine the op-
timal filter width for studies with neurologically impaired individuals
(e.g., Hopfinger et al., 2000; Mikl et al., 2008).

The type of study and the number of participants are critical to de-
termining the degree of spatial smoothing. In single participant stud-
ies precise and valid localization of focal activation is crucial. Studies
in healthy participants have shown that larger smoothing filters
(e.g., >10 mm) may induce shifting of local maxima up to 12 milli-
meters (e.g., Geissler et al., 2005; Mikl et al., 2008). Therefore, no
smoothing or only low spatial kernels (e.g., not larger as twice the
largest acquired voxel dimensions) should be used in studies examin-
ing activation in individual participants to assure accurate localiza-
tion. This is particularly critical when peak activity is located in
sulcal walls, and even minor shifts of activity may result in gross mis-
localization relative to the cortical surface (e.g., on the opposite bank
of the sulcus) (Brett et al., 2002). This latter problemmight be of less-
er concern when using cortical surface mapping techniques (e.g., Van
Essen, 2004), but this feature is currently not implemented in most
imaging analysis platforms (SPM, AFNI). For studies using group
voxel-by-voxel images, between-subject variability in anatomy, func-
tional activity and registration quality need to be taken into account,
which may require increasing filter widths. In this context, extensive
Please cite this article as: Meinzer, M., et al., Neuroimaging in aphasia tre
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spatial smoothing may be indicated for individuals with brain dam-
age compared to healthy individuals due to greater between-subject
dispersion in the location of local structures (c.f., Price et al., 2006),
increased between-subject registration errors, or overlapping lesion
borders that occur even in highly homogeneous samples. Group size
may also be an important factor. As a general rule, in healthy partici-
pants it has been suggested that with larger numbers (16+) a similar
smoothing factor can be chosen compared to single subject studies;
however, the smoothing kernal should be larger when examining
data from smaller sample sizes in order to account for outlier effects
in the spatial localization of activation patterns (Mikl et al., 2008). In-
dividual factors like quality of the data (e.g., signal-to-noise ratio and
quality of inter-subject registration) also need to be taken in account.
The degree of smoothing may also depend on the anatomical region-
of-interest (e.g., cortical vs. subcortical) and the correction level used.
This was demonstrated in healthy participants by Hopfinger et al.
(2000), who showed that smaller smoothing filters increased sensi-
tivity in cortical regions, whereas larger filters increased sensitivity
in subcortical areas.

In summary, studies that use group voxel-by-voxel analyses in
healthy participants have suggested that the optimal degree of spatial
smoothing is critical to the outcome of the study and that this de-
pends on several factors. Some of these factors are influenced by the
aims and design of the study (e.g., single-subject vs. group designs,
anatomical region of interest), whichneed to bedetermined empirically
(e.g., anticipated signal change and signal to noise). Quality assurance
procedures (e.g., intersubject registration quality and variability of
functional activity peaks, and peak activity of unsmoothed activity in
native space) may help to assure that the optimal extent of spatial
smoothing is chosen.

Specific problems related to motion artifacts during overt speech
The issue of motion artifacts when assessing overt speech produc-

tion has been addressed in a recent review by Crosson et al. (2007).
We discuss this issue briefly here because word-retrieval impair-
ments are one of the most frequent symptoms of aphasia (Kohn and
Goodglass, 1985) and most fMRI studies to date that have examined
treatment-induced recovery of language functions, have used overt
naming or other language production paradigm to evaluate treatment
effects (e.g., picture naming, category generation; see Meinzer and
Breitenstein, 2008, and Thompson and den Ouden, 2008, for review).
Further, although covert paradigms have been shown to reliably elicit
activation in language related brain areas in healthy participant (see
Kielar et al., 2011), the lack of behavioral control limits their use-
fulness in aphasia treatment studies. That is, response accuracy and
reaction time often are important to fully characterize aphasia recovery,
and these data are not available using covert neuroimaging tasks.

There are several ways to deal with motion artifacts (which are
predominantly false positive activity) during overt generation. At
the design level, for example, motion-related artifacts can be avoided
by using blocked designs and dropping images confounded by evidence
of motion (e.g., Martin et al., 2005) or by using sparse acquisition para-
digms that acquire the BOLD response after overt articulation
(Fridriksson, 2010; Meinzer et al., 2008). However, these strategies
are associated with a loss of information and reduced flexibility com-
pared to event-related paradigms. Moreover, optimizing of presenta-
tion parameters has been shown to reduce motion-related artifacts
when using ideal waveforms for analysis. These designs exploit the dif-
ferent temporal properties of (rapid) motion induced signal changes
compared tomore slowly evolving changes of the task-related hemody-
namic signal (e.g., Birn et al., 2004). However, evenwhen using such de-
signs, overt articulation may still result in false positive activity and
standard detrending algorithms that aim to removemotion-related sig-
nal from the time series non-selectively across all voxels, may result in
reduced sensitivity (see Crosson et al., 2007 for details). More recently
developed detrending algorithms consider the latter weakness by
atment research: Consensus and practical guidelines for data analysis,

http://dx.doi.org/10.1016/j.neuroimage.2012.02.058


5M. Meinzer et al. / NeuroImage xxx (2012) xxx–xxx
selectively removing motion related signal changes from the images,
which results in improved sensitivity and specificity (Gopinath et al,
2009).

Statistical model specification

The next data analysis step involves setting up a statistical model
to estimate task-related activation. Most fMRI data are analyzed in
the context of the General Linear Model (GLM). The first step here
is setting up a design matrix consisting of factors that potentially
contribute to the actual fMRI signal (experimental conditions and
non-experimental sources of variability like head movements). The
structure of the design matrix and factors included depend on the
hypotheses to be tested. Extracting the respective task-related signal
can be accomplished in different ways (see below) and treatment-
induced plasticity in individuals with aphasia can be assessed in indi-
vidual participants (first-level analysis) or in groups (second-level
analysis). Both approaches pose several challenges with regard to
statistical model specification and will be addressed in the following.
For discussion ofmore general issues of design and statistical analysis of
fMRI data in individuals with brain damage see Price et al. (2006).

Modeling the hemodynamic response

Extraction of task-related signal at the individual subject level can
be accomplished with either constrained or unconstrained method-
ologies. Constrained methods rely on a predetermined model of the
hemodynamic response form, whereas unconstrained methods
make no assumptions about the shape of the response. Eachmethod-
ology has its strengths and weaknesses. As examples of constrained
and unconstrained methodologies, we discuss below use of a standard
model of the hemodynamic response function (HRF) and deconvolution
of the HRF with unconstrained modeling, respectively.

Many studies with healthy participants model blood oxygen-level
dependent (BOLD) activity by using a standard HRF. To account for in-
dividual differences in shape or timing of the HRF, the design model
can include additional factors (e.g., temporal or spatial derivatives)
or the HRF can be modeled by using other types of basis functions
(e.g., the gamma function). A different approach that uses participant-
specific HRFs may substantially improve the model fit (Aguirre et al.,
1998).Modeling the HRF poses a challenge in peoplewho have suffered
a stroke because neurovascular reactivity in perilesional, or even distal,
brain areas may be compromised due to microvascular impairment.
In fact, despite intact neural functioning in some brain-damaged in-
dividuals, no positive BOLD signals, reduced positive BOLD signals, or
even negative signals may be observed (e.g., Bonakdarpour et al.,
2007; Fridriksson et al., 2006a, 2006b; Murata et al., 2006; Rossini
et al., 2004; Röther et al., 2002). It has also been shown that the
shape or the timing of the HRF can be compromised, even in individ-
ual with chronic stroke-induced aphasia (Bonakdarpour et al., 2007;
Peck et al., 2004). For example, Peck et al. (2004) investigated the
temporal characteristics of the BOLD response in three individuals
with chronic Broca's aphasia during a category generation task.
Functional MRI revealed prolonged HRFs and longer time to peak
(TTP) in right hemisphere regions of interest (ROIs) in two of the pa-
tients with impaired behavioral functioning when compared to
healthy controls. Bonakdarpour et al. (2007) found similar abnormal
HRFs in three of five chronic aphasic individuals and showed that,
when adjusted for their true HRF, patients with delayed TTP showed
activation (particularly in perilesional tissue) which was not appar-
ent when a canonical HRF was used. Importantly, in a study, which
examined activation associated with treatment-induced language
recovery in aphasic individuals, Thompson et al. (2010a, 2010b)
found that regions of the brain in which upregulation of neural activ-
ity was found correlated with the HRF TTP. That is, regions of the
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brain with more normal (i.e., faster TTP) were more likely to demon-
strate treatment-induced recovery of language processing.

Several strategies are available to address the potential problems
related to modeling the hemodynamic response function in stroke
patients. First, some baseline individual's cerebral ischemic condition
can be assessed in addition to BOLD imaging, as even in chronic stroke
patients misery perfusion has been shown to be related to poor BOLD
signal (Murata et al., 2006). An alternative strategy, recently de-
scribed by van Oers et al. (2010), is to assess intact hemodynamic re-
sponsiveness by using a breath-hold paradigm. However, this
strategy may be contraindicated in individuals with stroke because
it could result in ischemia in areas with reduced hemodynamic re-
serve (Hillis A.E., personal communication). Second, with regard to
the altered shape and timing of the HRF several different alternatives
are conceivable. As in researchwith healthy individuals, several studies
have successfully used standard canonical HRFs or other types of basis
functions (e.g., gamma function) with the first (temporal) derivative
to account for increased variability in stroke patients (e.g. Crinion and
Price, 2005). A third strategy is to collect information about study parti-
cipant's hemodynamic parameters using an event-related design and a
long inter-stimulus interval. This method allows a true HRF to be iden-
tified for each participant, which can then be used to optimizemodeling
of each participant's fMRI data on an individual basis and, thereby, im-
prove BOLD signal detection (Bonakdarpour et al., 2007; Thompson et
al., 2010a). Also, TTP measures may be of interest to characterize
treatment-induced improvement or rehabilitation status. For example,
in the aforementioned study by Peck et al. (2004) TTP was delayed
prior to a language intervention and decreased (i.e., became similar to
that of a control group) after treatment. Fourth, successful detection of
BOLD activity using model-driven frameworks such as the GLM is only
optimal if the underlying modeling assumptions are correct (e.g., re-
garding the timing and shape of the HRF, noise characteristics, etc.),
whichmay be more difficult to achieve in some brain-damaged individ-
uals, such as thosewith knownperfusion deficits due to carotid stenosis.
Hence, the weakness of constrained modeling of hemodynamic re-
sponses is that it may miss important characteristics of hemodynamic
responses if they are not anticipated. Research with stroke individuals
is particularly vulnerable to this problem where the shape and timing
of hemodynamic responses are known to be variable.

On the other hand, unconstrained data-driven techniques may
offer an alternative means to assess relevant fluctuations in the mea-
sured signal. For example, there are different techniques that can be
used to deconvolve HRFs, some of which are entirely data driven
with respect to HRF shape, such as the earliest form of deconvolution
implemented in AFNI (Cox, 2009). The advantage of this technique is
that it can accommodate changes in hemodynamic response shape
from voxel to voxel even within individual participants (See Glover,
1999 and Serences, 2004 for more details about deconvolution tech-
niques). The disadvantage to this approach is that it is very sensitive
to noise such as that generated during overt speech during scanning.
In the latter instance it is necessary to have a technique for minimizing
noise in the data (e.g., Gopinath et al., 2009), and such techniques are
not perfect. Averaging of raw signals from response epochs timed to ex-
perimental manipulations is also assumption free, but is subject to dis-
tortions, for instance when there are sequential dependencies of HRFs
(Serences, 2004). Independent component analysis (ICA, McKeown
and Sejnowski, 1998) is another assumption-free method. ICA sepa-
rates the signal into maximally independent spatiotemporal compo-
nents and does not impose any constraints on the HRF and thus, the
results are data driven. However, it is critical to have amethod to deter-
mine which components are signal and which represent noise.

Temporal characteristics of the responses

Regardless of the language task or paradigm used (e.g., picture
naming, sentence-picture matching, lexical decision by button
atment research: Consensus and practical guidelines for data analysis,
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press), response latency often is delayed in aphasic individuals and
must, therefore, be considered when analyzing fMRI data in these in-
dividuals (see Crosson et al., 2007 for a more detailed discussion of
this issue and examples). Timing the analysis to the presentation of
the stimulus (stimulus-locked analysis) or to the response itself (re-
sponse-locked analysis) can make a difference in the location of signif-
icant brain activity. Processesmore closely linked to the presentation of
the stimulus (e.g., perceiving or comprehending the stimulus)would be
favored in a stimulus-locked analysis. Whereas, processes more closely
linked to the response (e.g., articulation of a given word or sentence)
would be favored by a response-locked analysis. This consideration be-
comes more important with longer latency periods between the stimu-
lus and the response, because the activation patterns become more
variable. Thus, choosing the stimulus-based, response-based, or a
combination of both analyses depends on which cognitive processes
are targeted. Moreover, given the highly variable performance often
seen in individuals with aphasia, it may not always be clear which
type of analysis to chose, because the cognitive processes may be
variably linked to the stimulus or the response onset (e.g., word-
retrieval processes).

There is no easy solution to this problem and although there is a
clear distinction between stimulus onset and response onset in
some tasks (lexical decision, overt word production), others only
allow a stimulus locked analysis (e.g., covert reading). A recent exam-
ple of how to deal with such issues has been introduced by Crosson et
al. (2009), who analyzed fMRI data obtained during an overt category
generation task in five individuals with chronic aphasia and com-
bined both types of analyses (stimulus- and response-locked) to ac-
count for delayed and variable responses in the participants.
Because this type of analysis allows a better model fit for each voxel
of the image, it may also account for different time-courses across dif-
ferent brain areas.
Statistical inferences and interpretation

Comparing activation across scan sessions

Studying the natural history of recovery or treatment-induced
plasticity in aphasia requires a longitudinal experimental design,
which involves subjecting study participants to two or more neuroim-
aging sessions and comparing activation across sessions. Differences
between assessments may stem from different sources (e.g., test-
retest effects due to repeated task exposure, scanner related changes,
plasticity related changes). Thus, special considerations relevant to the
replication or reliability of activation is an issue of concern. Several
suggestions for dealing with this issue are discussed in Rapp et al.
(this volume), one of which is to conduct repeated baseline scans to as-
certain any variability in activation (e.g., see Fridriksson et al., 2007).
Another is to include tasks that reflect both impaired and unimpaired
functions (Leger et al., 2002) or items that participants can and cannot
respond to correctly (Menke et al., 2009). In any case, the issue is how
best to compare activation changes between sessions. Several different
measures can be obtained, including voxel-counting approaches and
measures of activation magnitude such as percent signal change.
Given that even in healthy participants the probability for single voxels
to be consistently activated across scanning sessions is relatively low
(see Meltzer et al., 2009), examining for activation in larger regions
of interest (ROIs) can yield much better repeatability across sessions
(e.g., Machielsen et al., 2000; Maldjian et al., 2000; Swallow et al.,
2003; Wei et al., 2004). Moreover, it has been suggested that magni-
tude of signal change measures are much more consistent across
repeated sessions than simple voxel counting approaches (for
examples of such approaches see Voyvodic, 2006; Friedman et al.,
2008; Kimberley et al., 2008; Meltzer et al., 2009; Voyvodic et al.,
2009).
Please cite this article as: Meinzer, M., et al., Neuroimaging in aphasia tre
NeuroImage (2012), doi:10.1016/j.neuroimage.2012.02.058
Choice of responses for modeling

The compromised language abilities of individuals with aphasia
create challenges for neuroimaging studies of language recovery be-
cause aphasic individuals may have difficulty performing selected
neuroimaging tasks, particularly prior to treatment. Although it is
possible to design tasks that can be performed with high accuracy
(see Rapp et al. for discussion of issues related to selection of tasks
for neuroimaging studies of aphasic individuals), error responses
are common. Because studies have demonstrated that correct and
error responses may differ with regard to their neural signatures
(e.g., Fridriksson et al., 2009; Meinzer et al., 2006; Postman-
Caucheteux et al., 2010), this issue is not trivial. Thus, the question
arises: which types of responses should be included in the analysis
when assessing treatment-induced recovery? Typically, studies
that assess the impact of treatment on brain functions imply that
(a) a given language function is impaired prior to treatment and
(b) treatment results in improvement in that language function,
which is reflected in participants’ performance ability and, in turn,
changes in neural activation patterns seen from pre- to post-
treatment. Therefore, inclusion of only correct responses in pre-
post comparisons may prevent detection of meaningful changes.
This strategy also putatively would require an analysis with differ-
ences in the number of responses between scans, which also could
compromise the results. Analyzing both correct and incorrect re-
sponses, however, may also lead to spurious findings because error
responses likely reflect increased processing demands (for a com-
prehensive review see Price et al., 2006) and also influence the tim-
ing of the HRF (Peck et al., 2004). However, it can be argued that
regardless of whether responses are correct or incorrect, participants
use whatever processing resources are available to them when per-
forming a given linguistic tasks. Thus, changes in language ability
will be reflected by brain activation changes from pre-treatment,
for example when inefficient and incorrect linguistic processing is
prevalent, to post-treatment when access to more normal linguistic
processing routines becomes possible (see Thompson et al., 2010b,
who take this position when examining treatment-induced recovery
of complex sentence processing in aphasia). Further, for some para-
digms and tasks it is difficult to quantify correct vs. erroneous re-
sponses, for example, for complex paradigms such as story
comprehension when task performance may not reflect linguistic
processing routines or abilities. Thus, decisions regarding which
types of responses to analyze and how, or whether, different types
of responses should be grouped into the same analysis depend
mainly on the goals of the study and the experimental paradigm
employed.

Statistical comparisons between sessions can be made by directly
comparing different sessions in the same statistical model. Meltzer et
al. (2009) have argued that this procedure assures that changes in the
amount of noise do not produce misleading “changes” in activation.
Data also can be extracted from two sessions separately for subse-
quent comparison, and then some procedure should be used to en-
sure that the detection sensitivity for activation is equivalent across
sessions (Parrish et al., 2000). For example, Gopinath et al. (2009) de-
veloped a technique to compensate for differences in detection sensi-
tivity of BOLD measures across sessions. In short, the technique starts
with the residuals of the regression of a deconvolved hemodynamic
response series against the acquired time series, and uses this as the
starting point for a mixed auto-regressive plus white noise model to
estimate noise structure for two sessions on a voxel-by-voxel basis.
Once a time series representing the noise structure of both sessions
is modeled, then detection sensitivity can be estimated by adding
simulated hemodynamic responses of known amplitude to the esti-
mated noise time series at appropriate points and equating detection
sensitivity between sessions (see Gopinath et al., 2005 or Crosson et
al., 2007 for details).
atment research: Consensus and practical guidelines for data analysis,
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The issue of single subject vs. group studies

The question of whether to analyze neural activation changes
from pre- to post-treatment in individual study participants or to an-
alyze the data for groups of participants is another important issue.
What is quite clear is that individual participants in a given experi-
ment will differ with regard to the precise location and extent of
their lesions, a situation that directly affects the neural tissue avail-
able to support recovery. That is, activation patterns will necessarily
differ across participants. Nonetheless, it is important to integrate
and generalize findings across individuals with the same language
deficits or other variables, such as age, handedness, gender, or time
post stroke. However, we see no reason to group individuals by classic
aphasic syndromes, which are heterogeneous both functionally and
neurologically.

Single case studies

Analysis of individual cases of aphasia can be advantageous com-
pared to group studies in aphasia research. Data from individual par-
ticipants can be analyzed in native space, which avoids localization
errors introduced by inter-subject registration procedures and as-
sures anatomical correspondence between individual participant's
anatomy and his/her activation. This procedure also enhances the
ability to visualize perilesional activation, which might not be
detected even in highly homogeneous groups of aphasic participants
(see below for a discussion of this problem with regard to treatment
studies). On the other hand, there are important drawbacks to the in-
dividual participant approach. Namely, there is an inherent lack of
power to detect activation changes, which can only be resolved at
the design level (e.g., by increasing the number of trials). Further,
the results from individual participants cannot easily be generalized
to other individuals with aphasia. The latter problem, however, can
be resolved by analyzing series of aphasic cases. The results can
then be interpreted with regard to commonalities and differences be-
tween activation patterns found across participants, in the context of
the other information that is available. For example, this may allow
investigators to assess activation patterns associated with treatment
outcome (see, Crosson et al., 2009), or compare activation patterns
for participants who respond well vs. poorly to treatment.

A critical aspect associated with individual participant or case se-
ries designs is that such studies require an appropriate and clearly
stated a priori hypothesis regarding the anticipated mechanism of
treatment, or brain activation changes that can be tested and poten-
tially rejected. Even well designed case studies that only include a
posteriori explanations of change in activation patterns are simply
descriptive and do not provide information about the mechanisms
of change. A good example of an a priori hypothesis that can be tested
is discussed by Crosson et al. (2005). Here, the authors engaged par-
ticipants in a specific intervention designed to shift activity from the
left to the right frontal lobe.

Group studies

The types of analyses that are feasible for evaluating treatment-
induced changes in activation in longitudinal designs are quite differ-
ent from longitudinal studies with groups of healthy participants, for
example, when evaluating the reliability or repeatability of activation
over time. In non-brain-damaged participants, task-related activation
changes can be assessed at the first level and then these images can
be entered into the second level for a group analysis assuming a similar
expression of potential effects across the group and time. Conversely,
within groups of aphasic participants, individual differences in lesion
patterns, functional reorganization following stroke, and the resultant
language profilesmay be associatedwith highly variable patterns of be-
havioral improvement or changes in functional activation. Even in
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highly homogeneous samples these variables may compromise detec-
tion of perilesional activation changes when using simple pre-post
comparisons and entering them into a group analysis.

It is clear that alternative strategies for analyzing data from apha-
sic individuals at the group level are necessary. One option is to use a
region-of-interest approach in which specific brain areas are chosen
depending on the aims of the study. Then, activation changes in
these pre-defined ROIs can be correlated with performance gains fol-
lowing treatment. Examples of this approach can be found in the
studies by Richter et al. (2008) and Meinzer et al. (2008). Another ap-
proach that does not require a priori selection of ROIs has been used
in three previous studies by Raboyeau et al. (2008), Menke et al.
(2009) and Fridriksson (2010). In these studies pre-post activation
patterns were compared directly on an individual level and the
resulting images were entered into a whole brain regression analysis.
Here, a behavioral regressor (e.g., performance gains after treatment)
was used to predict which activated brain areas were associated with
superior behavioral improvement in a group of aphasic participants.
This statistically powerful approach does not suffer from many of
the problems associated with averaging across a heterogeneous
group, but it must, nonetheless, be approached with caution as issues
of heterogeneity of language-lesion and language-deficit relations are
still highly relevant for interpretation of the results. In addition, when
using correlational approaches, small sample sizes (as is the case in
most aphasia treatment studies) are prone to outlier effects. Thus, re-
searchers are advised to closely inspect (and report) their data and
deal with outliers in appropriate ways. With regard to homogeneity
of the aphasic group, it has been noted in previous reviews that inho-
mogeneous samples in cross-sectional designs may reduce detection
power and false positives (see Crosson et al., 2007, and Price et al.,
2006). On the other hand, in the context of treatment studies, highly
homogeneous samples may reduce variability of performance im-
provements and functional activation changes, which in turn reduce
statistical power for correlational methods and may prevent identifi-
cation of predictors associated with treatment success. Importantly,
however, imaging of treatment-induced changes in neural activation
in groups of individuals with aphasia can provide information about
predictors of treatment success when activation changes over time
are correlated with a given indicator of behavioral performance im-
provement (i.e., which functional activation changes produce the
best outcome). This in turn may provide information about which pa-
tients are best suited for a particular treatment approach. Moreover,
the results can then be generalized, at least with regard to the same
treatment paradigm and similar patient populations. With regard to
clinical rehabilitation, this is very important, as it may eventually
guide the assignment of individual patients to specific treatment
approaches.

Comparison with a group of healthy participants

Although longitudinal assessments of activation patterns in apha-
sic groups at a given recovery stage greatly benefit from a healthy
control group, the assessment of treatment effects over time does
not necessarily require a healthy control group. On the other hand,
in some instances the inclusion of a healthy group of participants
may have some advantages. First, instead of assuming that a given
paradigm elicits activity in a given number of regions, the validity of
the paradigm can be verified by including healthy participants. Second
repeated assessment of healthy participants can provide a measure of
reliability. Third, comparison of changed activation patterns in aphasic
individuals to those of a non-brain-damaged control group allows
assessing whether changes occur within or outside of the “normal” lan-
guage network (e.g., Menke et al., 2009; seeWarren et al., 2009 for a re-
cent example of altered temporal lobe functional connectivity in
aphasia). Finally, an interesting approach used by Raboyeau et al.
(2008) compared the neural signatures of language re-training in
atment research: Consensus and practical guidelines for data analysis,
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chronic anomia to activation changes in healthy controls who were
trained to name objects in a previously learned foreign language with
low current proficiency. Although there are critical differences between
the two groups, the comparison allows examination of mechanisms in-
volved in language reacquisition after stroke and language learning in
healthy participants.

When choosing to obtain data from healthy control subjects, how-
ever, the participants should be closely matched to the aphasic group
with regard to demographic and socio-economic variables. This is an
important pre-requisite to allow for valid interpretation of the results.
For example, with regard to language tasks, several studies have
shown that the neural representation of language production or com-
prehension mechanisms differ in healthy young vs. older participants
(e.g., Wingfield and Grossman, 2006; Fridriksson et al., 2006a, 2006b;
Wierenga et al., 2008; Meinzer et al., 2009; Meinzer et al., 2012).
Therefore, comparing older participants with stroke-induced aphasia
who may evince fundamental changes in brain morphology and func-
tion due to age or other variables to a (younger) control group is
contraindicated.

Functional network analyses

It is clear that cerebrovascular stroke results in local cortical dys-
function, as well as impaired functioning in remote areas and poten-
tially a compensatory up-regulation of other areas (e.g., Warren et al.,
2009). Recent developments in data analysis allow the investigation
not only of functional segregation of brain areas related to a specific
task, but also assessment of functional integration among different re-
gions. This dynamic network approach has potentially interesting ap-
plications to the investigation of longitudinal changes in brain
connectivity associated with treatment-induced behavioral changes
in aphasia (see Price et al., 2006 for a review of common techniques).
Integration within a distributed system is usually understood in
terms of effective connectivity, which refers to the influence that
one neuronal system exerts over another, either at a synaptic (i.e.
synaptic efficacy) or population level (Friston, 2002). Effective con-
nectivity may be measured, for example, using structural equation
modeling (SEM) of fMRI data over time. SEM of fMRI time series esti-
mates the effects (in terms of modulation of connection strengths) of
experimental manipulation on connectivity among brain regions
within specified constraints, based largely on consideration of ana-
tomical connectivity of the brain (Büchel and Friston, 1997, 2000).
This approach has been applied to the investigation of training and
generalization effects in anomia rehabilitation (Vitali et al., 2009).

Changes in the coupling between different regions can also be in-
vestigated using dynamic causal modeling. In DCM, the brain is trea-
ted as a dynamic input–state–output system. A given experiment is
considered as a designed perturbation of neuronal dynamics that is
propagated throughout a network of interconnected anatomical
nodes. The coupling between regions is estimated using a series of in-
puts (i.e., stimulus functions) and the changes in regionally-specific
hemodynamic responses are measured (Friston et al., 2003). This ap-
proach has successfully been applied to language network changes in
primary progressive aphasia (Sonty et al., 2007) and more recently, to
the assessment of longitudinal changes associated with anomia treat-
ment (Abutalebi et al., 2009). Variants of Granger Causality Modeling
(GCM) are more assumption free than SEM and DCM and are being
developed to address functional connectivity in fMRI data (e.g.,
Zhou et al, 2009). All of these forms of analysis yield insights regarding
how areas of brain activity integrate into dynamic systems to perform
various tasks that are not available from the simple observation of activity
changes in various brain regions.

Importantly, network analyses can be accomplished even in single
case studies. Simple pre-post comparisons in single participants (e.g.,
t-tests) can provide statistical tests of activation changes in various
regions of the brain. However, complex dynamic changes at the
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system level can also be assessed by examining connectivity of
brain areas supporting language recovery and changes in response
to treatment and underlying driving forces, such as increased com-
pensatory input from non-domain specific areas. The feasibility of a
dynamic network approach to examine the effects of aphasia rehabil-
itation has recently been demonstrated in two case reports (see
Abutalebi et al., 2009; Vitali et al., 2009). Moreover, hypothesis-
driven modeling of network dynamics in case studies could be guided
by obtaining additional information about structural connectivity, by
evaluating the integrity of white matter tracts prior to and following
treatment (see, for example, papers by Schlaug et al., 2009, and
Gauthier et al., 2008). To date, network analyses have not been per-
formed at the group level but such may be possible in future studies
(see Warren et al., 2009 for a cross-sectional example in aphasia
research).

Summary and conclusions

Neuroimaging in aphasia treatment research has the potential to
provide insight into the neuroplastic capacities of the adult human
brain and the mechanism of language recovery after brain damage.
Moreover, understanding the neural substrates of treatment effects
may prompt changes to existing approaches and/or the development
of new treatment paradigms that may contribute to the efficacy of re-
habilitation efforts. However, neuroimaging of aphasia treatment
poses several challenges to researchers that have not been addressed
in the past.

The present paper conveys the basic agreement among researchers
about critical issues with respect to fMRI data processing in aphasia
treatment research that was reached during a consensus conference
in Fall 2009 at Northwestern University, Chicago. We reviewed critical
issues specifically related to data analysis, including aspects of the
pre-processing, the statistical modeling, and the interpretation of such
data sets. Moreover, we aimed to provide the reader with a set of gen-
eral practical guidelines and references to facilitate choosing adequate
data analysis strategies.
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