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Lay Abstract 
Do individuals with autism learn object categories in a typical manner? An example of 
prototypical category learning is the ability to classify coffee cups of varying shape, size and 
color into a single object-level representation that we know as ‘cup’. Here we investigate this 
question with a classical psychological paradigm. In two experiments, we find evidence that a 
group of young autistic men learn visual prototypes typically, relative to a control group matched 
for age and IQ. We conclude that high-functioning autistic individuals do not experience 
severely compromised mechanisms of prototypical category learning.  
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Scientific Abstract 
An ongoing debate in developmental cognitive neuroscience is whether individuals with autism 
are able to learn prototypical category representations from multiple exemplars. Prototype 
learning and memory were examined in a group of high-functioning autistic boys and young 
men, using a classic paradigm in which participants learned to classify novel dot patterns into 
one of two categories. Participants were trained on distorted versions of category prototypes 
until they reached a criterion level of performance. During transfer testing, participants were 
shown the training items together with three (3) novel stimulus sets manifesting variable levels 
of physical distortion (low, medium, or high distortion) relative to the unseen prototypes. Two 
experiments were conducted, differing only in the manner in which the physical distortions were 
defined. In the first experiment, a subset of autistic individuals learned categories more slowly 
than controls, accompanied by an overall diminution in transfer-testing performance. The autism 
group did, however, manifest a typical pattern of performance across the testing conditions, 
relative to controls. In the second experiment, group means did not differ statistically in either 
the training or testing phases. Taken together, these data indicate that high-functioning autistic 
individuals do not manifest gross deficits in prototypical category learning. A possible 
theoretical interpretation of these data is given in terms of underlying brain mechanisms. 
 
 
Keywords: autism; category; learning; prototype; exemplar; memory; attention; vigilance; 
adaptive resonance theory 
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Prototypical Category Learning in High-Functioning Autism 
Autism is characterized by atypical social interactions, delayed or impaired language 

acquisition and repetitive-stereotyped behaviors (American Psychiatric Association, 2000). An 
important issue in developmental cognitive neuroscience is whether such diagnostic symptoms 
arise from a breakdown in more fundamental cognitive processes (Frith, 2003). One putative 
cognitive process that may develop atypically in autism is the ability to learn prototypical 
category representations (Grossberg & Seidman, 2006; Pellicano et al., 2007; Tager-Flusberg, 
1985). An example of prototypical category learning is the ability to classify coffee cups of 
varying shape, size and color into a single object-level representation that we know as ‘cup’. 
According to a recent neural theory of atypical cognitive development in autism (Grossberg & 
Seidman, 2006), “hypervigilant” category learning in some autistic individuals may cause an 
impaired ability to learn prototypes for abstract general categories, with consequences for 
deficits in attention and related behavioral symptoms of autism. The current experiments were 
designed to provide more information about category learning by autistic individuals, with a 
view towards enabling a more sensitive test of this hypothesis. 

At least one study has found evidence of atypical learning of visual object prototypes in 
autism (Klinger & Dawson, 2001; see also Molesworth et al., 2008), and several other studies 
have found evidence of impaired learning, recognition and memory processes, albeit not 
specifically related to prototype learning (Gastgeb et al., 2006; Mottron et al., 2006; Pellicano et 
al., 2007; Plaisted et al., 1998; Soulières et al., 2007). Klinger and Dawson (2001) trained a 
group of low-functioning autistic participants to correctly label category exemplars. During the 
transfer test, participants had to chose between (a) familiar or prototypical exemplars, on the one 
hand, and (b) novel non-prototypical exemplars, on the other. The authors found evidence that, 
relative to the control group, the autism group (and a group of children with Down’s syndrome) 
did not categorize the prototypical exemplars better than the novel non-prototypical exemplars. It 
is important to bear in mind, however, that the Klinger and Dawson (2001) study tested low-
functioning autistic participants, and so their findings cannot easily be extrapolated to high-
functioning autistic individuals (Molesworth et al., 2005); their findings may be more related to 
intellectual disability than to autism per se. 

Several studies have, however, failed to find specific evidence for atypical prototype 
learning in autism (Bott et al., 2006; Molesworth et al., 2005; Tager-Flusberg, 1985). Bott et al. 
(2006), for example, trained high-functioning autistic and control participants to categorize 
rectangle patterns into one of two categories, based on arbitrary criteria unrelated to the 
manipulated perceptual dimensions (rectangle width and height). They found that, while the 
autistic participants learned more slowly than control participants, generalization of the learned 
rules to novel exemplars during a transfer test was intact. Molesworth et al. (2005) had 
participants categorize cartoon-like drawings of fictional animals into one of two categories, 
based on differential visual appearance. During the testing phase, participants performed a 
recognition task on (a) the training items, (b) novel exemplars of various levels of distortion and 
(c) the unseen prototypes. The authors concluded that no overall differences in recognition 
performance could be found between the high-functioning autism and control groups. 
Molesworth et al. (2008) found evidence that a subset of high-functioning autistic participants—
chosen based on their atypical performance in a task requiring identification of  ‘ideal’ shapes—
failed to show a typical prototype effect. 

The present study aims to better characterize the putative impairment of category learning 
and/or generalization in autism. Our paradigm is closely based on the stimuli and protocols used 
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in classical studies of prototype formation (e.g., Posner & Keele, 1968). In these experiments, 
participants learned to classify patterns composed of random dots into one of two categories 
during an n-alternative forced choice training session. Each exemplar dot pattern was produced 
by manipulating one of two original prototype patterns: the positions of the dots comprising each 
prototype were randomly displaced by a small factor to produce two sets of exemplars. Even 
though participants only learned to classify the distorted versions of the prototype (exemplars), 
rather than the prototypes themselves, categorization performance during a subsequent transfer 
test was better for the unseen prototypes than for the exemplars learned during training. Posner 
and Keele (1968) concluded that participants learned prototypical category representations from 
the distorted exemplars contained in the training set (cf., Zaki & Nosofsky, 2004, 2007). 
According to this hypothesis, when presented with the actual prototypes during the testing 
session, prototype memory representations—being an amalgam of the many slightly different 
exemplars—matched the prototypical items better than the exemplars. 

 

 
Fig. 1. Stimuli used in experiment one. Stimuli consisted of exemplar dot patterns 
generated from one of two prototype patterns. The categories generated from these 
prototypes were dubbed TAL and BIV for the purposes of the experiment. Subjects were 
trained on the MF items and tested on the MF, LN, MN and HN items. 
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By employing classical stimuli and protocols, our behavioral experiment overcomes several 
limitations in previous studies of prototype formation in autism. Firstly, we use unfamiliar dot 
patterns—similar to those employed in classic studies of prototype memory in health and disease 
(Knowlton & Squire, 1993; Posner & Keele, 1968; Reber et al., 1998; Squire & Knowlton, 1995; 
Zaki & Nosofsky, 2004, 2007)—to mitigate against the potentially-confounding influences of 
stored category memories acquired during everyday life. Unlike previous studies of category 
learning in autism, our exemplar patterns thus do not resemble familiar objects or patterns, such 
as animal cartoons (Bott et al., 2006; Gastgeb et al., 2006; Molesworth et al., 2005, 2008; 
Mottron et al., 2006; Plaisted et al., 1998; Soulières et al., 2007). Secondly, we tracked 
participants’ learning performance over a prescribed number of training blocks in the training 
session. This allowed us to assess whether all participants learned the training patterns equally 
well. Once participants attained a criterion performance level in the training session, we 
proceeded to initiate the transfer-testing phase. Thirdly, the training and testing tasks were the 
same, ensuring that participants were well trained with respect to the relevant task constraints. 
Previous studies of prototype learning in autism have not always required participants to attain a 
specific performance criterion during training, nor have the training and testing tasks always 
been the same (Bott et al., 2006; Molesworth et al., 2005, 2008; Mottron et al., 2006; Plaisted et 
al., 1998; Soulières et al., 2007). Finally, we used many more exemplars in our category sets (32) 
than previous studies (2-8). As the proportions of correct and incorrect categorization trials are 
the dependent variables of interest, small exemplar numbers can often lead to distorted results, 
simply due to incidental errors, such as unintentionally pressing the wrong button. 

We conducted two experiments differing only in the manner in which distorted dot patterns 
were generated. In experiment one, patterns were created in the same manner as in the classical 
Posner and Keele (1968) paradigm, by randomly jittering the positions of the all dots comprising 
each prototype by different amounts (Fig. 1). The items generated from the jittering process were 
named according to their level of distortion (i.e. amount of jittering) and familiarity (i.e. whether 
the items were seen by participants during training or not): medium-distortion familiar (MF), 
low-distortion novel (LN), medium-distortion novel (MN) and high-distortion novel (HF). In 
experiment two, the amount of jittering was kept constant and we instead varied the number of 
dots that were jittered. In both experiments, we expect the order of classification performance 
(percentage correct responses) to be LN > MF = MN > HN. In particular, we expect that LN 
items will be better categorized than the MF items, even though the LN items have never been 
seen. 
Experiment One 
Method 

Participants 
Nineteen (19) autistic and twenty-one (21) control subjects participated in experiment one 

(Table 1). All subjects were male. Signed consent was obtained from all participants in 
accordance with the IRB procedures of the Boston University School of Medicine. 

All participants were tested with the Kaufman Brief Intelligence Test (KBIT) to obtain 
estimates of non-verbal IQ and verbal IQ. Participants in the autism group met clinical 
diagnostic criteria for autism (ADI-R). These participants were also assessed on the Autism 
Diagnostic Observation Schedule-Revised (ADOS-R) to quantify measures of current symptom 
severity. According to a two-sample t-test, the control group was significantly older [t(38) = 
2.94, p = 0.006]1 than the autism group, although the two groups did not differ on KBIT 
measures of verbal IQ [t(38) = -1.17, p = 0.25] and non-verbal IQ [t(38) = -1.16, p = 0.25]. 
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Table. 1. Participant characteristics for experiment one. 

Autism (n = 19) Control (n = 21)  
Mean (SD), Range Mean (SD), Range 

Age 18.4 (2.95), 15.3-27.7 21.0 (2.7), 16.3-25.8 
 
 
106.5 (17.5), 79-134 113.9 (13.3), 91-137 
106.6 (14.3), 75-125 111.6 (12.6), 89-130 

Kaufman Brief Intelligence Test (KBIT) 
Scores 
     Full IQ 
     Verbal IQ 
     Non-Verbal IQ 104.1 (23.6), 65-139 111.9 (18.6), 69-141 

 
 
21.4 (3.9), 15-28 - 
17.6 (3.8), 5-22 - 

Autism Diagnostic Interview – Revised 
(ADI-R) Scores 
     Communication 
     Social 
     Repetitive Behaviors 6.1 (2.2), 2-11 -1 

 
Stimuli 
Before the experiment began, two patterns (prototypes) consisting of nine (9) black dots on 

a white background were randomly generated (Posner & Keele, 1968). For each prototype, low-, 
medium- and high-level distortions were generated using a distortion algorithm. Specifically, a 
random direction of displacement was selected for each dot in the pattern. The magnitude of 
displacement was determined by a Poisson noise generator. The parameter controlling the mean 
(= variance) of the noise was varied across testing conditions. 

For each prototype, the 16 medium-level distortions for each category were used for 
training, giving a total of 32 training exemplars. Similarly, transfer-test items consisted of the 32 
exemplars (termed medium-familiar, or MF, items), 32 medium-distortion novel items (medium-
novel, or MN, items), 32 low-distortion novel items (low-novel, or LN, items), and 32 high-
distortion novel items (high-novel, or HN, items). This gave a total of 128 testing items. Before 
the experiment proper, every subject performed a practice experiment based on two prototype 
dot patterns that differed from the prototypes used in the main experiment. The practice 
experiment consisted of fewer items: the same 8 items were used for both training and testing. 
The practice experiment allowed participants to become familiar with the stimuli and task. The 
level of difficulty of the practice experiment was much lower than the difficulty level of the main 
experiment. This manipulation was achieved in two ways. First, the prototypes selected by the 
experimenters for the practice experiment were perceptually very dissimilar, enabling easy 
learning of the training exemplars. Second, the overall amount of distortion applied to the 
exemplars was low, as determined by the values of the Poisson noise parameters. In the practice 
experiment, this value was 2. In the experiment proper, the noise values were 1, 10 and 15 for 
low, medium and high distortion levels. 

 
Equipment 
The experiment was conducted on a 17-inch Apple MacBook Pro laptop computer. The 

presentation software was written in Matlab 7.4 and displayed using Psychtoolbox Version 3.08. 
Responses were made by pressing buttons on a GamePad Pro USB controller.  
                                                 
1  Control subjects were not systematically assessed. 
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Procedure 
Participants were shown into the experimental room and explained the procedure carefully. 

The lights were left on during the experiment and the experimenter remained with the subject the 
entire time. Participants first undertook a practice experiment, followed by the main experiment. 
At the start of the practice experiment, the participants scrolled through a series of programmed 
instruction screens at their own pace, by pushing a button on a game pad controller. Each screen 
introduced a new piece of information concerning the experiment. Participants were encouraged 
to ask questions if they did not understand an instruction. This procedure took about 5 minutes to 
complete. 

The first part of the process introduced the participants to an imaginary ‘planet’, where 
they would be shown ‘creatures’ of two types (Lupyan et al., 2007). The participants were told 
that their task was to learn which type of creature belonged to the two given labels denoted by 
non-sense words (LAC and ZIB for the practice experiment, TAL and BIV for the main 
experiment). These words appeared on the screen on either side of the item. Participants were 
first shown examples from each category. They were then given examples of the auditory 
feedback signals corresponding to correct and incorrect choices: A high pitch tone to denote a 
correct answer, and a low pitch tone to denote an incorrect answer. 

Participants were then asked to press one of two buttons on the game pad controller, 
corresponding to the two options seen on the screen. The buttons and category names appearing 
on the screen corresponded in color and relative horizontal position (left or right), in order to 
facilitate the association. Both the items and names remained on the screen until participants 
responded. Following each response, participants received a feedback tone. 

Participants were first given four (4) practice trials involving the examples shown to them 
earlier. To begin each trial, participants pressed a yellow button on the game pad controller. 
Participants rarely made any incorrect choices at this stage. Each block in the training session 
consisted of 8 items/trials in the practice experiment and 32 items/trials in the main experiment. 
Items were presented in random order within one of 10 training blocks. After a block of trials, 
participants were notified of their percentage correct for each category, relative to an arbitrary 
criterion, by means of a color-coded bar graph. 

Training continued until participants reached the criterion. In the practice experiment, the 
criterion was 100% (8/8) correct. This strict criterion ensured that participants were very familiar 
with the task before the main experiment began. We did not analyze the data from the practice 
experiment, though we observed that subjects usually learned the categories quickly. In the main 
experiment, participants were required to score 75% correct, or more, for both categories before 
proceeding to the transfer testing (i.e. 12/16 for each category). The choice of 75% correct 
ensured that participants were unlikely to attain criterion simply by chance alone (p ≈ 10-6), 
while ensuring that a ceiling effect would not be observed in the testing phase. All participants 
were tested after a maximum of 10 training blocks, even if they did not meet criterion. 

Following training, participants were instructed to take a short break. They then completed 
the testing portion immediately following the break. In the practice experiment, the testing 
session consisted only of the eight (8) training items. In the main experiment, testing consisted of 
128 trials presented in random order (32 items in each of the four testing conditions: MF, MN, 
LN, and HN). Participants performed the same categorization task as during training, except that 
no feedback was provided after each trial. 
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Fig. 2. Results of experiment one. Mean percentage correct scores during training (A, B) 
and testing (C, D), pooled over the two categories. The data show that the control group 
outperformed the autism group in both the training and testing phases. Each participants’ 
data is represented by a colored bar. The blue lines with error bars indicate the group 
running means during training (i.e. means over subjects participating in each given 
training block). The dotted horizontal lines indicate the criterion level, recalling that 
participants had to reach criterion for both categories independently (thus the mean 
scores may fall under the dotted line on any given block). The green lines with error bars 
indicate the group means in the testing conditions. 

 
Results 

Data from the training phase are plotted in Fig. (2A, B). We found that the autism group 
required significantly more training blocks than the control group to reach criterion [control 
group mean (SD) = 2.33 (1.35), autism group mean (SD) = 4.63 (3.55), t(38) = -3.88, p = 
0.0004]. Whereas only two (2) participants in the control group required more than three (3) 
training blocks to reach criterion, nine (9) of 19 participants in the autism group required more 
than three (3) training blocks, and four (4) of these participants did not reach criterion within the 
full 10 training blocks. 

The pattern of performance across conditions in the testing phase appears similar for 
autism and control groups (Fig. 2C, D). A two-way analysis of variance (ANOVA), 
incorporating both testing condition and group as factors, revealed a significant effect of 
condition [F(3) = 43.6, p < 0.00001] and group [F(1) = 32.7, p < 0.00001], but no significant 
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condition ×  group interaction [F(3) = 0.45, p = 0.72]2. To test our a priori hypotheses (LN > MF 
= MN > HN), we conducted two-sample t-tests between conditions within each group. These 
tests revealed that both groups manifested the typical prototype effect, with percentage correct 
being higher in the LN condition than in the MF condition [control group: t(20) = 4.16, p = 
0.0001, autism group: t(18) = 2.48, p = 0.009] and percentage correct in the MF condition being 
higher than in the HN condition [control group: t(20) = 8.57, p < 0.00001, autism group: t(18) = 
4.14, p = 0.0001]. Both groups therefore showed evidence of a robust prototype effect. 

To simply the next stage of our analysis, we computed the mean percentage of correct 
responses across all testing conditions for each group (Fig. 3). Consistent with the significant 
effect of group in the ANOVA, the mean percentage correct was significantly lower for the 
autism group [control group mean (SD) = 87.7 (6.18), autism group mean (SD) = 77.2 (10.65), 
t(38) = 2.76, p = 0.009]3. We then computed correlations between the mean percentage scores 
with the number of training blocks completed and IQ scores. We found a significant correlation 
between training and testing performance for both the autism group (r2 = 0.39, df = 18, p = 
0.004) and control group (r2 = 0.2, df = 20, p = 0.04). We also found evidence for a correlation 
between the non-verbal IQ scores of the autism group and the percentage of correct responses in 
the testing phase (r2 = 0.21, df = 18, p = 0.05). No other correlations involving task performance 
and IQ scores or subject age were significant. We also found no evidence for significant 
correlations between either test or training performance and symptom severity in the autism 
group, as assayed by ADOS (p > 0.2 in all cases). 

 

 
Fig. 3. Scatter plots of percentage correct scores in the testing phase against two variables 
of interest. (A) For the control group (red dots), we find weak evidence for a non-zero 
correlation between number of training blocks and testing performance (r2 = 0.2, df = 20, 
p = 0.04). For the autism group (blue dots = autistic participants reaching criterion within 
10 training blocks; black dots = autistic participants completing all 10 training blocks), 
we find relatively strong evidence for a correlation (r2 = 0.39, df = 18, p = 0.004). Note: 
horizontal dot positions have been jittered slightly to prevent occlusion. (B) We find 
weak evidence for a correlation between non-verbal IQ and testing performance in the 
case of the autism group (r2 = 0.21, df = 18, p = 0.05) but no evidence for a correlation 
between these variables in the case of the control group (r2 = 0.13, df = 20, p = 0.11). 
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Experiment Two 
Method 

Participants 
Thirteen (13) autistic, nine (9) of whom also participated in experiment one, and eighteen 

(18) new control subjects participated in experiment two (Table 2). All subjects were male. 
Signed consent was obtained from all participants in accordance with the IRB procedures of the 
Boston University Medical School.  

KBIT, ADI-R and ADOS-R testing were conducted as in experiment one. We found no 
statistical difference in the ages of the control and autism groups [t(29) = -0.1, p = 0.91]. The two 
groups did not differ on KBIT measures of verbal IQ [t(29) = 1.17, p = 0.25] and non-verbal IQ 
[t(29) = 0.76, p = 0.45]. 

 
Table. 2. Participant characteristics for experiment two. 

Autism (n = 13) Control (n = 18)  
Mean (STD), Range Mean (STD), Range 

Age 19.2 (3.3), 15.2-28.1 19.1 (2.1), 14.9-22.7 
 
 
113.1 (17.6), 83-136 106.9 (10.3), 91-129 
110.9 (21.8), 73-138 103.6 (12.8), 85-126 

Kaufman Brief Intelligence Test (KBIT) 
Scores 
     Full IQ 
     Verbal IQ 
     Non-Verbal IQ 111.4 (12.2), 85-125 107.7 (14.0), 80-130 

 
 
21.4 (3.9), 15-28 - 
16.7 (4.8), 5-22 - 

Autism Diagnostic Interview – Revised 
(ADI-R) Scores 
     Communication 
     Social 
     Repetitive Behaviors 6.8 (1.7), 4-10 - 
 

Stimuli 
Stimuli were similar to those used in experiment one, except for the following details. For 

each prototype, exemplars were generated by varying the number of dots jittered, while keeping 
the amount of jitter constant: for low-distortion items, one dot was jittered; for medium-
distortion items, five dots were jittered; for high- distortion items, all nine dots jittered. 

Equipment 
The equipment was the same as in experiment one.  
Procedure 
The procedure was identical to that in experiment one, except the category names were 

changed to DAC and RAB in the practice experiment and VIM and LAN in the experiment 
proper. 
Results 

Data from the training phase are plotted in Fig. (4A, B). Group means of the number of 
training blocks required to reach criterion was not significantly different [control group mean 
(SD) = 1.83 (1.62), autism group mean (SD) = 3.17 (3.22), t(28) = 1.5, p = 0.14]4. Unlike 
experiment one, autism and control groups manifested indistinguishable results in the testing 
phase (Fig. 4C, D). A two-way ANOVA (factors: condition and group) revealed a significant 
effect of condition [F(3) = 12.3, p < 0.0001] but not group [F(1) = 0.1, p = 0.92], and no 
significant condition ×  group interaction [F(3) = 0.11, p = 0.96]. Two-sample t-tests between 
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conditions revealed that both groups manifested the typical prototype effect, with LN 
significantly greater than MN for the control group [t(17) = 3.14, p = 0.002] and borderline-
significantly greater for the autism group [t(11) = 1.461, p = 0.06]. Furthermore, MF was 
significantly greater than HN for both the control group [t(17) = 2.1, p < 0.02] and the autism 
group [t(11) = 1.76, p = 0.05]. Thus, as in experiment one, both groups manifested a robust 
prototype effect. 

 

 
Fig. 4. Results of experiment two. Mean percentage correct for each training block and 
testing condition, pooled over the two categories. The results were similar to those of 
experiment one. 

 
As in experiment one, further analysis was conducted on the mean scores computed over testing 
conditions. Consistent with the ANOVA, these scores did not differ between groups [control 
group mean (SD) = 88.1 (7.1), autism group mean (SD) = 87.9 (8.1), t(28) = 0.06, p = 0.95]. We 
found a significant correlation between training blocks completed and testing scores for the 
control group (r2 = 0.32, df = 17, p = 0.01) but not the autism group (r2 = 0.2, df = 11, p = 0.15). 
The only other significant correlation we found was between non-verbal IQ of the autism group 
and testing performance (r2 = 0.53, df = 11, p = 0.007). 
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General Discussion 
The results presented here provide a new twist to the tale of category learning and memory 

in autism (Bott et al., 2006; Klinger & Dawson, 2001; Molesworth et al., 2005, 2008; Mottron et 
al., 2006; Plaisted et al., 1998; Tager-Flusberg, 1985; Soulières et al., 2007). While some 
evidence for atypical prototype learning in low-functioning autism has emerged (Klinger & 
Dawson, 2001), similar evidence in high-functioning autistic individuals is relatively sparse 
(Bott et al., 2006; Molesworth et al., 2005; Tager-Flusberg, 1985). Consistent with these latter 
results, we found in both experiments that autistic individuals manifested a robust prototype 
effect (i.e. exhibited the expected pattern of performance across testing conditions). 

We used only relatively high-functioning autistic participants in our study in order to avoid 
the potential confounding effects of low IQ (see Klinger & Dawson, 2001; Molesworth et al., 
2005, 2008). Interestingly, in both experiments, we found a significant positive correlation 
between testing performance and non-verbal IQ, but not verbal IQ, for the autism group. This 
suggests that non-verbal IQ may be an important factor in determining performance of autistic 
individuals in prototype learning tasks. Molesworth et al. (2005, 2008) questioned the role of 
low verbal IQ in the prototype learning deficit observed in the Klinger and Dawson (2001) study, 
proposing that subjects may not have understood the instructions correctly. Our results suggest 
that non-verbal IQ should also be considered a limiting factor on performance in prototype 
learning tasks. Furthermore, both our experiments were preceded by shorter ‘practice’ 
experiments to ensure that subjects understood instructions correctly.  

Molesworth et al. (2008) found that a subset of high-functioning autistic boys failed to 
learn prototypes in a typical manner. This subset was identified by atypical performance on a 
control task requiring subjects to identity ‘best category members’ from a selection of shapes. 
The authors found that the atypically performing subset of boys had lower mean chronological 
and verbal-mental ages than the typically performing subset. The results of Molesworth et al. 
(2008) resemble those of our experiment one, in which a subset of autistic individuals learned 
prototypes more slowly than others and scored lower in the testing phase. The mean age of 
autistic subjects in our study was, however, substantially higher than that of Molesworth et al. 
(2008). As indicate above, furthermore, we found a correlation between non-verbal IQ, not 
verbal IQ, and task performance. We also failed to find any evidence of atypical performance in 
experiment two. The conditions under which a subset of autistic individuals perform atypically, 
and the cognitive variables underlying this atypical performance, therefore remain to be 
identified. 

In this study, we attempted to eliminate other potentially confounding factors inherent to 
previous studies of prototype learning in autism; namely, through use of (a) unfamiliar visual 
patterns, (b) large stimulus set sizes, (c) similar training and testing tasks (albeit without 
feedback during testing), and (d) close tracking of performance during the training phase and 
application of a learning criterion. We discuss each of these issues in turn below. 
 Unfamiliar patterns 

A critical feature of the present study was our use of unfamiliar stimulus patterns; namely, 
random dot patterns. This contrasts with previous studies of category learning in autism, which 
have relied on the use of patterns that were either globally familiar or contained familiar visual 
features, such as rectangles (Bott et al., 2006), cartoons of fictional animals (Klinger & Dawson, 
2001; Molesworth et al., 2005, 2008), filled disks (Plaisted et al., 1998), pictures of familiar 
objects (Tager-Flusberg, 1985) and elliptical line-drawings (Soulières et al., 2007). The principal 
utility of random-dot patterns, then, is that neither control nor autistic subjects are likely to be 



  

14 

biased by previous categorical learning of the patterns resembling the prototype or parts of the 
prototype. Indeed, novelty was the original motivation for the use of dot patterns in the Posner 
and Keele (1968) study. A secondary reason for the use of unfamiliar patterns was that it allowed 
us to track category learning from the first exposure to the patterns, as discussed in detail below. 
 Large stimulus sets 

We did not use prototype patterns themselves in the testing phase for the reason that the 
LN condition allowed us to present a set of 32 slightly different items that diverge marginally 
from the ‘theoretical limits’ of the prototypes (i.e. these items were pseudo-replicates). The use 
of this large stimulus set gives our study greater sensitivity, as spurious trials tend to get washed 
out. It is noteworthy, in this respect, to point out that although Molesworth et al. (2005) failed to 
find evidence of atypical generalization in their prototype condition, autistic participants 
performed slightly (though not significantly) below the level of the control group for the 
equivalent of our HN, MN, and MF conditions. As the prototype condition in Molesworth et al. 
(2005) contained only two (2) items, and the remaining conditions four (4) items, it seems likely 
that the sensitivity of the authors experimental design was insufficient to detect the deficiency 
we observed in our testing phase. 
 
Similar training and testing tasks 

Previous studies of prototype learning in autism have often employed different training and 
testing tasks. In Molesworth et al. (2005), for example, subjects classified patterns into one of 
two categories during training but performed a recognition memory task during testing. One 
might therefore argue that subjects may not have learned the category members in a manner 
effectively germane to the testing task. As subjects in our study performed exactly the same 
training and testing tasks, we may be reasonably confident that we were tapping into the same 
cognitive processes in the two phases of the experiment (see also Klinger & Dawson, 2001). In 
support of this claim, we found significant correlations between training and testing performance 
for the control group in both experiments and for the autism group in experiment one. 
Tracking learning and applying a learning criterion 

The tracking of learning performance in the training phase allowed us to collect important 
data on the relative learning rates of autistic and control participants. The results of experiment 
one suggest that a subset of autistic individuals do, in fact, learn prototypes more slowly than 
control participants. We further reasoned that the application of an unbiased learning criterion 
(i.e. one in which subjects were required to reach criterion for both categories) would ensure that 
autistic and control subjects had learned prototypes equally well prior to testing (see also Klinger 
& Dawson, 2001). We found instead that the autism group manifested a strong negative 
correlation between number of training blocks required to reach criterion and mean percentage 
of correct responses in the testing phase, implying that faster learners are also better learners 
(this correlation was weaker, though also significant, for the control group). In experiment two, 
however, we found no overall decrease in testing performance, nor did we find strong evidence 
to conclude that the autism group required more training blocks to reach criterion than the 
control group. This minor discrepancy between the results of experiment one and two therefore 
awaits further systematic study. 
Theoretical considerations 

The current experiments were designed to better test a hypothesis about how certain 
autistic individuals may learn to categorize objects and events in the world, and how category 
learning may influence related processes, such as how attention may be allocated during learning 
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and performance. The iSTART model of Grossberg & Seidman (2006) proposed that some 
autistic individuals may be “hypervigilant” learners. This proposal was based on the Adaptive 
Resonance Theory, or ART, model of how the brain may learn recognition categories. ART 
predicts how this is done in a way that solves the stability-plasticity dilemma; namely, how fast 
learning can occur without forcing catastrophic forgetting. All the main ART predictions about 
how recognition learning occurs under normal conditions have received support from 
neurobiological and psychological experiments; see Grossberg (2003) for a review.  

ART models the process whereby bottom-up features that represent an experience are 
matched with a learned top-down expectation that is read out by an active recognition category. 
If the match is good enough, then it focuses attention upon a prototype of critical features. This 
attended feature pattern “resonates” with the active category through bottom-up/top-down 
feedback signaling. Such a resonant state triggers fast learning of the adaptive weights, or long-
term memory traces, within the resonating network. Restricting fast learning to resonating cells 
that embody the focus of attention solves the stability-plasticity dilemma and clarifies the link 
between fast learning and attention. 

ART predicts how the “vigilance” of a learner may vary between low and high values in 
response to changing task demands. Low vigilance enables learning of abstract and general 
recognition categories, whereas high vigilance enables learning of concrete and specific 
recognition categories. iSTART proposed that some autistic individuals may have their vigilance 
stuck at high levels, therefore forcing hyperspecific learning in all situations. High vigilance 
does not prevent category learning by autistic individuals, but it would tend to induce learning of 
concrete and specific categories, and would thereby narrow the focus of attention upon specific 
details of objects and events. Do the current experiments support or contradict this prediction? 

  Despite the greater control over prototype learning and recognition that the current 
experiments provide, questions remain if only because several types of brain processes interact 
while learning recognition categories. For example, before category learning mechanisms in 
inferotemporal cortex and beyond are activated by visual stimuli, they are preprocessed by visual 
cortical areas V1 through V4. These cortical areas filter visual cues through multiple spatial 
scales to generate boundary groupings and surface representations that input to higher-order 
category learning mechanisms. Many perceptual and brain data about 3-D vision have been 
explained and predicted by neural models of how these boundaries and surfaces form; e.g., Cao 
& Grossberg (2005), Fang & Grossberg (2009), Grossberg (1994), Grossberg & Yazdanbakhsh 
(2005). In particular, multiple-scale processing is needed to convert scenic contour, texture, and 
shading information into object boundary and surface representations that are stable enough 
under the vagaries of the seeing process to enable behaviorally effective categories to be learned. 
For example, the “gist” of a natural scene can be computed as a large-scale coarse texture that is 
categorized to predict scene type, after which spatial attention shifts to smaller textures in the 
scene and accumulates additional evidence from them in the form of multiple-scale texture 
categories (Grossberg & Huang, 2008).  
 Inspection of the TAL prototype and low-distortion novel exemplar of experiment one 
(Fig. 1) shows that TAL dots may perceptually group into one cluster, with a possible individual 
dot outlier above the main cluster and somewhat to its right. In contrast, the BIV prototype and 
low-distortion novel exemplar may group into two distinct clusters, one above and slightly to the 
right of the other, with the cluster above including five dots and the cluster below including four 
dots. It is well known that human subjects often form perceptual groupings of individual features 
during visual search and related perceptual tasks, and these groupings, rather than the individual 



  

16 

features themselves, are the functional units that control learning and performance (Bacon & 
Egeth, 1991; Banks & Prinzmetal, 1976; Bravo & Blake, 1990; Dukette & Stiles, 1996, 2001; 
Enns & Rensink, 1990; He & Nakayama, 1992; Humphreys, Quinlan, & Riddoch, 1989; Kimchi, 
1998; Kimchi et al., 2005; Plaisted et al., 2006).  

In experiment one, subjects are trained on MF stimuli in which the locations of all the 
individual dots are perturbed by a moderate amount, and there is a prototype effect in which LN 
is recognized better than the other conditions, with the autistic group learning generally less well 
than the normal controls (Fig. 2).  The fact that there is a prototype effect at all with autistic 
subjects, given that all the dots move in each stimulus, could be viewed as challenging the 
hypothesis of hypervigilant learning about individual dots. However, given that all the dots move 
from their prototypical locations on each learning and performance trial, all subjects may be 
biased to process dot groupings, or clusters, to the best of their ability, since the cluster 
differences may be more stable than differences in the individual dots across trials. Both control 
and autistic participants could hereby be induced to classify the different clusters as perceptual 
units, similar to the way in which the gist of a scene may be classified. If this occurs, then the 
lower performance of autistic participants is consistent with hypervigilant learning, since these 
subjects would not be as good at recognizing variations of these clusters due to their known 
hypersensitivity to local elements in an input (Caron et al., 2006; Mottron et al., 2003) and to 
their tendency to detect local targets in visual search tasks (Plaisted, O’Riordan, & Baron-Cohen, 
1998). 

In experiment two, a subset of the dots did not vary across items in a category. Autistic 
participants, due to hypervigilance, may be sensitive to the specific locations of these dots, 
which may improve their performance in this task relative to that of controls, thereby 
overcoming the relative disadvantage that occurs in experiment one (Fig. 4).  This interpretation 
is consistent with evidence showing a preference for local vs. global grouping in high 
functioning autistic children (Scherf et al., 2008). 

The current results are thus weakly compatible with the hypervigilant learning hypothesis. 
Additional studies are, however, needed to further support or disconfirm this tentative 
conclusion. As in the current study, these additional studies should enable category learning of 
stimuli whose fixed and variable parts may alter processing of individual stimulus features vs. 
global feature groupings. Experimental designs in which the global groupings that could form 
are even more directly controlled should shed more light on how and whether autistic individuals 
learn in a hypervigilant state.  

 
 
Concluding remarks 
This study provides further evidence supporting the notion that autistic individuals manifest 
relatively intact prototypical category learning mechanisms. While we find evidence in 
experiment one that some autistic individuals learn prototypes more slowly than normal, leading 
to an overall decrement in testing performance, the pattern of performance across testing 
conditions is consistent with typical prototype learning. A second experiment confirmed this 
basic finding. Experiments that even more directly control the global groupings that can form in 
response to stimulus materials may further clarify how autistic individuals attend, group, and 
learn combinations of scenic features. 
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Footnotes 
1. Equal variances were not assumed for all t-tests throughout this paper. 
2. We also conducted this analysis excluding the four (4) autistic subjects who did not 

reach criterion within the 10 training blocks, with similar results. 
3. We also performed an analysis of covariance (ANCOVA), including subject age as a 

covariate and mean percentage correct as the dependent variable, to adjust for the 
different mean ages of the two groups, with similar results [adjusted control group 
mean = 87.4, adjusted autism group mean = 77.6, F(1) = 10.52, p = 0.0025]. 

4. For this analysis, we omitted the data of one autistic subject who did not reach criterion 
and who did not perform above chance in any training block or in any testing condition. 

 


