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Abstract
Most research in the field of sign language recognition has focused on the manual component of signing, despite the fact that there is
critical grammatical information expressed through facial expressions and head gestures. We, therefore, propose a novel framework for
robust tracking and analysis of nonmanual behaviors, with an application to sign language recognition. Our method uses computer vision
techniques to track facial expressions and head movements from video, in order to recognize such linguistically significant expressions.
The methods described here have relied crucially on the use of a linguistically annotated video corpus that is being developed, as the
annotated video examples have served for training and testing our models. We apply our framework to continuous recognition of three
classes of grammatical expressions, namely wh-questions, negative expressions, and topics. Our method is signer-independent, utilizing
spatial pyramids and Hidden Markov Models (HMMs) to model the temporal variations of facial shape and appearance.

1. Introduction
Nowadays, speech recognition technologies have become
standard components of modern operating systems, allow-
ing average users to interact with computers verbally. Un-
fortunately, technology for the recognition of sign lan-
guage, which is widely used by the Deaf, is not nearly as
well-developed, despite its many potential benefits (Vogler
and Goldenstein, 2008b; Michael et al., 2009; Neidle et
al., 2009). First of all, technology that automatically trans-
lates between signed and written or spoken language would
facilitate communication between signers and non-signers,
thus bridging the language gap. Secondly, such technol-
ogy could be used to translate sign language into computer
commands, favoring the development of additional assis-
tive technologies. Moreover, it could facilitate the effi-
cient archiving and retrieval of video-based sign language
communication and could assist with the tedious and time-
consuming task of annotating sign language video data for
purposes of linguistic and computer science research.

However, sign language recognition poses many chal-
lenges. First, many of the linguistic components of a sign
that must be recognized occur simultaneously rather than
sequentially. For example, one or both hands may be in-
volved in the signing, and these may assume various hand
shapes, orientations, and types of movement in different lo-
cations. At the same time, facial expression may also be
involved in distinguishing signs, further complicating the
recognition task. Secondly, there is variation in production
of a given sign, even by a single signer. Additional vari-
ation is introduced by the co-articulation problem, mean-
ing that the articulation of a sign is influenced by preced-
ing and following signs. This can result in departures from
the expected hand shape, location, and/or orientation found
at the edge of a sign, and there may also be movement
transitions between signs (sometimes referred to as “move-
ment epenthesis”). Nevertheless, many methods (Vogler
and Metaxas, 1998; Bauer and Kraiss, 2002; Vogler and
Metaxas, 2004) have shown promising results in recogniz-

ing manual components of signs.
Furthermore, in sign language, critical grammatical in-

formation is expressed through head gestures (e.g., peri-
odic nods and shakes) and facial expressions (e.g., raised
or lowered eyebrows, eye aperture, nose wrinkles, tens-
ing of the cheeks, and mouth expressions (Baker-Shenk,
1983; Coulter, 1979; Liddell, 1980; Neidle et al., 2000)).
These linguistically significant nonmanual expressions in-
clude grammatical markings that extend over phrases to
mark syntactic scope (e.g., of negation and questions). For
example, in wh-questions (which involve phrases such as
who, what, when, where, why, and how), the grammatical
marking consists of lowered eyebrows and squinted eyes
that occur either over the entire wh-question or solely over
a wh-phrase that has moved to a sentence-final position.
In addition, there may be a slight, rapid side-to-side head
shake over at least part of the domain of the wh-question
marking. With negation, there is a relatively slow side-to-
side head shake that co-occurs with a manual sign of nega-
tion (such as NOT, NEVER), if there is one, and may ex-
tend over the scope of the negation, e.g., over the following
verb phrase that is negated. The eyes may squint or close.
Lastly, topics are characterized by raised eyebrows, wide
eyes, head tilted back, and an optional nod.

Sign language recognition cannot be successful unless
these nonmanual signals are also correctly detected and
identified. For example, the sequence of signs JOHN BUY
HOUSE could be interpreted, depending on the accompa-
nying nonmanual markings, to mean any of the follow-
ing: (i) “John bought the house.” (ii) “John did not buy the
house.” (iii) “Did John buy the house?” (iv) “Did John not
buy the house?” (v) “If John buys the house...”.

Motivated by the importance of facial expressions and
head gestures, we present a novel framework for robustly
tracking and recognizing such nonmanual markings associ-
ated with wh-questions, negative sentences and topics. Our
method extends prior work (Michael et al., 2009; Neidle et
al., 2009), in which the signer’s head is tracked and appear-



Figure 1: Sample frames showing the accuracy of tracking under challenging scenarios (partial occlusions, fast movements,
and glasses), using our face tracker (Kanaujia et al., 2006). Here, red dots represent tracked landmarks. The predicted head
pose is shown in the top left corner of each frame as a 3D vector

ance features, in the form of spatial pyramids (Lazebnik et
al., 2006) of SIFT descriptors (Lowe, 2004), are extracted
from the eye and eyebrow region (which we will refer to,
henceforth, as the eye region). First, we extract additional
shape features in the form of spatial pyramids of histograms
of oriented gradients (PHOG) (Bosch et al., 2007). Second,
we use spectral clustering (Ng et al., 2002), to reduce the
dimensions of the augmented appearance and shape fea-
ture vectors. Third, by utilizing Hidden Markov Models
(HMMs) (Rabiner, 1989), our method can perform contin-
uous recognition in unsegmented video sequences.

2. Previous Work
As already mentioned, most research on computer-based
sign language recognition has focused on the manual com-
ponents of signing. A thorough review of early such ef-
forts is presented in Pavlovic et al. (1997). Only recently
have researchers begun to address the importance of facial
expressions for sign recognition systems (Ong and Ran-
ganath, 2005). An extensive review of recent developments
in visual sign recognition, together with a system that cap-
tures both manual and nonmanual signs is provided by von
Agris et al. (2008). However, their system requires the
signer to be wearing a glove with colored markers to en-
able robust hand tracking and hand posture reconstruction.
Additionally, in their system, the tracked facial features (lip
outline, head pose, eye gaze, etc.) are not used to recognize
facial expressions that have grammatical meaning. Vogler
and Goldenstein (2008a; 2008b) present a 3D deformable
model for face tracking, which emphasizes outlier rejection
and occlusion handling at the expense of slower run time.
They use their system to demonstrate the potential of face
tracking for the analysis of facial expressions encountered
in sign language, but they do not use it for any actual recog-
nition. Lastly, the authors of (Michael et al., 2009; Neidle et
al., 2009) use a method based on spatial pyramids (Lazeb-
nik et al., 2006) to do isolated recognition of wh-questions
and negative sentences. In this paper, we extend that work,
so that we are now able to recognize in a continuous fash-
ion wh-questions and negative sentences, as well as topics
(i.e., no segmentation of test sequences is needed).

3. Face Tracking
Face tracking is a challenging problem because the tracker
needs to generalize well to previously unseen faces and to
varying illumination. It should also cope with partial oc-
clusions and pose changes, such as head rotations, which

cause drastic changes in the shape of the face, causing it to
lie on a non-linear manifold. Kanaujia et al. (2006) tackle
these problems with an Active Shape Model (Cootes et al.,
1995), which is a statistical model of facial shape variation,
where shapes are represented by a set of facial landmarks.
Through the application of Principal Component Analysis
(PCA) on an aligned training set of facial shapes, they learn
a model of the permissible ways in which different people’s
faces differ, which is then used for face tracking.

Moreover, using a Bayesian Mixture of Experts model
they are able to estimate the 3D pose of the head from the
tracked landmarks. This model uses linear regressors and
a multiclass classifier to map landmark configurations to
predictions of head pose. Figure 1 shows the output of the
ASM tracker on a few challenging input frames exhibiting
rapid head movements and rotations, and partial occlusions.

Following ideas in (Michael et al., 2009; Neidle et al.,
2009), the first step of our recognition framework involves
tracking the signer’s head using the above described frame-
work (Kanaujia et al., 2006), localizing the facial compo-
nents (e.g., eyes, eyebrows) and predicting the 3D head
pose (i.e., pitch, yaw, tilt). We then extract from the eye
region the features described in the next section.

4. Feature Representation and Recognition
In order to train machine learning algorithms for recogni-
tion of facial expressions, we first need a discriminative
feature representation. Therefore, we extract dense SIFT
descriptors over a regular grid from the eye region of each
tracked frame; these are invariant to linear transformations
such as scaling and rotation (Lowe, 2004). We cluster the
SIFT descriptors of a random subset of the training frames,
to obtain a codebook of prototypes and then encode all
other descriptors by the index of their nearest prototype.

Next, we divide each frame into imaginary grids of cells
and count the relative frequency of occurrence of each en-
coded feature in each cell. This collection of histograms
becomes the spatial pyramid SIFT representation (PSIFT).
In order to measure the dissimilarity in appearance between
any pair of frames, we just need to compare their PSIFT
representations, essentially comparing the bins of these his-
tograms to see how much they match, using a weighted
Spatial Pyramid Match Kernel (SPMK) with the histogram
intersection function (Swain and Ballard, 1991; Grauman
and Darrell, 2005; Lazebnik et al., 2006).

Bosch et al. (2007) also build spatial pyramids. Instead
of SIFT descriptors, their idea is to quantize the gradient



Figure 2: Toy illustration of spatial pyramid construction
(Lazebnik et al., 2006), where, for simplicity, we assume
there are only 3 codewords (circle, diamond, cross)

Figure 3: Spectral feature embedding of each frame (red:
negative, green: topics, blue: wh-questions)

orientations of pixels into uniform bins, with each pixel’s
vote being proportional to the magnitude of its gradient,
forming what they call a PHOG descriptor. We compute
PHOG features in the same way, but for measuring PHOG
similarity we use the weighted SPMK. By combining ap-
pearance (PSIFT) and shape (PHOG) features we obtain a
more discriminative representation of eye regions.

5. Recognition Models
Although combining appearance and shape features im-
proves the discriminative power of our representation, it
increases the dimensionality of our input. As such, it in-
creases the amount of training data that we need in order to
learn accurate recognition models, and this also causes an
increase in complexity, thus slowing down computations.

Spectral clustering (Ng et al., 2002) is a popular method
of dimensionality reduction. The feature vector of each
training example is represented as a node in a graph that
is connected with a weighted edge to its nearest neighbors
in the training set (weights reflect degree of similarity). The
algorithm then applies an eigenvalue decomposition on the
matrix representing this graph, reducing the feature vector
dimensionality in a way that preserves the neighborhood
structure. We use SPMK as the similarity measure and
reduce the dimension of PSIFT and PHOG features sepa-
rately. Figure 3 shows the resulting embedding of the train-
ing set, where we see that the classes are well separated.

The final feature descriptors per frame are the combined
SIFT and HOG features of reduced dimensionality together
with the 3D head pose and its first order derivatives. These
are used to train HMM models (Rabiner, 1989). An HMM

None Negative Topic Wh-Q
Training 10144 997 1604 1208
Testing 9359 1053 1248 1182

Table 1: Dataset composition (number of frames per class)

Predicted Class
None Negative Topic Wh-Q

True None 92.8% 2.9% 2.2% 2.1%
True Negative 7.7% 80.3% 5.8% 6.2%
True Topic 9.2% 4.5% 81.2% 5.1%
True Wh-Q 8.3% 5.3% 4.5% 81.9%

Table 2: Confusion matrix of HMM continuous recognition

is a probabilistic model popular for time series data, con-
sisting of a set of hidden states. At each time step, it tran-
sitions state based on a transition probability and it emits
an observation. For our recognition task, we divide frames
from each training sequence into four sets, one for each
class of expressions we want to recognize. We train a sep-
arate HMM for each class, using sequences segmented by
class.

6. Use of the Annotated Video Corpus
The machine learning fundamental to our approach has
been carried out using a linguistically annotated corpus of
ASL (as produced by native signers) created at Boston Uni-
versity. This publicly available corpus, including 15 short
narratives plus hundreds of additional elicited utterances,
includes multiple synchronized views of the signing (gen-
erally 2 stereoscopic front views plus a side view and a
close-up of the face), which have been linguistically an-
notated using SignStreamTM (Neidle, 2002; Neidle et al.,
2001) software, which enables identification of the start and
end points of the manual and nonmanual components of the
signing. Annotation conventions are documented (Neidle,
2002/2007), and the annotations are available in XML.

In order for pattern recognition algorithms to correctly
identify a class of interest, they must be trained with both
positive examples and negative examples. These are eas-
ily obtainable from the annotated corpus. From this corpus
we selected a training set of 77 video clips of isolated ut-
terances (negative: 17, topic: 40, wh: 20). Our testing set
contained 70 such clips (negative: 15, topic: 38, wh: 17).
The exact composition of these sets, in terms of numbers
of frames per class, is shown in Table 1. Both sets con-
tained three different signers. Using the methods described
in previous sections, we tracked the signer’s head, extract-
ing pose, PHOG and PSIFT features, the dimensionality
of which was then reduced using spectral clustering. We
then trained class-specific HMMs, optimized to recognize
frame sequences of their class. To evaluate their perfor-
mance at continuous recognition, we used a sliding window
approach. We fed subsequences of all unsegmented test se-
quences to each HMM, classifying each frame as negative,
topic, wh, or none, based on which HMM output had the
highest probability of having generated each subsequence.



Recognition accuracy is summarized in the confusion ma-
trix of Table 2.

7. Discussion
We presented a novel framework for robust real time face
tracking and facial expression analysis from a single uncal-
ibrated camera. Our feature representation comprises spa-
tial pyramids of SIFT and HOG features, and head pose
features, which are reduced in dimensionality using a spec-
tral decomposition. We demonstrated that our framework is
successful at continuous recognition of wh-questions, neg-
ative expressions, and topics in unsegmented video data.

Feature fusion will be crucial in helping to recognize
classes of nonmanual markings that are only subtly differ-
ent. Therefore, as part of our future research we will be
looking at combining facial features and looking at inten-
sity and temporal patterning of nonmanual gestures (in re-
lation, as well, to manual signing).
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